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These notes are based on a reading course instructed by Dan Cristofaro-Gardiner where
the author read from Hatcher’s Algebraic Topology and Milnor and Stasheff’s Characteristic
Classes.

1 Review of Vector Bundles

We work in the category Man of topological manifolds (locally Euclidean paracompact
Hausdorff spaces) and continuous maps. By locally Euclidean, we mean the space locally
looks like RA, where A is allowed to be infinite. This means that we permit
infinite-dimensional manifolds, and we will specify that a manifold has dimension n when
we want to talk about a finite-dimensional manifold. We define a smooth manifold as a
topological manifold that has a smooth structure, though we use the word “manifold” to
mean topological manifold.

Vector bundles over manifolds with bundle maps form the category VB. Recall that a
bundle map from ξ to η is a continuous map f : ξ → η between the total spaces which
carries fibers isomorphically onto fibers. A bundle map induces a map f : B(ξ) → B(η)
on the base spaces. We say that f covers f . The assignment taking bundles to their base
spaces ξ 7→ B(ξ) and bundle maps to their induced maps f 7→ f is a covariant functor
VB → Man. A bundle isomorphism is a bijective bundle map, that is, a homeomorphism
f : ξ → η that carries fibers isomorphically onto fibers.

We can also talk about the subcategory VBB of vector bundles over a fixed base space B.
The morphisms are bundle maps whose induced map on B is the identity.

The canonical line bundle γ1
n over real projective space Pn = Sn/ ∼ for x ∼ −x has total

space
γ1
n = {([x], v) : v = cx for some c ∈ R} ⊂ Pn × Rn+1

and projection π([x], v) = [x]. Alternatively, if we think of Pn as 1-dimensional linear
subspaces of Rn, then the total space is

γ1
n = {(line L ⊂ Rn, vector in L)} ⊂ Pn × Rn+1

and the projection is π(L, v) = L.
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2 The Stiefel-Whitney Classes

Definition 2.1. The Stiefel-Whitney classes are the unique map

ξ 7→ w(ξ) = w0(ξ) + w1(ξ) + · · · ∈ H∗(B(ξ);Z/2Z)

from vector bundles to cohomology classes of their base spaces such that the following four
axioms hold:

1. wi(ξ) = 0 for i > n if ξ is an n-plane bundle, and w0(ξ) = 1 = (1, . . . , 1), by which we
mean it is the element 1 ∈ Z/2Z in each connected component.

2. Naturality: if f : ξ → η is a bundle map and f : B(ξ) → B(η) is the induced map on
the base spaces, then

w(ξ) = f
∗
w(η).

3. The Whitney Product Theorem: If B(ξ) = B(η), then

w(ξ ⊕ η) = w(ξ)w(η).

4. w1(γ
1
1) is non-zero.

We’ll prove existence and uniqueness of the Stiefel-Whitney classes later. Assuming it for
now, we’ll explore the consequences existence and uniqueness of the class gives us.

Proposition 2.1. If ξ ∼= η, then w(ξ) = w(η).

Proof. Suppose first that ξ ∼= η over the same base space B. If φ : ξ → η is the isomorphism,
then idB is covered by φ, so w(ξ) = id∗Bw(η) = w(η) by naturality.

ξ η

B

φ

πξ πη

If ξ ∼= η as vector bundles over different base spaces, strictly speaking, the Stiefel-Whitney
classes are not equal because they are elements of different cohomology rings. But the
next best thing is true: if φ : ξ → η is an isomorphism, the induced homeomorphism
φ : B(ξ) → B(η) on the base spaces induces an isomorphism in cohomology

φ∗ : H∗(B(η);Z/2Z) → H∗(B(ξ);Z/2Z)

for which w(ξ) and w(η) are isomorphic images:

w(ξ) = φ∗w(η), w(η) = (φ−1)∗w(ξ).

We denote this situation as equality because the identification is as canonical as we could
hope for.

Let’s compute the Stiefel-Whitney classes of some simple manifolds.
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Example 2.1. If ε is a trivial n-plane bundle, then ε ∼= B(ε)× Rn. But there is a bundle
map from B(ε)× Rn to a vector bundle over a point, which has trivial homology for i > 0.
Therefore, w(ε) = 1.

B(ε)× Rn {p} × Rn

B(ε) {p}x 7→p

(x,v)7→(p,v)

Example 2.2. Theorem A.1 states that Hi(Pn;Z/2Z) is cyclic of order 2 for 0 ≤ i ≤
n, and if a is the non-zero element of H1(Pn;Z/2Z), then ai is the non-zero element of
Hi(Pn;Z/2Z). It is visually apparent that the inclusion

i : P1 ↪−→ Pn, i([x]) = [x, 0, . . . , 0]

is covered by a bundle map γ1
1 → γ1

n. Thus

i∗w1(γ
1
n) = w1(γ

1
1) ̸= 0,

so w1(γ
1
n) ̸= 0 and thus w1(γ

1
n) = a. But γ1

n is a line bundle, so we may conclude that
w(γ1

n) = 1 + a.

Example 2.3. We will show w(TSn) = 1 for n ≥ 1. This follows from Example 2.1 for
n = 1, since TS1 is a trivial bundle, but for n > 1, this shows that the Stiefel-Whitney
classes cannot differentiate the non-trivial bundles TSn from the trivial bundles Sn × Rn.

Let n > 1. The ith cohomology of Sn is non-trivial only for i = 0 and n, so w(TSn) =
1 + wn(TS

n) and it suffices to show wn(TS
n) = 0. The map f : Sn → Pn taking x to

[x] is a local diffeomorphism, hence df : TSn → TPn is a bundle map covering f . By
naturality, wn(TS

n) = f∗wn(TPn). But f∗(an) = (f∗a)n = 0 since f∗a ∈ H1(Sn;Z/2Z) =
0. Therefore, wn(TS

n) = 0.

The existence and uniqueness of the Stiefel-Whitney class enjoys a few deep consequences.
In Chapter 4, Milnor and Stasheff use the existence and uniqueness of the Stiefel-Whitney
class to show the following:

• Pn is parallelizable (has trivial tangent bundle) if and only if n− 1 is a power of 2.

• If there is a bilinear product without zero divisiors Rn × Rn → Rn, then n must be a
power of 2. (Rn endowed with such a product is called a real division algebra.)

• The smallest n for which P2k can be immersed in Rn is 2k+1 − 1.

We will focus on proving existence and uniqueness. To do this, we need to introduce more
theory.

3 The Universal Bundle and Characteristic Classes

There is a map t : M1 → Sk from a curve M1 ⊂ Rk+1 to its unit tangent vector. On the
other hand, the Gauss map n : Mk → Sk takes a point in Mk ⊂ Rk+1 to its unit normal.
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These maps depend on an orientation for M , however in the non-orientable case we still
have maps into Pk.

In general, if Mn ⊂ Rn+k, we have a map x 7→ TxM ⊂ Rn+k, called the generalized
Gauss map g. This map should have as its codomain n-dimensional linear subspaces of
Rn+k. For example, if n = 1, then the generalized Gauss map is t, and the codomain is
1-dimensional linear subspaces of Rk+1, in other words, Pk. And if k = 1, then this map is the
ordinary Gauss map n, and the codomain is n-dimensional linear subspaces of Rn+1. This
is canonically Pk since a choice of n-dimensional linear subspace is the same as the choice of
its 1-dimensional orthogonal complement. But in general, the codomain of the generalized
Gauss map is not projective space, it is a generalization called the Grassmannian.

Definition 3.1. The Grassmannian is

Grn(Rn+k) = {n-dim linear subspaces of Rn+k}

Proposition 3.1. Grn(Rn+k) is a compact smooth manifold of dimension nk. The map
x 7→ x⊥ is a diffeomorphism between Grn(Rn+k) and Grk(Rn+k).

If Mn ⊂ Rn+k, we can now define the generalized Gauss map as

g : Mn → Grn(Rn+k), g(x) = TxM.

Just as there is a canonical line bundle γ1
n over Pn, there is a canonical n-plane bundle

γn(Rn+k) over Grn(Rn+k).

Definition 3.2. The canonical n-plane bundle γn(Rn+k) over Grn(Rn+k) has total space

γn(Rn+k) = {(n-plane P ⊂ Rn+k, vector in P )} ⊂ Grn(Rn+k)× Rn+k

and projection π(P, v) = P .

If Mn ⊂ Rn+k, then the generalized Gauss map g : M → Grn(Rn+k) is covered by a bundle
map

g : TM → γn(Rn+k), g(x, v) = (TxM, v).

Therefore, by the Whitney embedding theorem, if M is an n-dimensional manifold, then the
tangent bundle TM maps into γn(Rn+k) for sufficiently large k. In fact, if ξ is any Rn-bundle
over a finite-dimensional base space, then there exists a bundle map ξ → γn(Rn+k) for
sufficiently large k. This allows us to hope that if we let k “go to infinity”, then we might
get a “universal bundle” γn(R∞) that every Rn-bundle maps into, even if it is over an
infinite-dimensional base space. This will turn out to be true once everything has been
defined.

Lemma 3.1. The direct limit of compact spaces K1 ⊂ K2 ⊂ K3 ⊂ · · · is paracompact.

This lemma justifies that the following spaces are manifolds.

Definition 3.3. The infinite real space is the manifold

R∞ =
⋃
k

Rk where Rk = {(x1, . . . , xk, 0, 0, . . .)} ⊂ infinite sequences of reals.
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It is topologized as the direct limit of

R0 ⊂ R1 ⊂ R2 ⊂ · · · ,

which means that U ⊂ R∞ if open iff U ∩ Rk is open as a subset of Rk for all k.

Definition 3.4. The infinite Grassmannian is the manifold

Grn = Grn(R∞) = {n-dim linear subspaces of R∞} =
⋃
k

Grn(Rn+k)

where Rn+k is as in Definition 3.3. It is topologized as the direct limit of

Grn(Rn) ⊂ Grn(Rn+1) ⊂ Grn(Rn+2) ⊂ · · · .

We also define the infinite projective space as the manifold P∞ = Gr1.

Definition 3.5. The universal n-plane bundle γn over Grn has total space

γn = {(n-plane P ⊂ R∞, vector in P )} ⊂ Grn × R∞

and projection π(P, v) = P .

Definition 3.6. Two bundle maps f, g : ξ → η are called bundle-homotopic if there exists
a family of bundle maps ht : ξ → η with H(x, t) = ht(x) continuous such that h0 = f and
h1 = g.

Theorem 3.1. Any Rn-bundle ξ admits a bundle map ξ → γn. This map is unique up to
bundle-homotopy.

This theorem would fail were we to work with non-paracompact manifolds.

We can now definite the concept of a characteristic class. First, note that by Theorem
3.1, an Rn-bundle ξ determines a unique homotopy class of maps fξ : ξ → γn, and this
determines a unique homotopy class of maps fξ : B(ξ) → Grn.

Next, pick a coefficient group or ring Λ and choose any cohomology class c ∈ Hi(Grn; Λ).
Then c and ξ uniquely determine the “characteristic class of ξ determined by c”

c(ξ) := f
∗
ξ(c) ∈ Hi(B(ξ); Λ).

Note that for this to be well-defined, we have used the fact that cohomology is a homotopy
invariant. A map

ξ 7→ c(ξ) ∈ Hi(B(ξ); Λ)

arising in this way is called a characteristic class. Notice that we can add and multiply
characteristic classes, and in fact they form a ring. The ring of characteristic classes for Rn

bundles with Λ coefficients is canonically isomorphic to H∗(Grn; Λ).

Any natural correspondence ξ 7→ c(ξ) ∈ Hi(B(ξ); Λ) is a characteristic class, because

naturality implies c(ξ) = f
∗
ξc(γ

n). This implies that the Stiefel-Whitney classes ξ 7→ wi(ξ)
are characteristic classes, justifying their name.
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On the other hand, every characteristic class is natural. To prove this, suppose that g : ξ →
η. We want to show that c(ξ) = g∗c(η). By Theorem 3.1, the diagram

η

ξ γn

g fη

fξ

commutes up to bundle-homotopy. Applying the base space/induced map functor, we
obtain

B(η)

B(ξ) B(γn)

g fη

fξ

which commutes up to homotopy. Applying the cohomology functor, we finally have

H∗(B(η);Z/2Z)

H∗(B(ξ);Z/2Z) H∗(B(γn);Z/2Z)

g∗ f
∗
η

f
∗
ξ

which is commutative since cohomology is a homotopy invariant. By definition, c(ξ) = f
∗
ξc

and c(η) = f
∗
ηc. Therefore,

c(ξ) = f
∗
ξc = g∗(f

∗
ηc) = g∗c(η),

as desired.

4 Existence and Uniqueness

We are now ready to prove the existence and uniqueness of Stiefel-Whitney classes. Recall
Theorem A.2, which say that H∗(Grn;Z/2Z) is a polynomial algebra over Z/2Z freely
generated by x1, . . . , xn.

Theorem 4.1. There exists a correspondence ξ 7→ w(ξ) satisfying the Stiefel-Whitney
axioms.

Proof. Following the last section, the Stiefel-Whitney classes of an arbitrary Rn-bundle can
be specified by a choice of w(γn), for then the Stiefel-Whitney classes of ξ are w(ξ) =

f
∗
ξw(γ

n) We choose
w(γn) = 1 + x1 + · · ·+ xn.

By the last section, we have naturality, so it remains to verify axioms 1, 3, and 4.

Axiom 1: Let ξ be an Rn-bundle. Then

w0(ξ) = f
∗
ξw0(γ

n) = f
∗
ξ(1) = 1.
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Also, for i > n,
wi(ξ) = f

∗
ξwi(γ

n) = f
∗
ξ(0) = 0.

Axiom 3: Omitted.

Axiom 4: As in Example 2.2, the inclusion

i : P1 ↪−→ P∞ = Gr1, i([x]) = [x, 0, 0, . . .]

is covered by a bundle map γ1
1 → γ1. The injectivity of i implies i∗ is surjective. Therefore,

w1(γ
1
1) = i∗w1(γ

1) = i∗(x1) = a ̸= 0

for a as in Theorem A.1 because i∗(0) = 0 and we need something to hit a for surjectivity.

We now forget about the choice of w made in the proof of existence and once again let w be
anything satisfying the Stiefel-Whitney axioms. It turns out that the choice we made was
the only possible one. The proof of uniqueness uses the following lemma.

Lemma 4.1. H∗(Grn;Z/2Z) is a polynomial algebra over Z/2Z freely generated by
w1(γ

n), . . . , wn(γ
n).

Proof. We’ll show that H∗(Grn;Z/2Z) contains a polynomial algebra freely generated by
w1(γ

n), . . . , wn(γ
n), and then by Theorem A.2, H∗(Grn;Z/2Z) cannot contain anything

else.

Clearly H∗(Grn;Z/2Z) contains wi(γ
n), but we need to show there are not any polynomial

relations among them. So suppose there were a polynomial p ̸= 0 in n variables in Z/2Z
coefficients such that

p(w1(γ
n), . . . , wn(γ

n)) = 0.

Then for any n-plane bundle ξ, we have w(ξ) = f
∗
ξw(γ

n). Hence

p(w1(ξ), . . . , wn(ξ)) = f
∗
ξp(w1(γ

n), . . . , wn(γ
n)) = 0.

Therefore, to find a contradiction, we just need to find one n-plane bundle ξ for which there
are no polynomial relations among the wi(ξ)’s.

Form the n-fold productX = P∞×· · ·×P∞ with projection onto the ith factor πi : X → P∞.
Recalling that a is the generator of H∗(P∞;Z/2Z), we define ai = π∗

i (a). By the Künneth
formula, H∗(X;Z/2Z) is a polynomial algebra generated by a1, . . . , an.

We choose
ξ = γ1 × · · · × γ1︸ ︷︷ ︸

n

∼= (π∗
1γ

1)⊕ · · · ⊕ (π∗
nγ

1)︸ ︷︷ ︸
n

which has base space X. Since w(γ1) = 1 + a, by the Whitney Product Theorem,

w(ξ) = (1 + a1) · · · (1 + an).
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Expanding out the product, we see

w1(ξ) = a1 + · · ·+ an

w2(ξ) = a1a2 + a1a3 + · · ·+ an−1an

...

wn(ξ) = a1 · · · an.

These are the elementary symmetric functions of n variables over a field, and one can show
that there are no polynomial relations among them. Hence there are no polynomial relations
among the wi(γ

n)’s.

Theorem 4.2. There exists at most one correspondence ξ 7→ w(ξ) satisfying the
Stiefel-Whitney axioms.

Proof. Now suppose that ξ 7→ w(ξ) and ξ 7→ w̃(ξ) both satisfy the Stiefel-Whitney axioms.
It suffices to show that w(γn) = w̃(γn), for then if η is an Rn-bundle,

w(η) = f
∗
ηw(γ

n) = f
∗
ηw̃(γ

n) = w̃(η).

Recalling that a is the generator of H∗(P∞;Z/2Z), we have

w(γ1
1) = w̃(γ1

1) = 1 + a.

Embedding γ1
1 in γ1 gives

w(γ1) = w̃(γ1) = 1 + a.

As in the proof of the previous lemma, let

ξ = γ1 × · · · × γ1︸ ︷︷ ︸
n

∼= (π∗
1γ

1)⊕ · · · ⊕ (π∗
nγ

1)︸ ︷︷ ︸
n

over P∞ × · · · × P∞. Then,

w(ξ) = w̃(ξ) = (1 + a1) · · · (1 + an),

f
∗
ξw(γ

n) = w(ξ) = w̃(ξ) = f
∗
ξw̃(γ

n).

But f
∗
ξ : H∗(Grn;Z/2Z) → H∗(P∞ × · · · × P∞;Z/2Z) is injective, so w(γn) = w̃(γn).

A Cohomology Results in Z/2Z
Theorem A.1. Hi(Pn;Z/2Z) is cyclic of order 2 for 0 ≤ i ≤ n. If a is the non-zero
element of H1(Pn;Z/2Z), then ai is the non-zero element of Hi(Pn;Z/2Z).

Theorem A.2. H∗(Grn;Z/2Z) is a polynomial algebra over Z/2Z freely generated by
x1, . . . , xn.

The proof of Theorem A.2 can be done using spectral sequences. Note that x2
i = −x2

i

sometimes due to the graded commutativity of the cup product, and hence in characteristics
other than two, x2

i = 0 is a polynomial relation among the xi’s. This is why we use Z/2Z
coefficients.
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