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Abstract. This survey will give an introduction to the theory of Hilbert schemes of points on a surface.
These are compactifications of configuration spaces of n distinct particles moving around on a surface. After

giving the necessary background and construction, we will explain some of the amazing recent connections

found between these spaces, combinatorics and representation theory.

1. Introduction

This survey is an overview to the theory of Hilbert schemes of points on a smooth surface. Hilbert schemes
in general were constructed by Grothendieck as solutions to a certain moduli problem. This construction
paved the way for the construction of most moduli spaces since then.

The theory of Hilbert schemes of points on a smooth surface exploded once Fogarty proved that Hilbn(X)
is smooth and irreducible for X a smooth irreducible surface. Then the Hilbert-Chow morphism gives
a canonical resolution of the symmetric product and many techniques reserved for smooth varieties and
complex manifolds become available.

This note will go over the construction and some interesting properties of Hilbn(X). We will mainly restrict
to X = A2 until the last section. There are many more things I wanted to mention but couldn’t due
to time constraints. These include the connections to representations of finite groups and resolutions of
singularity through the McKay correspondance, and Haiman’s proofs of the n! and (n+ 1)(n−1) conjectures
which were huge milestones in the theory of symmetric functions whose proof relied heavily on the geometry
of Hilbn(A2).

I have attempted to keep the discussion accessible to first year grad students and have tried to include enough
of the relevant background. However, I’ve oversimplified some things and I’ve also left out references which
I will add in the future. As a result there may be some errors so use at your own risk but please let me know
if you find any.

1.1. Background.

1.1.1. Algebraic Geometry. For this talk we will be working over the complex numbers C. An will denote the
complex vector space Cn viewed as a topological space endowed with the ring of complex polynomial functions
from An → A1. This is just the ring C[x1, . . . , xn]. We call this space affine space of dimension n. An affine
scheme V ⊂ An will be the simultaneous zeroes of some ideal of polynomial functions I ⊂ C[x1, . . . , xn]
endowed with the ring of polynomial functions

A(V ) := C[x1, . . . , xn]/I

called the coordinate ring. The support of V is the subset of V without a choice of coordinate ring. We
should think of the coordinate ring as the ring of complex valued algebraic functions on the scheme V .

Example 1.1. (a) An itself is an affine scheme with coordinate ring C[x1, . . . , xn].

(b) The quadratic uw − v2 cuts out a quadratic cone X ⊂ A3 with coordinate ring C[u, v, w]/(uw − v2).
1
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(c) The nonzero complex numbers C∗ ⊂ A1 can be given the structure of an affine scheme by identifying
x ∈ C∗ with the zero set of xy − 1 in A2. This gives C∗ the coordinate ring C[x, y]/(xy − 1) = C[x±1].

We call the third example C∗ the 1-dimensional algebraic torus. More generally, an n-dimensional algebraic 
torus is the variety (C∗)n with coordinate ring C[x1

±1, . . . , xn±1].

Definition 1.2. A zero-dimensional affine scheme is an affine scheme Z such that dimC A(Z) < ∞. 
dimC A(Z) is called the length of Z.

By abuse of notation, we will sometimes call the length of Z the length of I where I is the defining ideal of 
Z and denote it len(I).

Example 1.3. The defining ideal I and the the coordinate ring are crucial to the definition of an affine

scheme. For example the rings C[x]/(x) and C[x]/(x2) both correspond to the point 0 ∈ C as a set. However, 
the ring of functions on them are very different and we can think of the latter as an infinitesimal first order 
neighborhood of the origin while the former is just the origin itself.

A complex variety (or more generally scheme) structure on a space X is an open cover {Vα} where the Vα are 
affine schemes endowed with their coordinate rings A(Vα). A morphism of varieties is a function f : X → Y 
so that there are open covers by affines Uα of X and Vα of Y such that f restricts to f : Uα → Vα and f 
induces a ring homomorphism f# : A(Vα) → A(Uα).

Thus general varieties or schemes are just topological spaces that you can glue together from affine varieties, 
and the morphisms are just those that come from ring homomorphisms of affines. This is analogous to a 
manifold being a space that locally looks like euclidian space and smooth functions between manifolds being 
functions that locally look like smooth functions between euclidian spaces.

Definition 1.4. A vector bundle of rank n is a morphism p : E → X of varieties so that there exists an

open affine cover {Uα} of X such that p : p−1(Uα) → Uα is just the projection Uα × An → Uα.

So a vector bundle of rank n is a space that locally looks like a product with an affine space. The preimage 
p−1(x) =: Ex is a vector space called the fiber at p and we can think of a vector bundle as an assignment of 
vector spaces at each point of X that is glued together in a compatible algebraically varying way.

We can define any operation that we have on vector spaces for vector bundles by doing that operation 
fiberwise and gluing together. For example, direct sums, tensor products, and duals of vector bundles can 
be defined as well exact sequences of vector bundles.

1.1.2. Cohomology. We will go back and forth between viewing our varieties as schemes and as complex 
manifolds. For a complex manifold X of dimension n, we will use compactly supported cohomology with

coefficients in Q which we will denote by Hk(X). These are Q vector spaces for k ≥ 0 such that Hk(X) = 0 if k 
> 2n and Hk(X) = H2n−k(X) where Hl(X) is singular homology. For a compact manifold, these agree with the 
usual singular cohomology, and in view of this duality, one can think of the cohomology as the same as the 
homology except where we index by codimension instead of dimension.

We can think of cohomology classes as representing actual subvarieties or submanifolds of X so that Hk(X) 
consists of classes corresponding to the codimension k submanifolds of X. Then

H∗(X) =
2 dimX⊕
i=0

Hi(X)

inherits a graded ring structure that corresponds to intersecting submanifolds. This is the advantage of using
cohomology instead of homology.

The ranks of the vector spaces will be denoted

bi(X) := dimQH
i(X)



HILBERT SCHEMES: GEOMETRY, COMBINATORICS, AND REPRESENTATION THEORY 3

and are the betti numbers. The Euler characteristic is the alternating sum

χ(X) =

2 dimX∑
i=0

(−1)ibi(X).

There is also an analagous ring known as the Grothendieck ring or K theory of vector bundles on X and
denoted K(X). This is an analogue of cohomology where instead of clases representing subvarieties of
X, classes now represent vector bundles on X. Addition comes from direct sum of vector bundles and
multiplication from the tensor product.

2. The Hilbert Scheme

We will focus on the Hilbert scheme of points on the surface X = A2 with coordinate ring C[x, y], though
most things we will talk about apply to more general surfaces.

Definition 2.1. The symmetric product

Symn(X) := Xn/Sn

where the symmetric group acts by permuting the coordinates.

This is a compactification of the configuration space of n distinct points on X. However, Symn(X) is not a
complex manifold. It has singularities along the diagonal where some of the coordinates coincide. We want
to find a compactification of this space that is a smooth complex manifold.

The basic idea is simple. If we have n distinct points in X, that is, a point in the smooth locus of
Z ∈ Symn(X), then we can find a unique ideal I consisting of all functions that vanish on Z. Then
the corresponding coordinate ring A(Z) = C[x, y]/I is an n-dimensional vector space over C. Z is a length
n subscheme of the plane. Thus, we may attempt to compactify the smooth locus by adding all ideals of
length n.

Theorem-Definition 2.2. (Grothendieck, Fogarty, Haiman, . . . ) There exists an irreducible smooth variety
Hilbn(X) which is a parameter space for zero-dimensional subschemes of X compactifying the smooth locus
of the symmetric product. As a set, this variety is given by

Hilbn(X) = {I ⊂ C[x, y]|dimC C[x, y]/I = n}.

This variety comes equipped with a Hilbert-Chow morphism

Hilbn(X)→ Symn(X)

giving it as a resolution of singularities of Symn(X).

Remark 2.3. The existence of Hilbert schemes was originally proved in a much more general context by
Grothendieck. Fogarty proved that for any irreducible smooth surface X, Hilbn(X) is a smooth irreducible
variety so that the Hilbert-Chow morphism is a resolution of singularities. The construction we give of the
Hilbert scheme for A2 is by Haiman.

Before we give the proof, we need some combinatorics background.
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2.1. Partitions and Young Diagrams. A partition of n is a nonincreasing list of nonnegative integers
λ1 ≥ λ2 ≥ . . . ≥ λk so that

∑
λi = n and λk 6= 0. k is called the number of parts of the partition. We can

represent a partition pictorally by a diagram of boxes, so that the ith row constists of λi boxes and the rows
are left aligned. For example, the diagram

corresponds to the partition 4 + 2 + 1 of 7.

Any such box diagram corresponds to a partition of n = # of boxes and with k = # of rows parts.
This picture is called a Young diagram. We will freely switch between talking about the partition and the
corresponding Young diagram and will denote both by λ and write λ ` n for λ is a partition of n. We will
give coordinates (i, j) to the boxes in the Young diagram where i denotes the column and j denotes the row
and will imagine λ as embedded in the N2 lattice so we can talk about (r, s) ∈ N2 lying outside of λ.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) . . .

(0, 1) (1, 1) (2, 1) . . .

(0, 2) (1, 2) . . .

(0, 3)

.

.

.

Partitions appear in math as indexing sets for many things as we will see some examples of.

Proposition 2.4. There is a one to one correspondance between partitions λ of n and monomial ideals
I ⊂ C[x, y] of length n given by

λ 7→ Iλ := ({xrys|(r, s) /∈ λ})

with inverse

I 7→ λ(I) := {(i, j)|xiyj /∈ I}

Proof. To any subset {(i, j)} ⊂ N2 of size n, we can associate a box diagram similar to the Young diagram λ
of a partition. The box diagrams which are Young diagrams are characterized by the fact that if (i, j) ∈ λ,
then (i− 1, j) ∈ λ and (i, j − 1) ∈ λ.

Now, Iλ is an ideal and xiyj /∈ Iλ if and only if (i, j) ∈ λ so C[x, y]/Iλ is generated by xiyj for (i, j) ∈ λ as
a vector space. In particular, it has dimension equal to the number of boxes of λ which is n so len(Iλ) = n.

Conversely, given an ideal I, we know that if xrys ∈ I then xr+1ys and xrys+1 ∈ I. Therefore, of xiyj /∈ I,
then xi−1yj and xiyj−1 are not in I and λ(I) satisfies the characterizing property of Young diagrams. Finally,
λ(I) is a partition of n because the boxes in λ(I) are in one to one correspondance with monomials xiyj not
in I. These give a basis for C[x, y]/I which is n-dimensional by assumption so there are n boxes.

�

In light of this, we will often picture the Young diagram as representing such a subset of monomials.
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1 x x2

y xy

y2

y3

We will denote Bλ = {xiyj |(i, j) ∈ λ} and by the proof Bλ is a basis for C[x, y]/Iλ.

2.2. The Existence of Hilbn(X). Now we are ready to construct Hilbn(X) as a variety. We will follow
the construction of Haiman that uses the combinatorics of Young diagrams and monomial ideals established
above to give explicit open affine covers of the Hilbert scheme.

For each λ partitioning n, Iλ ∈ Hilbn(X). We construct an open affine variety Uλ around each of these
special points so that the coordinate rings on these affines are algebraic functions of the ideals I ∈ Uλ.

Define Uλ ⊂ Hilbn(X) by

Uλ := {I ∈ Hilbn(X)|Bλ is a basis for C[x, y]/I}

Remark 2.5. Note that Iλ ∈ Uλ and that this is the only monomial ideal contained in Uλ. Thus, all the Uλ
are needed to cover Hilbn(X). The proof that the Uλ do in fact cover Hilbn(X) will be ommitted but follows
from explicit commutative algebra computations on C[x, y].

For each I ∈ Uλ, we can expand out

xrys =
∑

(i,j)∈λ

crsij (I)xiyj mod I

uniquely since Bλ gives a basis mod I,. This gives algebraic functions crsij defined on Uλ for any (r, s) and
any (i, j) ∈ λ.

Claim 2.6. Uλ endowed with the ring of functions C[crsij ] is an affine scheme. This is a cover of Hilbn(X)
by affines which gives it the structure of an algebraic variety.

This shows that the Hilbert scheme exists as a variety and that it parametrizes ideals in an algebraically
varying way. We won’t discuss precisely what this means. Furthermore, we can explicitly construct the
Hilbert-Chow morphism. This is just the map

Hilbn(X)→ Symn(X)

sending an ideal I to its support Supp(I). If I corresponds to n distinct points, then it maps to the sum
of those n points in the symmetric product so this is an isomorphism away from the singular locus. Above
the singular points, we have families of ideals that the Hilbert scheme parametrizes whose support is all the
same.

2.2.1. Hilb2(X). Let’s look at Hilb2(X) explicitly. If we have two distinct points p1 and p2 in A2, then the
ideal I consisting of all polynomials that vanish at both points is already a length two ideal and so is a
distinct point in Hilb2(X).

We can take an automorphism of A2 sending p1 to the origin and so our two points are (0, 0) and p 6= 0. Lets
say p = (a, b). The ideal of functions vanishing at (0, 0) is (x, y) and the ideal vanishing at (a, b) is (x−a, y−b).
Therefore, the ideal vanishing at both consists of (x, y)∩ (x−a, y−b) = (x(x−a), x(y−b), y(x−a), y(y−b))
since these points are distinct and so their ideals are coprime.
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What happens if we take the limit as p approaches (0, 0)? Well we need to define how we are taking this limit.
Suppose we take the limit so that p lies on a line y = αx. Then p is of the form (t, αt) and it approaches 0
as t→ 0. Looking at the ideal,

It = (x(x− t), x(y − αt), y(x− t), y(y − αt))

It is an algebraic family of ideals and it defines a curve in the Hilbert scheme. The limit as t→ 0 should be
a length 2 ideal that is supported at the origin. It contains the linear form αx − y for all t 6= 0. Therefore
the limit I0 must also contain αx− y and so by length considerations, the limit is exactly

I0 = (x2, xy, y2, αx− y).

We can rewrite I0 more suggestively as

I0 = {f |f(0, 0) = 0 and df(0,0) = rv for some r}

where v is a vector in the direction of the line y = αx. We see more generally that this is the structure of
every point I ∈ Hilbn(X) supported at the origin:

Hilbn0 (X) = {I(v) = {f |f(0) = 0 and df0 = rv}|v ∈ T(0,0)C2}

where we denote those ideals supported at the origin by Hilbn0 (X). This is known as the punctual Hilbert
scheme. So we see that when points collide on the Hilbert scheme, it keeps track of both where the points
collide and the infitessimal information about how they collide.

2.3. Local Structure of the Hilbert Scheme. We will compute the tangent space Tλ Hilbn(X) at a
monomial ideal Iλ where we denote Iλ by λ by abuse of notation. The Zariski cotangent space of a point p
in an affine variety V is the vector space mp/m

2
p where mp is the ideal in the coordinate ring consisting of

all functions that vanish at p. Then the tangent space TpV = (mp/m
2
p)
∗ is the dual vector space.

For any monomial ideal Iλ ∈ Hilbn(X), either xrys = 0 mod I if xrys ∈ I or xrys = xiyj if (r, s) = (i, j) ∈ λ.
Therefore,

crsij (Iλ) =

{
1 if (r, s) = (i, j) ∈ λ
0 if (r, s) /∈ λ

so the maximal ideal of Iλ is

mλ = {crsij |(r, s) /∈ λ}.

We can represent each of these functions crsij as arrows on the Young diagram λ that start at box (r, s) outside

the diagram and end at box (i, j) inside the diagram. We need to understand mλ/m
2
λ. By multiplying the

defining equation

xrys =
∑

crsij (I)xiyj mod I

by x and expanding out both sides in the basis Bλ, we get the relation

cr+1,s
ij =

∑
(h,k)∈λ

crshkc
h+1,k
ij .

Similarly, multiplying by y gives the relation
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cr,s+1
ij =

∑
(h,k)∈λ

crshkc
h,k+1
ij .

Taking these equations modulo m2
λ kills off every term except when (h + 1, k) = (i, j) or (h, k + 1) = (i, j)

respectively. This reduces to

cr+1,s
ij = crsi−1,j mod m2

λ cr,s+1
ij = crsi,j−1 mod m2

λ

So as cotangent vectors, we can move the arrows corresponding to crsij either horizontally or vertically and
still get the same cotangent vector as long as the tail (r, s) stays outside the diagram and the head (i, j) stays 
inside the diagram. By abuse of notation, we will use these arrows to denote both the cotangent vectors as 
above, and the dual tangent vectors in Tλ Hilbn(X).

3. Torus Actions on the Hilbert Scheme

3.1. Algebraic Torus Actions. Let T = (C∗)2 be the two dimensional algebraic torus. Then T acts on 
X = A2 diagonlly by t · (x, y) = (t1x, t2y) where t = (t1, t2) ∈ T . This naturally lifts to an action on ideals 
by

t · I := {f(t1
−1x, t2

−1y)|f(x, y) ∈ I}.

This action preserves degrees of the polynomials and so sends a length n ideal to a length n ideal. Therefore 
it induces an action of T on Hilbn(X). It turns out that we can understand a whole lot of the geometry 
of Hilbn(X) by exploiting the fixed points of this action. Specifically we have the following useful theorems 
about torus actions on a variety.

Theorem 3.1. Let Y be a compact normal variety with a torus action by T and let Y T be the locus of points fixed 
by T . If all the points in Y T are smooth then Y is smooth.

Proof. The singular locus of Y is torus invariant and closed. Therefore it consists of closures of torus orbits. 
The closure of every torus orbit contains a torus fixed point and so the singular locus of Y must contain a 
torus fixed point if it is nonempty. If the torus fixed points are all smooth then the singular locus must be

empty. �

Theorem 3.2. If Y has finitely many fixed points so that Y T = {p1, . . . , pn}, then there exists a 1-

dimensional subtorus T ′ ⊂ T so that Y T
′

= Y T .

Theorem 3.3. (Bialynicki-Birula pt.1) Let Y be a smooth variety with a torus action with finitely many
fixed points and let T ′ be a 1-dimensional subtorus as above that also satisfies the following condition:

lim
t→0

t · y exists

for all y ∈ Y where t ∈ T ′. Then there exists a decomposition of Y into locally closed subvarieties Yi given
by the following:

Yi := {y ∈ Y | lim
t→0

t · y = pi}

where again the limit is taken over t ∈ T ′. Each Yi is isomorphic to an affine space Ani and we can read the
dimension of ni from the action of T ′ on TpiY . Explicitly, this dimension is the dimension of the subspace
T+
piY consisting of tangent vectors on which T ′ acts by positive weight.
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Theorem 3.4. (Bialynicki-Birula pt.2) The cohomology H2k(Y ) is generated by the classes of the closures
of the cells Yi such that dimY = k and the odd cohomology H2k+1(Y ) vanishes. Therefore, the Betti numbers
can be read off from the torus action as

b2k(Y ) = #{pi|dimT+
piY = k}

and χ(Y ) = #Y T .

3.2. Torus Fixed Points of the Hilbert Scheme. To apply those above theorems, we need to understand
the torus fixed points of Hilbn(X) and the limits limt→0 t · I for one dimension subtori. The torus T acts by
different weight on x and y. The only way I will be a fixed ideal under this action is if it is generated by f
that are homogeneous in both x and y so I must be a monomial ideal. This explains the significance of the
Iλ that we discussed above. They are exactly the torus fixed points of a canonical torus action and in fact
the open sets Uλ are maximal torus fixed open affine subsets containing Iλ.

Proposition 3.5. Hilbn(X) is smooth.

Proof. We need to show that Hilbn(X) is smooth at the torus fixed points Iλ. This amounts to computing
the dimension of mλ/m

2
λ and showing it is equal to the dimension of Hilbn(X) which is 2n. We can represent

cotangent vectors by arrows as above and we can slide the arrows around on the diagram. If the head of an
arrow ever leaves the diagram, then that function crsij vanishes modulo m2

λ.

If an arrow is pointing northwest, then we can always move it so it vanishes. If it is pointing weakly northeast,
then we can move it to a unique position as far north and to the east as possible. Similarly, if it is pointing
weakly southwest, then we can move it as far south and west as possible to a unique position.

•

The northeast pointing vectors are in one to one correspondance with boxes in the diagram by associating
to each box (i, j) (in black above) to the arrow from the • right outside the column i to the red box right
inside the row j. Southwest pointing arrows are in one to one correspondance with boxes by associating to
the black box the arrow pointing from • to the red box as below:

•

Thus, to each box in λ, there are exactly 2 tangent vectors, one northeast and one southwest, so the dimension
is 2n and the Hilbert scheme is smooth.

�

To apply Bialynicki-Birula’s theorem, we need to understand the 1-parameter torus limits of ideals in
Hilbn(X). Each one dimension subtorus T ′ ⊂ T is of the form (tp, tq) for some weights (p, q). We will
denote the weight vector (p, q) by w. Then this weight vector gives an ordering on the monomials xrys by
xiyj < xrys if and only if pi+ qj < pr + qs.

Example 3.6. If we take only monomials up to degree n for some fixed n and pick w so that p >> q > 0,
then the monomial ordering on these monomials is the one where y is always less than x so that 1 < y <
y2 < . . . < x < xy < . . . < xn.
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Definition 3.7. Let f(x, y) ∈ C[x, y] and w some weight vector. Then we denote by inw(f) the leading
monomial term of f with respect to the weight w. For I an ideal, then

inw(I) = {inw(f)|f ∈ I}.

Note that this is a monomial ideal Iλ for some λ by construction.

Then by computing the explicit way (tp, tq) acts on a polynomial f , we can see that in the limit as t → 0,
only the initial term of f survives. Thus, we have the following.

Proposition 3.8. Let T ′ be a one dimensional subtorus from Byalinicki-Birula’s theorem and suppose that
it corresponds to weight vector w. Then

lim
t→0

t · I = inw(I)

Corollary 3.9. For each suitable weight vector w, Hilbn(X) has a stratification into locally closed affine
spaces Hλ indexed by partitions λ so that

Hλ = {I ∈ Hilbn(X)| inw(I) = Iλ}.

4. Cohomology of Hilbn(X)

Now we are in a position to compute the cohomology of Hilbn(X) using the cell decomposition above and
the Bialynicki-Birula theorem. The defining equations for crsij as coefficients in the basis expansion must be
torus invariant from the definition of the torus action since the basis Bλ is a torus invariant basis for all λ.
From this, we get that the torus acts on crsij by

(t1, t2) · crsij = tr−i1 ts−j2 crsij .

In particular, a 1-dimensional subtorus with weight vector w = (p, q) acts by

t · crsij = tp(r−1)+q(s−j)crsij .

The weight of the 1-d torus on each arrow crsij is exactly p(r − i) + q(s− j) and so by the Bialynicki-Birula
theorem, for any fixed weight vector w, the dimension of the cell Hλ is exactly the number of arrows crsij
such that p(r − 1) + q(s− j) > 0.

Definition 4.1. For each w, there exists a statistic dw on the set of partitions of n so that

dw(λ) = #{crsij ∈ Tλ Hilbn(X)|p(r − i) + q(s− j) > 0}

Then we have essentially proved the following.

Theorem 4.2. Fixing an appropriate weight vector w = (p, q), we can compute the betti numbers numbers
of Hilbn(X) as

b2k(Hilbn(X)) = #{λ|dw(λ) = k}

Corollary 4.3.
χ(Hilbn(X)) = #{λ ` n}

Corollary 4.4. Each choice of w gives you an equidstributed statistic dw on the set of partitions of n. That is, 
the number of λ with a specific value of dw(λ) is independent of w. Thus there is a 2-dimensional family of 
equidistributed statistics on the set of partitions.
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Proof. By the theorem, the number of λ with some fixed value of dw(λ) counts the betti numbers of Hilbn(X)
which are an intrinsic topological invariant not depending on w. �

4.1. Specific Statistics and the Formula of Ellingsrud and Stromme. Ellingsrud and Stromme found an 
explicit weight w such that dw(λ) = n + l(λ) where l(λ) is the number of parts of the partition λ. This lets us 
compute the generating function for the Betti numbers.

Definition 4.5. Let Y be a smooth complex manifold. The Poincare polynomial Pt(Y ) is the polynomial

Pt(Y ) =
∑

bk(Y )tk.

Then with Ellingsrud and Stromme’s statistic, we have the equality

Pt(Hilbn(X)) =
∑
λ`n

t2n+2l(λ).

Even better, we can package these all together so that

∑
n

Pt(Hilbn(X))qn =
∑
n

∑
λ`n

t2n+2l(λ) =

∞∏
m=1

1

1 − t2m+2qm
.

By the discussion above, this generating function up to a change of variables must be the generating function
of partitions under any statistic dw defined by a weight w. A question one could ask is if there are com-
binatorial interpretations for different statistics. Loehr and Warrington solved this question with a strong
affirmative. They contructed for each of these weights, explicit discriptions of the statistics in terms of the
combinatorics of λ and then, inspired by corllary 4.4, they proved the equidistributivity of these statistics
by constructing explicit combinatorial bijections that related Young diagrams with associated statistics to
Eulerian tours, cylindrical lattice paths, directed multigraphs, and oriented trees.

4.2. Gottsche’s Formula and the Nakajima Construction. Until now we have been working very
explicitly with X = A2. However, the construction for Hilbert schemes of points on A2 can be generalized
to any smooth surface by using the fact that smooth surfaces locally look like A2. Here we have to take
care in what we mean by locally since it does not necessarily mean there exists an open affine subvariety A2.
Rather, locally here means locally analytically in a formal power series neighborhood.

An immediate question is what is the generalization of Ellingsrud and Strommes generating function for
the betti numbers of Hilbn(X) for general X? Gottsche settled this question by giving a very beautiful
formula.

Theorem 4.6. (Gottsche) Let X be a smooth projective surface. Then

∑
n

Pt(Hilbn(X))qn =
∏
m

(1 + t2m−1qm)b1(X)(1 + t2m+1qm)b3(X)

(1− t2m−2qm)b0(X)(1− t2mqm)b2(X)(1− t2m+2qm)b4(X)

This showed that the best way to study the cohomology of the Hilbert scheme is by viewing all the Hilbert
schemes at once. Witten and Vafa made an observation that this generating function is the character formula
for an irreducible representation of a Heisenberg algebra on a bosonic Fock space. Nakajima and Grojnowski
showed this observation was not a coincidence.

Definition 4.7. The Heisenberg algebra H is the algebra generated by creation and annihilator operators
P [k] for k ∈ Z \ {0} under commutation relations

[P [m], P [n]] = mδm+n,0K

where K is some constant.
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Theorem 4.8. (Nakajima, Grojonwski) The cohomology of all the Hilbert schemes Hilbn(X) for all n

⊕
n

H∗(Hilbn(X))

is an irreducible representation of H with character given by the Gottsche formula.

The idea is that the Nakajima operators P [i] actually act like creation and annihilation operators on the
Hilbert scheme by adding i points (or subtracting if i is negative). For example, naively, we can think of the
action of the operators P [1] as sending a diagram λ ` n to the sum of all diagrams λ+ ` n+ 1 obtained by
adding exactly one box to λ.

P [1]−−→ + +

Similarly, P [−1] can be thought of as acting by sending λ to the sum of all partitions obtained by removing
a box.

P [−1]−−−−→ +

This is not quite precise but it is a good heuristic as to why we may expect a creation/annihilation action
on the cohomologies of the Hilbert scheme.

4.3. K-Theory and the Representations of Sn. One other place that Young diagrams appear in math-
ematics is as the indexing set for irreducible representations of Sn. To each λ ` n, we can associate an
irreducible representation Vλ of Sn constructed explicitly from the combinatorics of λ. Since every represen-
tation can be decomposed into a sum of irreducibles, we can make the following definition.

Definition 4.9. The representation ring RepSn
is the ring generated by the isomorphism classes of irreducible

representations Vλ with addition given by ⊕ and multiplication given by ⊗.

If V is a representation of Sn and W is a representation of Sm, then V ⊗W can be induced to representation of
Sn+m by the natural inclusion of Sn×Sm → Sn+m. We will denote this representation by (V ⊗W )n+m.

Definition 4.10. The Littlewood-Richardson coefficients are the coefficients cνλ,µ in the expansion

(Vλ ⊗ Vµ)n+m = ⊕νcνλ,µVν

of the induced representation in terms of irreducibles of Sn+m, where λ ` n, µ ` m and ν ` n+m.

RepSn
and H∗(Hilbn(A2)) are both rings generated by classes indexed by partitions λ. One could ask is

there any relation between these two rings? That is, is there a natural algebraic correspondance between
representations Vλ of Sn and cells Hλ of Hilbn(A2) generating the cohomology? It turns out the answer is yes
if we switch from the cohomology ring of Hilbn(A2) to the K-theory of vector bundles K0(Hilbn(A2)).

Theorem 4.11. (Haiman) There exists a one to one correspondance between irreducible representations Vλ
of Sn and certain vector bundles Pλ on Hilbn(A2) such that the bundles Pλ generate K0(Hilbn(A2)) and that
the correspondance respects the ring structures between RepSn

and K0(Hilbn(A2)).

Remark 4.12. I’m being purposely vague here. The correct statement of the correspondance involves an
equivalence between derived categories of coherent sheaves which lifts to an equivalence between certain equi-
variant K0 groups but I didn’t want to get into that here.
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Haiman proved this as part of his proofs of the celebrated n! and (n+1)(n−1) conjectures. These are important
results in the theory of symmetric functions which Haiman proved by carefully studying the geometry of
Hilbn(A2).

Question 4.13. Can we extend the Nakajima operators to the K-theory of Hilbn(A2) so that they give a
geometric interpretation of the Littlewood-Richardson coefficients in terms of the natural vector bundles on
Hilbn(A2)?




