Perfectoid rings and \mathbb{A}_{inf}

Dori Bejleri

July 2017

1 Introduction

In this talk we will define and study Fontaine's ring \mathbb{A}_{inf} . The goal is to construct for a perfectoid ring S, morphisms $\theta_r, \tilde{\theta}_r : \mathbb{A}_{inf}(S) \to W_r(S)$ generalizing Fontaine's map $\theta : \mathbb{A}_{inf}(S) \to S$ and show that they behave like one parameter deformations.

Specialization along these maps is used in [BMS16] for constructing the comparison between the A_{inf} cohomology theory and the relative de Rham-Witt complex. We closely follow [BMS16, Section 3] as well as [Mor16, Section 3].

2 Witt vectors

We first review (*p*-typical) Witt vectors. For a detailed and general exposition, see [Rab14]. Fix p a prime number.

Let A be any ring and define $W_r(A) = A^r$ as a set. Consider the maps

$$w: W_r(A) \to A^r$$

given by

$$(x_0, x_1, \dots, x_{r-1}) \mapsto (w_0(x_0), w_1(x_0, x_1), \dots, w_{r-1}(x_0, \dots, x_{r-1}))$$

where

$$w_n(x_0,\ldots,x_n) = \sum_{i=0}^n p^i x_i^{p^{n-i}} = x_0^{p^n} + p x_1^{p^{n-1}} + \ldots + p^n x_n$$

w is called the ghost map and w_n the ghost components.

Theorem 2.1. There exists a unique ring structure on $W_r(A)$ making

$$W_r: \operatorname{Ring} \to \operatorname{Ring}$$

a functor such that

- (i) $W_r(f)(x_0, \dots, x_{r-1}) = (f(x_0), \dots, f(x_{r-1})),$
- (ii) and $w: W_r(A) \to A^r$ is a natural transformation (and in particular a ring homomorphism).

Furthermore, W_r commutes with inverse limits.

 $W_r(A)$ are called the length r Witt vectors of A. They come equipped with several maps:

- (1) (Restriction) $R: W_r(A) \to W_{r-1}(A)$ is the ring homomorphism given by $R(x_0, \ldots, x_{r-1}) = (x_0, \ldots, x_{r-2}).$
- (2) (Frobenius) $F: W_r(A) \to W_{r-1}(A)$ is the unique ring homomorphism making the diagram

commute where $A^r \to A^{r-1}$ is projection onto the first r-1 coordinates.

- (3) (Verschiebung) $V : W_{r-1}(A) \to W_r(A)$ is the additive (but not multiplicative) map given by $(x_0, \ldots, x_{r-2}) \mapsto (0, x_0, \ldots, x_{r-2})$
- (4) (Teichmuller representatives) []: $A \to W_r(A)$ is the multiplicative (but not additive) map $x \mapsto (x, 0, \dots, 0)$.

Lemma 2.2. These maps satisfy the following relations:

- (a) $F[a] = [a^p],$
- $(b) \ (F \circ V)(x) = px,$
- (c) V(xF(y)) = V(x)y,
- (d) $x = \sum_{i=0}^{r} V^{i}[x_{i}].$

Definition 2.3. The Witt vectors of A are defined as the inverse limit

$$W(A) := \varprojlim_R W_r(A)$$

over all restriction maps $R: W_{r+1}(A) \to W_r(A)$.

W(A) inherits restriction maps $R: W(A) \to W_r(A)$ as well as Verschiebung and Frobenius maps $V, F: W(A) \to W(A)$ and a Teichmuller lift $[]: A \to W(A)$ compatible with those at each level.

2.1 *p*-torsion free rings

Suppose that p is invertible in A so that A is a $\mathbb{Z}[\frac{1}{p}]$ -algebra. Then the ghost map

$$w: W_r(A) \to A^r$$

is a ring isomorphism.

More generally, if A is p-torsion free, it embeds into the $\mathbb{Z}[\frac{1}{p}]$ -algebra $A[\frac{1}{p}]$ and there is a commutative diagram

of ring homomorphisms.

2.2 Perfect \mathbb{F}_p -algebras

The Witt vectors of \mathbb{F}_p are computed by $W_r(\mathbb{F}_p) = \mathbb{Z}/p^r\mathbb{Z}$ (in fact this computation was the motivation for defining W_r !). It follows that $W(\mathbb{F}_p) = \mathbb{Z}_p$ the *p*-adic integers.

Now let K be a perfect \mathbb{F}_p -algebra and denote the Frobenius $\varphi : K \to K$. Then by functoriality of W_r there is a diagram

where the top map is surjective. This implies that $W_r(K)$ is a lift of A to $\mathbb{Z}/p^r\mathbb{Z}$ -algebras. Taking the inverse limit, we get that W(K) is a lift of K to \mathbb{Z}_p -algebras.

Proposition 2.4. Let K be a perfect \mathbb{F}_p -algebra.

- (i) W(A) is a p-adically complete, p-torsion free \mathbb{Z}_p -algebra such that $W(A)/p^r = W_r(A)$ for all r.
- (ii) Conversely, if A is any p-adically complete, p-torsion free \mathbb{Z}_p algebra with A/p = K, then there is a unique multiplicative lift $[]: K \to A$ and the map

$$W(K) \to A$$

given by

$$x = (x_0, x_1, \ldots) \mapsto \sum_{i=0}^{\infty} V^i[x_i] = \sum_{i=0}^{\infty} p^i[x_i]^{1/p}$$

is an isomorphism.

Remark 2.5. This proposition characterizes the Witt vectors of a perfect \mathbb{F}_p algebra K as the unique lift of K to a p-adically complete p-torsion free \mathbb{Z}_p -algebra. The existence and uniqueness of W(K) in this case can also be argued formally. Indeed one computes using the Frobenius map $\varphi: K \to K$ that the cotangent complex $\mathbb{L}_{K/\mathbb{F}_p} \simeq 0$. Therefore there is a unique deformation of K over $\mathbb{Z}/p^r\mathbb{Z} \to \mathbb{F}_p$ which is necessarily $W_r(K)$.

The Frobenius isomorphism $\varphi : K \to K$ lifts to a Frobenius isomorphism $\varphi : W_r(K) \to W_r(K)$ for each r such that the diagram

commutes.

Lemma 2.6. Let K be a perfect \mathbb{F}_p -algebra. Then the following relations are satisfied:

- 1. $F[a] = [a]^p$,
- 2. $V[a] = p[a]^{1/p}$,

3.
$$FV = VF = p_s$$

4. $V^{i}[a]V^{j}[b] = p^{i}V^{j}[ab^{p^{j-i}}]$ where $j \ge i$.

3 Construction of A_{inf}

3.1Tilting

Let A be a commutative ring that's π -adically complete and separated for some $\pi \in S$ with $\pi|p$ and let

$$\varphi: A/pA \to A/pA$$

be the Frobenius map.

The tilt of A is the perfect \mathbb{F}_p -algebra defined as

$$A^{\flat} := \varprojlim_{\varphi} A/pA$$

Lemma 3.1. The natural maps

$$\lim_{x \mapsto x^p} A \to A^\flat \to \varprojlim_{\varphi} A/\pi A$$

are isomorphisms where the first is a map of monoids and the second is a map of rings.

Proof. Let $(x_i), (y_i) \in \varprojlim_{x \mapsto x^p} A$ be an inverse system of p^{th} -power roots mapping to the same element in A^{\flat} . Then $x_i = y_i \mod p$ and so by induction we deduce that for any n,

$$x_{i+n}^{p^n} = y_{i+n}^{p^n} \mod p^{n+1}$$

It follows that $x_i = y_i \mod p^{n+1}$. Since n was arbitrary then $x_i = y_i$ by p-adic separatedness so the first map is injective.

Let $(y_i) \in A^{\flat}$ be an inverse system of p^{th} -power roots in A/pA and pick lifts $\tilde{y}_i \in A$. Then one can check that the limit

$$\lim_{n \to \infty} (\tilde{y}_{i+n}^{p^n}) = x_i \in A$$

exists and $(x_i) \in \lim_{x \mapsto x^p} A$ gives an inverse system mapping to (y_i) . The isomorphism $\lim_{x \mapsto x^p} A \to \lim_{x \mapsto \varphi} A/\pi A$ follows by the same argument and the fact that the induced map $A^{\flat} \to \varprojlim_{\omega} A/\pi A$ is a ring homomorphism follows since both rings are characteristic p.

Under the isomorphism in Lemma 3.1, we will identify $x = (x_0, x_1, \ldots) \in A^{\flat}$ with

$$(x^{(0)}, x^{(1)}, \ldots) \in \lim_{x \mapsto x^p} A$$

. Note that $x_{i+1}^p = x_i$ and $(x^{(i+1)})^p = x^{(i)}$.

Definition 3.2. Let A be as above. The ring $\mathbb{A}_{inf}(A)$ is defined by

$$\mathbb{A}_{\inf}(A) := W(A^{\flat}).$$

3.2 The maps θ_r, θ_r

Let A as above be a π -adically complete ring for some $\pi \in A$ with $\pi | p$.

Proposition 3.3. There are isomorphisms

$$W(A^{\flat}) \xleftarrow{\varphi^{\infty}}_{(i)} \varprojlim_{F} W_r(A^{\flat}) \xrightarrow{(ii)} \varprojlim_{F} W_r(A/\pi A) \xleftarrow{(iii)} \varprojlim_{F} W_r(A)$$

where

- (i) φ^{∞} is induced by $\varphi^r : W_r(A^{\flat}) \to W_r(A^{\flat})$ for each r,
- (ii) the second arrow is induced by the natural map $A^{\flat} \rightarrow A/pA \rightarrow A/\pi A$,
- (iii) and the third arrow is induced by $A \to A/\pi A$.

Proof. (i) Since A^{\flat} is a perfect ring of characteristic p, we have a commutative diagram

where φ is an isomorphism. Taking the inverse limit and using that φ and R commute, we obtain that $\varphi^{\infty} : \lim_{F} W_r(A^{\flat}) \to W_r(A^{\flat})$ is an isomorphism.

(ii) We have the following maps

$$\lim_{F} W_r(A^{\flat}) \cong \lim_{F} \lim_{\varphi} W_r(A/\pi A) \cong \lim_{\varphi} \lim_{\varphi} W_r(A/\pi A) \to \lim_{F} W_r(A/\pi A)$$

where the final map is projection onto the first factor. Here we have used that W_r commutes with limits, limits commute with limits and $A^{\flat} \cong \varprojlim_{\varphi} A/\pi A$ by Lemma 3.1 to show the first three isomorphisms. Finally note that φ is an isomorphism on $\varprojlim_F W_r(A/\pi A)$ since $R\varphi = \varphi R = F$ for Witt vectors of a characteristic p ring. Thus the final projection is also an isomorphism.

(iii) First we claim that for any s,

$$\lim_{F} W_r(A/\pi^s A) \to \lim_{F} W_r(A/\pi A)$$

induced by $A/\pi^s A \to A/\pi A$ is an isomorphism.

Indeed it is level-wise surjective so we need to check that the kernel is zero in the limit. At each level the kernel is given by

$$W_r(\pi A/\pi^s A)$$

which is generated by elements of the form $V^i[\pi a_i]$. For some c, consider the Frobenius map

$$F^{s+c}: W_{r+s+c}(A/\pi^s A) \to W_r(A/\pi^s A).$$

Using Lemma 2.6, we compute

$$F^{s+c}V^{i}[\pi a_{i}] = p^{i}[\pi a_{i}]^{p^{s+c-i}}.$$

For i < c this is vanishes since $\pi^{s+c-i} = 0$. By Lemma 3.4, we can pick c large enough so that $p^i = 0$ in $W_r(A/\pi^s A)$ for any $i \ge c$. This shows that at each level, the kernel $W_r(piA/pi^s A)$ is killed by a large enough Frobenius map so its 0 in the inverse limit proving the claim.

Now we may take the limit over s to obtain

$$\varprojlim_{F} W_r(A/\pi A) \cong \varprojlim_{s} \varprojlim_{F} W_r(A/\pi^s A) = \varprojlim_{F} W_r(\varprojlim_{s} A/\pi^s A) = \varprojlim_{F} W_r(A)$$

where the last equality is by π -adic completeness of A.

Lemma 3.4. There exists a large enough $c \gg 0$ (depending on r and s) such that $p^c = 0 \in W_r(A/\pi^s A)$.

Proof. $W_r(A/\pi A)$ is a $W_r(\mathbb{F}_p) = \mathbb{Z}/p^r\mathbb{Z}$ algebra so $p^r = 0$. Thus p^r is in the kernel of the map $W_r(A/\pi^s A) \to W_r(A/\pi A)$ so it can be written as

$$p^r = \sum V^i[a_i\pi] \in W_r(A/\pi^s A).$$

Now expand

$$(p^r)^t = \left(\sum V^i[a_i\pi]\right)^t$$

and note that

$$V^{j}[a_{j}\pi]V^{i}[a_{i}\pi] = p^{j}V^{i}[\pi a_{j}(\pi a_{i})^{p^{i-j}}]$$

for $i \ge j$ by Lemma 2.6. So for large enough t, the power of π in the product of terms $V^i[a_i\pi]$ will be 0 since $\pi^s = 0$, completing the proof.

Now using the isomorphisms in Proposition 3.3, we obtain an isomorphism

$$\mathbb{A}_{\inf}(A) = W(A^{\flat}) \cong \varprojlim_F W_r(A).$$

Definition 3.5. The map

$$\tilde{\theta}_r : \mathbb{A}_{\inf}(A) \to W_r(A)$$

is defined as the composition of the isomorphism above with the projection onto $W_r(A)$. The map θ_r is defined as

$$\theta_r := \tilde{\theta}_r \circ \varphi^r : \mathbb{A}_{\inf}(A) \to W_r(A).$$

Lemma 3.6. Let $x \in A^{\flat}$ so that $[x] \in W(A^{\flat}) = \mathbb{A}_{inf}(A)$. Then $\theta_r([x]) = [x^{(0)}]$ and $\tilde{\theta}_r([x]) = [x^{(r)}]$ in $W_r(A)$.

Proof. The Teichmuller representative $[x] \in W(A^{\flat})$ maps to the inverse system

$$([x], [x]^{1/p}, [x]^{1/p^2}, \ldots) \in \varprojlim_F W_R(A^{\flat})$$

under $(\varphi^{\infty})^{-1}$. Then commuting the limits and projecting in construction of the second map of Proposition 3.3 gives us

$$([x], [x]^{1/p}, [x]^{1/p^2}, \ldots) \mapsto ([x_0], [x_0]^{1/p}, [x_0]^{1/p^2}, \ldots) = ([x_0], [x_1], [x_2], \ldots)$$

for $x = (x_0, x_1, \ldots) \in A^{\flat}$ which maps to $([x^{(0)}], [x^{(1)}], \ldots)$ under the lift to $\varprojlim_F W(A)$ in the third isomorphism of Proposition 3.3 which completes the proof.

Corollary 3.7. There are commutative diagrams

$$\begin{array}{c} \mathbb{A}_{\inf}(A) \xrightarrow{\theta_r} W_r(A) \\ R \downarrow & \downarrow \\ W_r(A^{\flat}) \longrightarrow W_r(A/pA) \end{array}$$

where the right and bottom mpas are induced by the projections $A \to A/pA$ and $A^{\flat} \to A/pA$.

Proof. This follows from Lemma 3.6 and the fact that under the identification $x = (x_0, x_1, \ldots) \in A^{\flat}$ with $(x^{(0)}, x^{(1)}, \ldots) \in \varprojlim_{x \to x^p} A, x^{(i)} = x_i \mod p.$

Remark 3.8. The above diagram when r = 1 shows that $\mathbb{A}_{inf}(A)$ interpolates between characteristic 0 geometry of A and characteristic p geometry of A^{\flat} . In particular, it is crucial that $\mathbb{A}_{inf}(A)$ has a Frobenius automorphism φ . This will produce a Frobenius action on the \mathbb{A}_{inf} cohomology despite the fact that A itself doesn't necessarily have a Frobenius.

Finally we state the compatibilities of θ_r , $\tilde{\theta}_r$ with the usual Witt vector maps.

Lemma 3.9. (a) There are commutative diagrams

where λ_{r+1} is an element satisfying $\theta_{r+1}(\lambda_{r+1}) = V(1) \in W_{r+1}(A)$.

(b) There are commutative diagrams

$$\begin{array}{c|c} \mathbb{A}_{\inf}(A) \xrightarrow{\theta_{r+1}} W_{r+1}(A) & \mathbb{A}_{\inf}(A) \xrightarrow{\theta_{r+1}} W_{r+1}(A) & \mathbb{A}_{\inf}(A) \xrightarrow{\theta_{r+1}} W_{r+1}(A) \\ \varphi & & \downarrow R & \parallel & \downarrow F & \tilde{\lambda}_{r+1} \uparrow & \uparrow V \\ \mathbb{A}_{\inf}(A) \xrightarrow{\tilde{\theta}_r} W_r(A) & \mathbb{A}_{\inf}(A) \xrightarrow{\tilde{\theta}_r} W_r(A) & \mathbb{A}_{\inf}(A) \xrightarrow{\tilde{\theta}_r} W_r(A) \end{array}$$

where $\tilde{\lambda}_{r+1} = \varphi^{r+1}(\lambda_{r+1})$ is an element satisfying $\tilde{\theta}_{r+1}(\tilde{\lambda}_{r+1}) = V(1) \in W_{r+1}(A)$.

Proof. Parts (a) and (b) are equivalent by composing with φ so we prove (a) only. It suffices to check on Teichmuller representatives. The first and second diagrams follow directly from Lemma 3.6 and the properties of R, F and φ .

For the third diagram, note that $V(1) = p[1]^{1/p} = p = VF$ so

$$\theta_{r+1}(\lambda_{r+1}\varphi^{-1}[x]) = V(1)[x^{(0)}]^{1/p} = VF[x^{(0)}]^{1/p} = V[x^{(0)}] = V\theta_r([x]).$$

Corollary 3.10. We can define $\lim_{r\to\infty} \theta_r =: \theta_\infty : \mathbb{A}_{inf}(A) \to W(A)$ which sits in a commutative diagram

$$\begin{array}{c} \mathbb{A}_{\inf}(A) \xrightarrow{\theta_{\infty}} W(A) \\ \| & & \downarrow \\ W(A^{\flat}) \longrightarrow W(A/pA) \end{array}$$

Proof. We may take the limit by the first diagram of Lemma 3.9(a) and the commutative diagram follows by Corollary 3.7.

Finally we discuss the composition of θ_r with the ghost map $w: W_r(A) \to A^r$.

Lemma 3.11.

$$w \circ \theta_r = (\theta, \theta \varphi, \theta \varphi^2, \dots, \theta \varphi^{r-1})$$

Proof. We can compute for any $x \in A^{\flat}$, we have

4 Perfectoid rings

We would like to interpret the diagrams

$$\begin{array}{c} \mathbb{A}_{\inf}(A) \xrightarrow{\theta_r} W_r(A) \\ R \downarrow & \downarrow \\ W_r(A^{\flat}) \longrightarrow W_r(A/pA) \end{array}$$

from Corollary 3.7 as a diagram of pro-infinitessimal thickenings.

Indeed for r = 1 and $A = \mathcal{O}_C$ for C a perfectoid field of characteristic 0, the diagram

$$\mathbb{A}_{inf}(\mathcal{O}_C) \xrightarrow{\theta} \mathcal{O}_C \\ \downarrow \qquad \qquad \downarrow \\ \mathcal{O}_{C^{\flat}} \longrightarrow \mathcal{O}_C/p$$

is familiar in *p*-adic hodge theory and the map θ behaves as a sort of 1-parameter deformation of \mathcal{O}_C . We'll study this case more carefully in the next section.

In this section we'll explore the properties required by the ring for θ_r to behave as such which leads directly to the definition of perfectoid rings.

4.1 Surjectivity and the kernel of θ

Throughout this section, let S be a π -adically complete ring such that $\pi^p | p^{1}$.

Lemma 4.1. The following are equivalent:

- (i) every element of $S/\pi pS$ is a p^{th} power;
- (ii) every element of S/pS is a p^{th} power;
- (iii) every element of $S/\pi^p pS$ is a p^{th} power;
- (iv) $F: W_{r+1}(S) \to W_r(S)$ is surjective for all $r \ge 1$;
- (v) $\theta_r : \mathbb{A}_{inf}(S) \to W_r(S)$ is surjective for all $r \ge 1$;
- (vi) $\theta : \mathbb{A}_{inf}(S) \to S$ is surjective.

Proof. (i) \implies (ii) \implies (iii) is clear since $\pi^p |p| \pi p$.

For $(iii) \implies (i)$, let $y \in S$. We can write $y = x_0^p \mod p$ by assumption so $y = x_0^p + \pi^p y_1$. By induction

$$y = \sum x_i^p \pi^{pi} = \left(\sum x_i \pi^i\right)^p \mod \pi p.$$

For $(iv) \implies (ii)$ we have that $F: W_2(S) \rightarrow W_1(S) \cong S$ is given explicitly by $F(a_0, a_1) = a_0^p + a_1 p = a_0^p \mod p$. Since F is surjective, every element of S/pS is a p^{th} power.

 $(ii) \implies (iv)$ is a result of Davis-Kedlaya [DK14].

 $(iv) \implies (v)$ follows by the definition of θ since F surjective implies $\varprojlim_F W_r(S) \to W_r(S)$ is surjective.

 $(v) \implies (vi)$ is clear.

 $(vi) \implies (ii)$ follows from the computation $\theta([x]) = [x^{(0)}] = [x^{(1)}]^p \mod p$ so $x^{(0)}$ is a p^{th} power in S/pS.

Corollary 4.2. Under the equivalent conditions of Lemma 4.1, there exist units $u, v \in S^{\times}$ such that $u\pi$ and vp admit a compatible system of p-power roots.

Proof. Applying Lemma 3.1 to S and $S/\pi pS$ gives an isomorphism

$$\lim_{x \mapsto x^p} S \cong \varprojlim_{\varphi} S / \pi p S$$

By assumption we can take a compatible system of *p*-power roots for $\pi \mod \pi p$ which corresponds to a compatible system $x = (x^{(0)}, x^{(1)}, \ldots)$ on the left such that $x^{(0)} = \pi \mod \pi p$. Writing

$$x^{(0)} = \pi + \pi py = \pi (1 + py)$$

¹Note this is stronger than the conditions we had on A above.

we see that $x^{(0)}$ differs from π by the unit 1 + py. The same argument works with π replaced by p.

Now we move on to studying the kernel of θ .

Definition 4.3. An element $\xi \in \ker \theta$ is distinguished if ξ_1 is a unit in S^{\flat} where $\xi = (\xi_0, \xi_1, \ldots) \in W(S^{\flat})$ is its Witt vector expansion.

Proposition 4.4. Let S as above and suppose that $\varphi : S/\pi S \to S/\pi^p S$ is surjective (so that S satisfies all the equivalent properties of Lemma 4.1).

- (i) if ker θ is principal, then we have
 - (a) $S/\pi S \to S/\pi^p S$ is an isomorphism;
 - (b) any generator of ker θ is a non-zero divisor;
 - (c) $\xi \in \ker \theta$ is a generator if and only if ξ is distinguished;
 - (d) if $\theta_r(\xi) = V(1)$ for some r then $\xi \in \ker \theta$ and ξ is distinguished.
- (ii) Conversely, if π is a non-zero divisor and $\varphi : S/\pi S \to S/\pi^p S$ is an isomorphism, then ker θ is principal.

Proof sketch. By Corollary 4.2 we can suppose that π has a compatible system of *p*-power roots and let $\varpi \in S^{\flat}$ be the corresponding element under $\varprojlim_{x \mapsto x^p} S \cong S^{\flat}$. Using surjectivity of θ and that $\pi^p | p$, we may write

$$o + \pi^p \theta(x) = 0$$

for some x. Define $\xi := p + [\varpi]^p x$ so that $\theta(\xi) = 0$. We want to use the diagram

$$\begin{array}{ccc} \mathbb{A}_{\inf}(S)/\xi & \xrightarrow{\theta} & S \\ & & & & & \\ \operatorname{mod} \left[\varpi\right]^{p} & & & & \\ \mathbb{A}_{\inf}(S)/(\xi, [\varpi]^{p}) & \longrightarrow S/\pi^{p}S \end{array} \tag{1}$$

Here the bottom map is $\mathbb{A}_{\inf}(S)/(\xi, [\varpi]^p) = \mathbb{A}_{\inf}(S)/(p, [\varpi]^p) = S^{\flat}/\varpi^p S^{\flat} \to S/\pi^p S.$

For (i) suppose ker(θ) is generated by some ξ' . One shows that ξ is also a generator by writing $\xi = a\xi'$ and computing in Witt vector components that ξ'_1 and a_0 must be units. This implies that a is a unit and that any $\xi'' \in \ker \theta$ with component ξ''_1 must also be a generator.

To see that ξ (and therefore any other generator) is a non-zero divisor one again expands out $\xi b = 0$ into Witt vector components and uses π -adic separatedness to force b = 0.

For (a), since ξ generates ker θ , the top morphism in diagram 1 is an isomorphism and so the bottom map $S^{\flat}/\varpi^p S^{\flat} \to S/\pi^p S$ is an isomorphism. On the other hand S^{\flat} is perfect so we have

where the left, top and bottom are isomorphisms so the right is an isomorphism.

Finally suppose ξ is any element with $\theta_r(\xi) = V(1) = (0, 1, 0, ...)$. Then $\theta(\xi) = 0$ by compatibility of θ_r with restriction. On the other hand, $R(\xi) = (\xi_0, \xi_1, ..., \xi_{r-1}) = \theta_r(\xi)$ mod p = (0, 1, 0, ..., 0) by Corollary 3.7 so $\xi_1 = 1 \mod p$ lifts to a unit in S^{\flat} .

For part (*ii*), suppose conversely that $S/\pi S \to S/\pi^p S$ is an isomorphism and π is a non-zero divisor and let ξ, ϖ as in diagram 1.

Using surjectivity, one checks surjectivity $S/\pi^{1/p^n}S \to S/\pi^{1/p^{n-1}}S$ and concludes that ϖ generates the kernel of $S^{\flat} \to S/\pi S$ by expanding any element into components under the isomorphism of Lemma 3.1 and checking that π^{1/p^n} divides the corresponding component of any element in the kernel. It follows that $S^{\flat}/\varpi S^{\flat} \to S/\pi S$ is an isomorphism.

Using diagram 1, write $x \in \ker(\theta)$ as $x = \xi y_0 + [\varpi] x_1$ since by commutativity x must become 0 in the composition $\mathbb{A}_{\inf}(S)/\xi \to S^{\flat}/\varpi^p S^{\flat} \to S^{\flat}/\varpi S^{\flat} = S/\pi S$. Then

$$0 = \theta(x) = \theta(\xi y_0) + \theta([\varphi]x_1) = \pi \theta(x_1)$$

so $\theta(x_1) = 0$ since π is not a zero divisor. Then $x_1 = \xi y_1 + [\varpi] x_2$ and so on so by induction x is in the ideal generated by ξ .

4.2 Perfectoid rings

Now we are equipped to defined perfectoid rings.

Definition 4.5. A ring S is perfected if

- S is π -adically complete for some $\pi \in S$ such that $\pi^p | p$;
- $\varphi: S/pS \to S/pS$ is surjective (equivalently θ is surjective);
- $\ker(\theta)$ is a principal ideal.

The idea is that perfectoid rings are precisely the rings so that $\theta : \mathbb{A}_{inf}(S) \to S$ is a 1parameter pro-infinitessimal deformation. We can think of it as deforming S in the ξ direction.

Remark 4.6. (Perfectoid rings in characteristic p) Suppose S is a characteristic p ring. Then S is perfected if and only if it is perfect. Indeed if S is perfect then it's 0-adically complete and the Frobenius is an isomorphism so $S^{\flat} \cong S$. Thus $\theta : \mathbb{A}_{inf}(S) = W(S) \to S$ corresponds to Witt vector restriction and has kernel generated by p.

On the other hand, if S is perfected then $p \in \ker(\theta)$ since p is zero in S but p = V(1) so it's distinguished by Lemma 4.4(i)(d). Thus p generates $\ker(\theta)$ and so

$$S^{\flat} = W(S^{\flat})/p \cong S$$

is perfect.

Lemma 4.7. Suppose S is perfected and ξ a generator of ker θ . Then the non-zero divisor

$$\xi_r := \xi \varphi^{-1}(\xi) \dots \varphi^{-(r-1)}(\xi)$$

is a generator for ker(θ_r). Similarly, the non-zero divisor

$$\tilde{\xi}_r = \varphi^r(\xi)\varphi^{r-1}(\xi)\dots\varphi(\xi)$$

is a generator for $\ker(\tilde{\theta}_r)$.

Proof. The two statements are equivalent by applying φ^r so we prove the first. By 4.4(i)(d), we may suppose that $\theta_{r+1}(\xi) = V(1)$ after multiplying by a unit.

Suppose ξ_r is a non-zero divisor generating ker (θ_r) . Consider the commutative diagram

$$0 \longrightarrow \mathbb{A}_{inf}(S) \xrightarrow{\xi\varphi^{-1}} \mathbb{A}_{inf}(S) \xrightarrow{\theta} S \longrightarrow 0$$
$$\begin{array}{c} \theta_r \\ \theta_r \\ \psi \\ 0 \longrightarrow W_r(S) \xrightarrow{V} W_{r+1}(S) \xrightarrow{R} S \longrightarrow 0 \end{array}$$

The top row is exact since ξ is a non-zero divisor and the bottom row is exact by surjectivity of θ_r . Commutativity is by Lemma 3.9. A diagram chase implies that since ξ_r generates ker (θ_r) , then $\xi \varphi^{-1}(\xi_r) = \xi_{r+1}$ generates ker (θ_{r+1}) . Indeed if $\theta_{r+1}(x) = 0$ then $\theta(x) = 0$ so $x = \xi \varphi^{-1}(y)$ but $y \in \text{ker}(\theta_r)$ by commutativity of the first square.

4.3 Perfectoid rings with enough roots of unity

The kernel of θ_r has particularly nice generators in the case where S is a perfectoid ring with many roots of unity. More specifically, suppose S is perfectoid and contains a compatible system $1, \zeta_p, \zeta_{p^2}, \ldots$ of primitive *p*-power roots of unity.² This includes as the most impotant example the ring of integers \mathcal{O}_C of a perfectoid field C. We will study this example more closely in the next section.

Definition 4.8. Let S and ζ_{p^r} be as above. Define elements

$$\epsilon := (1, \zeta_p, \zeta_{p^2}, \ldots) \in S^{\flat}, \quad \mu := [\epsilon] - 1 \in W(S^{\flat}) = \mathbb{A}_{\inf}(S).$$

and

$$\xi := 1 + [\epsilon^{1/p}] + [\epsilon^{2/p}] + \ldots + [\epsilon^{(p-1)/p}] = \frac{\mu}{\varphi^{-1}(\mu)} \in W(S^{\flat}) = \mathbb{A}_{\inf}(S).$$

Lemma 4.9. ξ is a generator of ker (θ) satisfying $\theta_r(\xi) = V(1)$ for all r > 1.

Proof. Note that

$$\theta(\xi) = 1 + \zeta_p + \zeta_p^2 + \ldots + \zeta_p^{p-1} = 0$$

by Lemma 3.6 and the definition of ζ_p . By functoriality of Witt vectors and the map θ , it suffices to prove the statement for $\mathbb{Z}_p^{cycl} := (\mathbb{Z}_p[\zeta_{p^{\infty}}])_p^{\wedge 3}$ as the choice of $\zeta_{p^r} \in S$ determines a unique map $\mathbb{Z}_p^{cycl} \to S$.

In particular, we may assume that S is p-torsion free. In this case the ghost map $w : W_r(A) \to A^r$ is injective and so it suffices to compute

$$w(\theta_r(\xi)) = w(V(1)).$$

 $^{^{2}}$ If S is not an integral domain, a primitive root of unity is defined to be a root of the corresponding cyclotomic polynomial.

³This denotes the p-adic completion

By Lemma 3.11 We can compute for any $x \in A^{\flat}$, we have

$$w(\theta_r(\xi)) = (\theta\xi, \theta\varphi\xi, \theta\varphi^2\xi, \ldots).$$

Since $\theta(\xi) = 0$ and w(V(1)) = w(0, 1, 0, ...) = (0, p, p, ...), it suffices to show that $\theta \varphi^i(\xi) = p$

for all $i \geq 1$. In this case

$$\theta\varphi^{i}(\xi) = \theta(1 + [\epsilon^{p^{i-1}}] + [\epsilon^{p^{i-1}}]^{2} + \dots + [\epsilon^{p^{i-1}}]^{p-1})$$

= 1 + $(\zeta_{p}^{p^{i-1}}) + (\zeta_{p}^{p^{i-1}})^{2} + \dots + (\zeta_{p}^{p^{i-1}})^{p-1}$
= p

We obtain the following by Lemma 4.7 and a computation.

Corollary 4.10. The kernel of θ_r is generated by

$$\xi_r = \xi \varphi^{-1}(\xi) \dots \varphi^{-(r-1)}(\xi) = \sum_{i=1}^{p^r-1} [\epsilon^{1/p^r}]^i$$

and the kernel of $\tilde{\theta}_r$ is generated by

$$\tilde{\xi}_r = \varphi^r(\xi_r) = \sum_{i=0}^{p^r-1} [\epsilon]^i.$$

Proposition 4.11. Let S be a perfectoid ring which is flat over \mathbb{Z}_p and contains a compatible sequence of primitive p^{th} roots of unity. Let $\epsilon, \xi_r, \tilde{\xi}_r$ and μ as above. Then for any r,

(i) μ is a non-zero divisor;

(ii) $\tilde{\theta}_r(\mu) = [\zeta_{p^r}] - 1 \in W_r(S)$ is a non-zero divisor;

(iii)
$$\mu = \xi_r \varphi^{-r}(\mu)$$
 and $\varphi^r(\mu) = \tilde{\xi}_r \mu$;

(iv) μ divides $\tilde{\xi}_r - p^r$.

Proof. $\tilde{\theta}_r(\mu) = [\zeta_{p^r}] - 1$ by Lemma 3.6. Since S is flat over \mathbb{Z}_p , it is torsion free so $w: W_r(S) \to S^r$ is injective. Thus it suffices to check that that

$$w(\theta_r(\mu)) = (\zeta_{p^r} - 1, \zeta_{p^{r-1}} - 1, \dots, \zeta_p - 1)$$

is not zero divisor (where we computed the expression using Lemma 3.11 and $\theta_r = \tilde{\theta}_r \circ \varphi^r$. Now $\zeta_{p^r} - 1$ divides p and p is not a zero divisor since S is flat over \mathbb{Z}_p so $\zeta_{p^r} - 1$ is not a zero divisor.

(*ii*) follows from (*i*) since $\tilde{\theta}_r(\mu)$ is a non-zero divisor in each $W_r(S)$ and $\mathbb{A}_{inf}(S) = \varprojlim_F W_r(S)$.

(*iii*) is computed by noting that $\xi \varphi^{-1}(\mu) = \mu$.

(iv) follows because $[\epsilon] = 1 \mod \mu$ so

$$\tilde{\xi}_r = \sum_{i=0}^{p^r-1} [\epsilon]^i = p^r \mod \mu.$$

5 The case of a perfectoid field

The most important case of the above constructions is when $C = \mathbb{C}_p$ is a complete nonarchimedean algebraically closed field of mixed characteristic and $S = \mathcal{O} := \mathcal{O}_C$ is the ring of integers. In this case we denote $A_{\inf} := \mathbb{A}_{\inf}(\mathcal{O})$. More generally everything holds when C is any perfectoid field of mixed characteristic.

As \mathcal{O} is a flat \mathbb{Z}_p algebra with enough roots of unity, the discussion in Section 4.3 holds and we let ϵ, ξ, μ , etc be as in *loc. cit.*

 A_{inf} is well known in *p*-adic hodge theory and its relation to Fontaine's other period rings is crucial to comparison theorems. We recall these other rings here.

- **Definition 5.1.** (a) Let A_{crys} be the *p*-adic completion of the A_{inf} -subalgebra of $A_{inf}[\frac{1}{p}]$ generated by all elements of the form $\frac{\xi^m}{m!}$.
- (b) Let $B_{crys}^+ = A_{crys}[\frac{1}{p}]$ and $B_{crys} = A_{crys}[\frac{1}{\mu}] = B_{crys}^+[\frac{1}{\mu}]$.
- (c) Let B_{dR}^+ be the ξ -adic completition of B_{crys}^+ and $B_{dR} = B_{dR}^+[\frac{1}{\xi}]$ be its fraction field.
- **Remark 5.2.** (a) The ring A_{crys} is the universal *p*-adically complete divided power thickening of \mathcal{O} over \mathbb{Z}_p .
- (b) The last equality in (b) uses the computation $\mu^{p-1} = \xi^p \mod p$ so that $\mu^{p-1} \in pA_{crys}$.
- (c) B_{dR}^+ is a DVR with residue field C.

The ring A_{inf} satisfies the following properties that we won't prove here:

Lemma 5.3. The kernel of the map

$$\theta_{\infty}: A_{\inf} \to W(\mathcal{O})$$

is generated by μ . That is,

$$\bigcap_{r} \frac{\mu}{\varphi^{-r}(\mu)} A_{\inf} = \mu A_{\inf}.$$

In particular, the ideal (μ) is independent of the choice of roots of unity.

If C is a spherically complete field, then the cokernel of θ_{∞} is zero. More generally, the cokernel is $W(\mathfrak{m}^{\flat})$ -torsion where \mathfrak{m}^{\flat} is the maximal ideal of \mathcal{O}^{\flat} .

Remark 5.4. Recall that a non-archimedean field is spherically complete if any decreasing sequence of discs has nonempty intersection.

Another useful property is coherence. Recall that a ring is coherent if every finitely generated ideal is finitely presented.

Proposition 5.5. For each $r \geq 1$, the ring $W_r(\mathcal{O})$ is coherent.

Remark 5.6. It's not known whether A_{inf} is coherent.

Finally it is instructive to think of A_{inf} analogously to a two dimensional regular local ring.⁴ Indeed the pair (p,ξ) where ξ is any generator of ker (θ) is a regular sequence, A_{inf} is (p,ξ) -adically complete, and the radical of (p,ξ) is the maximal ideal of A_{inf} .

⁴Note that A_{inf} is *not* two dimensional. In fact it is known that the Krull dimension is at least 3 though we don't know it exactly.

References

- [BMS16] B. Bhatt, M. Morrow, and P. Scholze. Integral p-adic Hodge theory. ArXiv e-prints, February 2016.
- [DK14] Christopher Davis and Kiran S. Kedlaya. On the Witt vector Frobenius. Proc. Amer. Math. Soc., 142(7):2211–2226, 2014.
- [Mor16] M. Morrow. Notes on the A_inf-cohomology of Integral p-adic Hodge theory. ArXiv e-prints, August 2016.
- [Rab14] J. Rabinoff. The Theory of Witt Vectors. ArXiv e-prints, September 2014.