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1 Introduction

In this talk we will define and study Fontaine’s ring Ainf . The goal is to construct for
a perfectoid ring S, morphisms θr, θ̃r : Ainf(S) → Wr(S) generalizing Fontaine’s map θ :
Ainf(S)→ S and show that they behave like one parameter deformations.

Specialization along these maps is used in [BMS16] for constructing the comparison between
the Ainf cohomology theory and the relative de Rham-Witt complex. We closely follow [BMS16,
Section 3] as well as [Mor16, Section 3].

2 Witt vectors

We first review (p-typical) Witt vectors. For a detailed and general exposition, see [Rab14].
Fix p a prime number.

Let A be any ring and define Wr(A) = Ar as a set. Consider the maps

w : Wr(A)→ Ar

given by
(x0, x1, . . . , xr−1) 7→ (w0(x0), w1(x0, x1), . . . , wr−1(x0, . . . , xr−1))

where

wn(x0, . . . , xn) =
n∑
i=0

pixp
n−i

i = xp
n

0 + pxp
n−1

1 + . . .+ pnxn.

w is called the ghost map and wn the ghost components.

Theorem 2.1. There exists a unique ring structure on Wr(A) making

Wr : Ring→ Ring

a functor such that

(i) Wr(f)(x0, . . . , xr−1) = (f(x0), . . . , f(xr−1)),

(ii) and w : Wr(A) → Ar is a natural transformation (and in particular a ring homomor-
phism).

Furthermore, Wr commutes with inverse limits.
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Wr(A) are called the length r Witt vectors of A. They come equipped with several maps:

(1) (Restriction) R : Wr(A)→ Wr−1(A) is the ring homomorphism given by R(x0, . . . , xr−1) =
(x0, . . . , xr−2).

(2) (Frobenius) F : Wr(A)→ Wr−1(A) is the unique ring homomorphism making the diagram

Wr(A) F //

w

��

Wr−1(A)

w
��

Ar // Ar−1

commute where Ar → Ar−1 is projection onto the first r − 1 coordinates.

(3) (Verschiebung) V : Wr−1(A) → Wr(A) is the additive (but not multiplicative) map given
by (x0, . . . , xr−2) 7→ (0, x0, . . . , xr−2)

(4) (Teichmuller representatives) [ ] : A→ Wr(A) is the multiplicative (but not additive) map
x 7→ (x, 0, . . . , 0).

Lemma 2.2. These maps satisfy the following relations:

(a) F [a] = [ap],

(b) (F ◦ V )(x) = px,

(c) V (xF (y)) = V (x)y,

(d) x =
∑r

i=0 V
i[xi].

Definition 2.3. The Witt vectors of A are defined as the inverse limit

W (A) := lim←−
R

Wr(A)

over all restriction maps R : Wr+1(A)→ Wr(A).

W (A) inherits restriction maps R : W (A)→ Wr(A) as well as Verschiebung and Frobenius
maps V, F : W (A) → W (A) and a Teichmuller lift [ ] : A → W (A) compatible with those at
each level.

2.1 p-torsion free rings

Suppose that p is invertible in A so that A is a Z[1
p
]-algebra. Then the ghost map

w : Wr(A)→ Ar

is a ring isomorphism.
More generally, if A is p-torsion free, it embeds into the Z[1

p
]-algebra A[1

p
] and there is a

commutative diagram

Wr(A) �
� //

��

Wr(A[1
p
])

��
Ar �
� // A[1

p
]r

of ring homomorphisms.
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2.2 Perfect Fp-algebras

The Witt vectors of Fp are computed by Wr(Fp) = Z/prZ (in fact this computation was the
motivation for defining Wr!). It follows that W (Fp) = Zp the p-adic integers.

Now let K be a perfect Fp-algebra and denote the Frobenius ϕ : K → K. Then by
functoriality of Wr there is a diagram

Wr(K) // K

Z/prZ //

OO

Fp

OO

where the top map is surjective. This implies that Wr(K) is a lift of A to Z/prZ-algebras.
Taking the inverse limit, we get that W (K) is a lift of K to Zp-algebras.

Proposition 2.4. Let K be a perfect Fp-algebra.

(i) W (A) is a p-adically complete, p-torsion free Zp-algebra such that W (A)/pr = Wr(A) for
all r.

(ii) Conversely, if A is any p-adically complete, p-torsion free Zp algebra with A/p = K, then
there is a unique multiplicative lift [ ] : K → A and the map

W (K)→ A

given by

x = (x0, x1, . . .) 7→
∞∑
i=0

V i[xi] =
∞∑
i=0

pi[xi]
1/pi

is an isomorphism.

Remark 2.5. This proposition characterizes the Witt vectors of a perfect Fp algebra K as
the unique lift of K to a p-adically complete p-torsion free Zp-algebra. The existence and
uniqueness of W (K) in this case can also be argued formally. Indeed one computes using the
Frobenius map ϕ : K → K that the cotangent complex LK/Fp ' 0. Therefore there is a unique
deformation of K over Z/prZ→ Fp which is necessarily Wr(K).

The Frobenius isomorphism ϕ : K → K lifts to a Frobenius isomorphism ϕ : Wr(K) →
Wr(K) for each r such that the diagram

Wr(K)
ϕ //

F &&

Wr(K)

R
��

Wr−1(K)

commutes.

Lemma 2.6. Let K be a perfect Fp-algebra. Then the following relations are satisfied:

1. F [a] = [a]p,

2. V [a] = p[a]1/p,

3. FV = V F = p,

4. V i[a]V j[b] = piV j[abp
j−i

] where j ≥ i.
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3 Construction of Ainf

3.1 Tilting

Let A be a commutative ring that’s π-adically complete and separated for some π ∈ S with
π|p and let

ϕ : A/pA→ A/pA

be the Frobenius map.
The tilt of A is the perfect Fp-algebra defined as

A[ := lim←−
ϕ

A/pA

Lemma 3.1. The natural maps

lim←−
x 7→xp

A→ A[ → lim←−
ϕ

A/πA

are isomorphisms where the first is a map of monoids and the second is a map of rings.

Proof. Let (xi), (yi) ∈ lim←−x 7→xp A be an inverse system of pth-power roots mapping to the same

element in A[. Then xi = yi mod p and so by induction we deduce that for any n,

xp
n

i+n = yp
n

i+n mod pn+1.

It follows that xi = yi mod pn+1. Since n was arbitrary then xi = yi by p-adic separatedness
so the first map is injective.

Let (yi) ∈ A[ be an inverse system of pth-power roots in A/pA and pick lifts ỹi ∈ A. Then
one can check that the limit

lim
n→∞

(ỹp
n

i+n) = xi ∈ A

exists and (xi) ∈ lim←−x 7→xp A gives an inverse system mapping to (yi).
The isomorphism lim←−x 7→xp A → lim←−ϕA/πA follows by the same argument and the fact

that the induced map A[ → lim←−ϕA/πA is a ring homomorphism follows since both rings are

characteristic p.

Under the isomorphism in Lemma 3.1, we will identify x = (x0, x1, . . .) ∈ A[ with

(x(0), x(1), . . .) ∈ lim←−
x 7→xp

A

. Note that xpi+1 = xi and (x(i+1))p = x(i).

Definition 3.2. Let A be as above. The ring Ainf(A) is defined by

Ainf(A) := W (A[).
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3.2 The maps θr, θ̃r

Let A as above be a π-adically complete ring for some π ∈ A with π|p.

Proposition 3.3. There are isomorphisms

W (A[)
ϕ∞←−−
(i)

lim←−
F

Wr(A
[) −−→

(ii)
lim←−
F

Wr(A/πA)←−−
(iii)

lim←−
F

Wr(A)

where

(i) ϕ∞ is induced by ϕr : Wr(A
[)→ Wr(A

[) for each r,

(ii) the second arrow is induced by the natural map A[ → A/pA→ A/πA,

(iii) and the third arrow is induced by A→ A/πA.

Proof. (i) Since A[ is a perfect ring of characteristic p, we have a commutative diagram

Wr+1(A
[)

ϕ //

F &&

Wr+1(A
[)

R
��

Wr(A
[)

where ϕ is an isomorphism. Taking the inverse limit and using that ϕ and R commute,
we obtain that ϕ∞ : lim←−F Wr(A

[)→ Wr(A
[) is an isomorphism.

(ii) We have the following maps

lim←−
F

Wr(A
[) ∼= lim←−

F

lim←−
ϕ

Wr(A/πA) ∼= lim←−
ϕ

lim←−
F

Wr(A/πA)→ lim←−
F

Wr(A/πA).

where the final map is projection onto the first factor. Here we have used that Wr com-
mutes with limits, limits commute with limits and A[ ∼= lim←−ϕA/πA by Lemma 3.1 to show

the first three isomorphisms. Finally note that ϕ is an isomorphism on lim←−F Wr(A/πA)
since Rϕ = ϕR = F for Witt vectors of a characteristic p ring. Thus the final projection
is also an isomorphism.

(iii) First we claim that for any s,

lim←−
F

Wr(A/π
sA)→ lim←−

F

Wr(A/πA)

induced by A/πsA→ A/πA is an isomorphism.

Indeed it is level-wise surjective so we need to check that the kernel is zero in the limit.
At each level the kernel is given by

Wr(πA/π
sA)

which is generated by elements of the form V i[πai]. For some c, consider the Frobenius
map

F s+c : Wr+s+c(A/π
sA)→ Wr(A/π

sA).
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Using Lemma 2.6, we compute

F s+cV i[πai] = pi[πai]
ps+c−i

.

For i < c this is vanishes since πs+c−i = 0. By Lemma 3.4, we can pick c large enough
so that pi = 0 in Wr(A/π

sA) for any i ≥ c. This shows that at each level, the kernel
Wr(piA/pi

sA) is killed by a large enough Frobenius map so its 0 in the inverse limit
proving the claim.

Now we may take the limit over s to obtain

lim←−
F

Wr(A/πA) ∼= lim←−
s

lim←−
F

Wr(A/π
sA) = lim←−

F

Wr(lim←−
s

A/πsA) = lim←−
F

Wr(A)

where the last equality is by π-adic completeness of A.

Lemma 3.4. There exists a large enough c � 0 (depending on r and s) such that pc = 0 ∈
Wr(A/π

sA).

Proof. Wr(A/πA) is a Wr(Fp) = Z/prZ algebra so pr = 0. Thus pr is in the kernel of the map
Wr(A/π

sA)→ Wr(A/πA) so it can be written as

pr =
∑

V i[aiπ] ∈ Wr(A/π
sA).

Now expand

(pr)t =
(∑

V i[aiπ]
)t

and note that
V j[ajπ]V i[aiπ] = pjV i[πaj(πai)

pi−j

]

for i ≥ j by Lemma 2.6. So for large enough t, the power of π in the product of terms V i[aiπ]
will be 0 since πs = 0, completing the proof.

Now using the isomorphisms in Proposition 3.3, we obtain an isomorphism

Ainf(A) = W (A[) ∼= lim←−
F

Wr(A).

Definition 3.5. The map
θ̃r : Ainf(A)→ Wr(A)

is defined as the composition of the isomorphism above with the projection onto Wr(A). The
map θr is defined as

θr := θ̃r ◦ ϕr : Ainf(A)→ Wr(A).

Lemma 3.6. Let x ∈ A[ so that [x] ∈ W (A[) = Ainf(A). Then θr([x]) = [x(0)] and θ̃r([x]) =
[x(r)] in Wr(A).
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Proof. The Teichmuller representative [x] ∈ W (A[) maps to the inverse system

([x], [x]1/p, [x]1/p
2

, . . .) ∈ lim←−
F

WR(A[)

under (ϕ∞)−1. Then commuting the limits and projecting in construction of the second map
of Proposition 3.3 gives us

([x], [x]1/p, [x]1/p
2

, . . .) 7→ ([x0], [x0]
1/p, [x0]

1/p2 , . . .) = ([x0], [x1], [x2], . . .)

for x = (x0, x1, . . .) ∈ A[ which maps to ([x(0)], [x(1)], . . .) under the lift to lim←−F W (A) in the
third isomorphism of Proposition 3.3 which completes the proof.

Corollary 3.7. There are commutative diagrams

Ainf(A)
θr //

R
��

Wr(A)

��
Wr(A

[) //Wr(A/pA)

where the right and bottom mpas are induced by the projections A→ A/pA and A[ → A/pA.

Proof. This follows from Lemma 3.6 and the fact that under the identification x = (x0, x1, . . .) ∈
A[ with (x(0), x(1), . . .) ∈ lim←−x→xp A, x(i) = xi mod p.

Remark 3.8. The above diagram when r = 1 shows that Ainf(A) interpolates between char-
acteristic 0 geometry of A and characteristic p geometry of A[. In particular, it is crucial that
Ainf(A) has a Frobenius automorphism ϕ. This will produce a Frobenius action on the Ainf

cohomology despite the fact that A itself doesn’t necessarily have a Frobenius.

Finally we state the compatibilities of θr, θ̃r with the usual Witt vector maps.

Lemma 3.9. (a) There are commutative diagrams

Ainf(A)
θr+1 //Wr+1(A)

R
��

Ainf(A)
θr //Wr(A)

Ainf(A)
θr+1 //

ϕ

��

Wr+1(A)

F
��

Ainf(A)
θr //Wr(A)

Ainf(A)
θr+1 //Wr+1(A)

Ainf(A)
θr //

λr+1ϕ−1

OO

Wr(A)

V

OO

where λr+1 is an element satisfying θr+1(λr+1) = V (1) ∈ Wr+1(A).

(b) There are commutative diagrams

Ainf(A)
θ̃r+1 //

ϕ

��

Wr+1(A)

R
��

Ainf(A)
θ̃r //Wr(A)

Ainf(A)
θ̃r+1 //Wr+1(A)

F
��

Ainf(A)
θ̃r //Wr(A)

Ainf(A)
θ̃r+1 //Wr+1(A)

Ainf(A)
θ̃r //

λ̃r+1

OO

Wr(A)

V

OO

where λ̃r+1 = ϕr+1(λr+1) is an element satisfying θ̃r+1(λ̃r+1) = V (1) ∈ Wr+1(A).

7



Proof. Parts (a) and (b) are equivalent by composing with ϕ so we prove (a) only. It suffices
to check on Teichmuller representatives. The first and second diagrams follow directly from
Lemma 3.6 and the properties of R, F and ϕ.

For the third diagram, note that V (1) = p[1]1/p = p = V F so

θr+1(λr+1ϕ
−1[x]) = V (1)[x(0)]1/p = V F [x(0)]1/p = V [x(0)] = V θr([x]).

Corollary 3.10. We can define limr→∞ θr =: θ∞ : Ainf(A)→ W (A) which sits in a commuta-
tive diagram

Ainf(A)
θ∞ //W (A)

��
W (A[) //W (A/pA)

Proof. We may take the limit by the first diagram of Lemma 3.9(a) and the commutative
diagram follows by Corollary 3.7.

Finally we discuss the composition of θr with the ghost map w : Wr(A)→ Ar.

Lemma 3.11.
w ◦ θr = (θ, θϕ, θϕ2, . . . , θϕr−1)

Proof. We can compute for any x ∈ A[, we have

w(θr(x)) = w([x(0)]) = w(x(0), 0, . . .) = (x(0), x(0)
p
, x(0)

p2

, . . .) = (θx, θϕx, θϕ2x, . . .).

4 Perfectoid rings

We would like to interpret the diagrams

Ainf(A)
θr //

R
��

Wr(A)

��
Wr(A

[) //Wr(A/pA)

from Corollary 3.7 as a diagram of pro-infinitessimal thickenings.
Indeed for r = 1 and A = OC for C a perfectoid field of characteristic 0, the diagram

Ainf(OC) θ //

��

OC

��
OC[

// OC/p

is familiar in p-adic hodge theory and the map θ behaves as a sort of 1-parameter deformation
of OC . We’ll study this case more carefully in the next section.

In this section we’ll explore the properties required by the ring for θr to behave as such
which leads directly to the definition of perfectoid rings.
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4.1 Surjectivity and the kernel of θ

Throughout this section, let S be a π-adically complete ring such that πp|p.1

Lemma 4.1. The following are equivalent:

(i) every element of S/πpS is a pth power;

(ii) every element of S/pS is a pth power;

(iii) every element of S/πppS is a pth power;

(iv) F : Wr+1(S)→ Wr(S) is surjective for all r ≥ 1;

(v) θr : Ainf(S)→ Wr(S) is surjective for all r ≥ 1;

(vi) θ : Ainf(S)→ S is surjective.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear since πp|p|πp.

For (iii) =⇒ (i), let y ∈ S. We can write y = xp0 mod p by assumption so y = xp0 + πpy1. By
induction

y =
∑

xpiπ
pi =

(∑
xiπ

i
)p

mod πp.

For (iv) =⇒ (ii) we have that F : W2(S) → W1(S) ∼= S is given explicitly by F (a0, a1) =
ap0 + a1p = ap0 mod p. Since F is surjective, every element of S/pS is a pth power.

(ii) =⇒ (iv) is a result of Davis-Kedlaya [DK14].

(iv) =⇒ (v) follows by the definition of θ since F surjective implies lim←−F Wr(S) → Wr(S) is
surjective.

(v) =⇒ (vi) is clear.

(vi) =⇒ (ii) follows from the computation θ([x]) = [x(0)] = [x(1)]p mod p so x(0) is a pth

power in S/pS.

Corollary 4.2. Under the equivalent conditions of Lemma 4.1, there exist units u, v ∈ S× such
that uπ and vp admit a compatible system of p-power roots.

Proof. Applying Lemma 3.1 to S and S/πpS gives an isomorphism

lim←−
x7→xp

S ∼= lim←−
ϕ

S/πpS.

By assumption we can take a compatible system of p-power roots for π mod πp which cor-
responds to a compatible system x = (x(0), x(1), . . .) on the left such that x(0) = π mod πp.
Writing

x(0) = π + πpy = π(1 + py)

1Note this is stronger than the conditions we had on A above.

9



we see that x(0) differs from π by the unit 1 + py. The same argument works with π replaced
by p.

Now we move on to studying the kernel of θ.

Definition 4.3. An element ξ ∈ ker θ is distinguished if ξ1 is a unit in S[ where ξ = (ξ0, ξ1, . . .) ∈
W (S[) is its Witt vector expansion.

Proposition 4.4. Let S as above and suppose that ϕ : S/πS → S/πpS is surjective (so that S
satisfies all the equivalent properties of Lemma 4.1).

(i) if ker θ is principal, then we have

(a) S/πS → S/πpS is an isomorphism;

(b) any generator of ker θ is a non-zero divisor;

(c) ξ ∈ ker θ is a generator if and only if ξ is distinguished;

(d) if θr(ξ) = V (1) for some r then ξ ∈ ker θ and ξ is distinguished.

(ii) Conversely, if π is a non-zero divisor and ϕ : S/πS → S/πpS is an isomorphism, then
ker θ is principal.

Proof sketch. By Corollary 4.2 we can suppose that π has a compatible system of p-power roots
and let $ ∈ S[ be the corresponding element under lim←−x 7→xp S

∼= S[. Using surjectivity of θ
and that πp|p, we may write

p+ πpθ(x) = 0

for some x. Define ξ := p+ [$]px so that θ(ξ) = 0. We want to use the diagram

Ainf(S)/ξ θ //

mod [$]p

��

S

��
Ainf(S)/(ξ, [$]p) // S/πpS

(1)

Here the bottom map is Ainf(S)/(ξ, [$]p) = Ainf(S)/(p, [$]p) = S[/$pS[ → S/πpS.
For (i) suppose ker(θ) is generated by some ξ′. One shows that ξ is also a generator by

writing ξ = aξ′ and computing in Witt vector components that ξ′1 and a0 must be units. This
implies that a is a unit and that any ξ′′ ∈ ker θ with component ξ′′1 must also be a generator.

To see that ξ (and therefore any other generator) is a non-zero divisor one again expands
out ξb = 0 into Witt vector components and uses π-adic separatedness to force b = 0.

For (a), since ξ generates ker θ, the top morphism in diagram 1 is an isomorphism and so
the bottom map S[/$pS[ → S/πpS is an isomorphism. On the other hand S[ is perfect so we
have

S[/$pS[
∼ // S/πpS

S[/$S[

ϕ

OO

∼ // S/πS

ϕ

OO
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where the left, top and bottom are isomorphisms so the right is an isomorphism.

Finally suppose ξ is any element with θr(ξ) = V (1) = (0, 1, 0, . . .). Then θ(ξ) = 0 by
compatibility of θr with restriction. On the other hand, R(ξ) = (ξ0, ξ1, . . . , ξr−1) = θr(ξ)
mod p = (0, 1, 0, . . . , 0) by Corollary 3.7 so ξ1 = 1 mod p lifts to a unit in S[.

For part (ii), suppose conversely that S/πS → S/πpS is an isomorphism and π is a non-zero
divisor and let ξ,$ as in diagram 1.

Using surjectivity, one checks surjectivity S/π1/pnS → S/π1/pn−1
S and concludes that $

generates the kernel of S[ → S/πS by expanding any element into components under the
isomorphism of Lemma 3.1 and checking that π1/pn divides the corresponding component of
any element in the kernel. It follows that S[/$S[ → S/πS is an isomorphism.

Using diagram 1, write x ∈ ker(θ) as x = ξy0+[$]x1 since by commutativity x must become
0 in the composition Ainf(S)/ξ → S[/$pS[ → S[/$S[ = S/πS. Then

0 = θ(x) = θ(ξy0) + θ([ϕ]x1) = πθ(x1)

so θ(x1) = 0 since π is not a zero divisor. Then x1 = ξy1 + [$]x2 and so on so by induction x
is in the ideal generated by ξ.

4.2 Perfectoid rings

Now we are equipped to defined perfectoid rings.

Definition 4.5. A ring S is perfectoid if

• S is π-adically complete for some π ∈ S such that πp|p;

• ϕ : S/pS → S/pS is surjective (equivalently θ is surjective);

• ker(θ) is a principal ideal.

The idea is that perfectoid rings are precisely the rings so that θ : Ainf(S) → S is a 1-
parameter pro-infinitessimal deformation. We can think of it as deforming S in the ξ direction.

Remark 4.6. (Perfectoid rings in characteristic p) Suppose S is a characteristic p ring. Then
S is perfectoid if and only if it is perfect. Indeed if S is perfect then it’s 0-adically complete
and the Frobenius is an isomorphism so S[ ∼= S. Thus θ : Ainf(S) = W (S)→ S corresponds to
Witt vector restriction and has kernel generated by p.

On the other hand, if S is perfectoid then p ∈ ker(θ) since p is zero in S but p = V (1) so
it’s distinguished by Lemma 4.4(i)(d). Thus p generates ker(θ) and so

S[ = W (S[)/p ∼= S

is perfect.

Lemma 4.7. Suppose S is perfectoid and ξ a generator of ker θ. Then the non-zero divisor

ξr := ξϕ−1(ξ) . . . ϕ−(r−1)(ξ)
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is a generator for ker(θr). Similarly, the non-zero divisor

ξ̃r = ϕr(ξ)ϕr−1(ξ) . . . ϕ(ξ)

is a generator for ker(θ̃r).

Proof. The two statements are equivalent by applying ϕr so we prove the first. By 4.4(i)(d),
we may suppose that θr+1(ξ) = V (1) after multiplying by a unit.

Suppose ξr is a non-zero divisor generating ker(θr). Consider the commutative diagram

0 // Ainf(S)
ξϕ−1

//

θr
��

Ainf(S) θ //

θr+1

��

S // 0

0 //Wr(S) V //Wr+1(S) R // S // 0

The top row is exact since ξ is a non-zero divisor and the bottom row is exact by surjectivity of
θr. Commutativity is by Lemma 3.9. A diagram chase implies that since ξr generates ker(θr),
then ξϕ−1(ξr) = ξr+1 generates ker(θr+1). Indeed if θr+1(x) = 0 then θ(x) = 0 so x = ξϕ−1(y)
but y ∈ ker(θr) by commutativity of the first square.

4.3 Perfectoid rings with enough roots of unity

The kernel of θr has particularly nice generators in the case where S is a perfectoid ring
with many roots of unity. More specifically, suppose S is perfectoid and contains a compatible
system 1, ζp, ζp2 , . . . of primitive p-power roots of unity.2 This includes as the most impotant
example the ring of integers OC of a perfectoid field C. We will study this example more closely
in the next section.

Definition 4.8. Let S and ζpr be as above. Define elements

ε := (1, ζp, ζp2 , . . .) ∈ S[, µ := [ε]− 1 ∈ W (S[) = Ainf(S).

and
ξ := 1 + [ε1/p] + [ε2/p] + . . .+ [ε(p−1)/p] =

µ

ϕ−1(µ)
∈ W (S[) = Ainf(S).

Lemma 4.9. ξ is a generator of ker(θ) satisfying θr(ξ) = V (1) for all r > 1.

Proof. Note that
θ(ξ) = 1 + ζp + ζ2p + . . .+ ζp−1p = 0

by Lemma 3.6 and the definition of ζp. By functoriality of Witt vectors and the map θ, it
suffices to prove the statement for Zcyclp := (Zp[ζp∞ ])∧p

3 as the choice of ζpr ∈ S determines a
unique map Zcyclp → S.

In particular, we may assume that S is p-torsion free. In this case the ghost map w :
Wr(A)→ Ar is injective and so it suffices to compute

w(θr(ξ)) = w(V (1)).

2If S is not an integral domain, a primitive root of unity is defined to be a root of the corresponding
cyclotomic polynomial.

3This denotes the p-adic completion
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By Lemma 3.11 We can compute for any x ∈ A[, we have

w(θr(ξ)) = (θξ, θϕξ, θϕ2ξ, . . .).

Since θ(ξ) = 0 and w(V (1)) = w(0, 1, 0, . . .) = (0, p, p, . . .), it suffices to show that

θϕi(ξ) = p

for all i ≥ 1. In this case

θϕi(ξ) = θ(1 + [εp
i−1

] + [εp
i−1

]2 + . . .+ [εp
i−1

]p−1)

= 1 + (ζp
i−1

p ) + (ζp
i−1

p )2 + . . .+ (ζp
i−1

p )p−1

= p

We obtain the following by Lemma 4.7 and a computation.

Corollary 4.10. The kernel of θr is generated by

ξr = ξϕ−1(ξ) . . . ϕ−(r−1)(ξ) =

pr−1∑
i=1

[ε1/p
r

]i

and the kernel of θ̃r is generated by

ξ̃r = ϕr(ξr) =

pr−1∑
i=0

[ε]i.

Proposition 4.11. Let S be a perfectoid ring which is flat over Zp and contains a compatible
sequence of primitive pth roots of unity. Let ε, ξr, ξ̃r and µ as above. Then for any r,

(i) µ is a non-zero divisor;

(ii) θ̃r(µ) = [ζpr ]− 1 ∈ Wr(S) is a non-zero divisor;

(iii) µ = ξrϕ
−r(µ) and ϕr(µ) = ξ̃rµ;

(iv) µ divides ξ̃r − pr.
Proof. θ̃r(µ) = [ζpr ]−1 by Lemma 3.6. Since S is flat over Zp, it is torsion free so w : Wr(S)→
Sr is injective. Thus it suffices to check that that

w(θ̃r(µ)) = (ζpr − 1, ζpr−1 − 1, . . . , ζp − 1)

is not zero divisor (where we computed the expression using Lemma 3.11 and θr = θ̃r ◦ϕr. Now
ζpr −1 divides p and p is not a zero divisor since S is flat over Zp so ζpr −1 is not a zero divisor.

(ii) follows from (i) since θ̃r(µ) is a non-zero divisor in each Wr(S) and Ainf(S) = lim←−F Wr(S).

(iii) is computed by noting that ξϕ−1(µ) = µ.
(iv) follows because [ε] = 1 mod µ so

ξ̃r =

pr−1∑
i=0

[ε]i = pr mod µ.
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5 The case of a perfectoid field

The most important case of the above constructions is when C = Cp is a complete non-
archimedean algebraically closed field of mixed characteristic and S = O := OC is the ring of
integers. In this case we denote Ainf := Ainf(O). More generally everything holds when C is
any perfectoid field of mixed characteristic.

As O is a flat Zp algebra with enough roots of unity, the discussion in Section 4.3 holds and
we let ε, ξ, µ, etc be as in loc. cit.

Ainf is well known in p-adic hodge theory and its relation to Fontaine’s other period rings
is crucial to comparison theorems. We recall these other rings here.

Definition 5.1. (a) Let Acrys be the p-adic completion of the Ainf-subalgebra of Ainf [
1
p
] gen-

erated by all elements of the form ξm

m!
.

(b) Let B+
crys = Acrys[

1
p
] and Bcrys = Acrys[

1
µ
] = B+

crys[
1
µ
].

(c) Let B+
dR be the ξ-adic completition of B+

crys and BdR = B+
dR[1

ξ
] be its fraction field.

Remark 5.2. (a) The ring Acrys is the universal p-adically complete divided power thickening
of O over Zp.

(b) The last equality in (b) uses the computation µp−1 = ξp mod p so that µp−1 ∈ pAcrys.

(c) B+
dR is a DVR with residue field C.

The ring Ainf satisfies the following properties that we won’t prove here:

Lemma 5.3. The kernel of the map

θ∞ : Ainf → W (O)

is generated by µ. That is, ⋂
r

µ

ϕ−r(µ)
Ainf = µAinf .

In particular, the ideal (µ) is independent of the choice of roots of unity.
If C is a spherically complete field, then the cokernel of θ∞ is zero. More generally, the

cokernel is W (m[)-torsion where m[ is the maximal ideal of O[.

Remark 5.4. Recall that a non-archimedean field is spherically complete if any decreasing
sequence of discs has nonempty intersection.

Another useful property is coherence. Recall that a ring is coherent if every finitely generated
ideal is finitely presented.

Proposition 5.5. For each r ≥ 1, the ring Wr(O) is coherent.

Remark 5.6. It’s not known whether Ainf is coherent.

Finally it is instructive to think of Ainf analagously to a two dimensional regular local
ring.4 Indeed the pair (p, ξ) where ξ is any generator of ker(θ) is a regular sequence, Ainf is
(p, ξ)-adically complete, and the radical of (p, ξ) is the maximal ideal of Ainf .

4Note that Ainf is not two dimensional. In fact it is known that the Krull dimension is at least 3 though we
don’t know it exactly.
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