Perfectoid rings and $\mathbb{A}_{\text {inf }}$

Dori Bejleri

July 2017

1 Introduction

In this talk we will define and study Fontaine's ring $\mathbb{A}_{\text {inf }}$. The goal is to construct for a perfectoid ring S, morphisms $\theta_{r}, \tilde{\theta}_{r}: \mathbb{A}_{\text {inf }}(S) \rightarrow W_{r}(S)$ generalizing Fontaine's map θ : $\mathbb{A}_{\text {inf }}(S) \rightarrow S$ and show that they behave like one parameter deformations.

Specialization along these maps is used in [BMS16] for constructing the comparison between the $\mathbb{A}_{\text {inf }}$ cohomology theory and the relative de Rham-Witt complex. We closely follow BMS16, Section 3] as well as Mor16, Section 3].

2 Witt vectors

We first review (p-typical) Witt vectors. For a detailed and general exposition, see Rab14]. Fix p a prime number.

Let A be any ring and define $W_{r}(A)=A^{r}$ as a set. Consider the maps

$$
w: W_{r}(A) \rightarrow A^{r}
$$

given by

$$
\left(x_{0}, x_{1}, \ldots, x_{r-1}\right) \mapsto\left(w_{0}\left(x_{0}\right), w_{1}\left(x_{0}, x_{1}\right), \ldots, w_{r-1}\left(x_{0}, \ldots, x_{r-1}\right)\right)
$$

where

$$
w_{n}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n} p^{i} x_{i}^{p^{n-i}}=x_{0}^{p^{n}}+p x_{1}^{p^{n-1}}+\ldots+p^{n} x_{n}
$$

w is called the ghost map and w_{n} the ghost components.
Theorem 2.1. There exists a unique ring structure on $W_{r}(A)$ making

$$
W_{r}: \operatorname{Ring} \rightarrow \operatorname{Ring}
$$

a functor such that
(i) $W_{r}(f)\left(x_{0}, \ldots, x_{r-1}\right)=\left(f\left(x_{0}\right), \ldots, f\left(x_{r-1}\right)\right)$,
(ii) and $w: W_{r}(A) \rightarrow A^{r}$ is a natural transformation (and in particular a ring homomorphism).
Furthermore, W_{r} commutes with inverse limits.
$W_{r}(A)$ are called the length r Witt vectors of A. They come equipped with several maps:
(1) (Restriction) $R: W_{r}(A) \rightarrow W_{r-1}(A)$ is the ring homomorphism given by $R\left(x_{0}, \ldots, x_{r-1}\right)=$ $\left(x_{0}, \ldots, x_{r-2}\right)$.
(2) (Frobenius) $F: W_{r}(A) \rightarrow W_{r-1}(A)$ is the unique ring homomorphism making the diagram

commute where $A^{r} \rightarrow A^{r-1}$ is projection onto the first $r-1$ coordinates.
(3) (Verschiebung) $V: W_{r-1}(A) \rightarrow W_{r}(A)$ is the additive (but not multiplicative) map given by $\left(x_{0}, \ldots, x_{r-2}\right) \mapsto\left(0, x_{0}, \ldots, x_{r-2}\right)$
(4) (Teichmuller representatives) []:A $\rightarrow W_{r}(A)$ is the multiplicative (but not additive) map $x \mapsto(x, 0, \ldots, 0)$.
Lemma 2.2. These maps satisfy the following relations:
(a) $F[a]=\left[a^{p}\right]$,
(b) $(F \circ V)(x)=p x$,
(c) $V(x F(y))=V(x) y$,
(d) $x=\sum_{i=0}^{r} V^{i}\left[x_{i}\right]$.

Definition 2.3. The Witt vectors of A are defined as the inverse limit

$$
W(A):={\underset{\underset{R}{R}}{ }}_{\lim _{r}} W^{(A)}
$$

over all restriction maps $R: W_{r+1}(A) \rightarrow W_{r}(A)$.
$W(A)$ inherits restriction maps $R: W(A) \rightarrow W_{r}(A)$ as well as Verschiebung and Frobenius maps $V, F: W(A) \rightarrow W(A)$ and a Teichmuller lift [] : A $\rightarrow W(A)$ compatible with those at each level.

$2.1 p$-torsion free rings

Suppose that p is invertible in A so that A is a $\mathbb{Z}\left[\frac{1}{p}\right]$-algebra. Then the ghost map

$$
w: W_{r}(A) \rightarrow A^{r}
$$

is a ring isomorphism.
More generally, if A is p-torsion free, it embeds into the $\mathbb{Z}\left[\frac{1}{p}\right]$-algebra $A\left[\frac{1}{p}\right]$ and there is a commutative diagram

of ring homomorphisms.

2.2 Perfect \mathbb{F}_{p}-algebras

The Witt vectors of \mathbb{F}_{p} are computed by $W_{r}\left(\mathbb{F}_{p}\right)=\mathbb{Z} / p^{r} \mathbb{Z}$ (in fact this computation was the motivation for defining $W_{r}!$). It follows that $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$ the p-adic integers.

Now let K be a perfect \mathbb{F}_{p}-algebra and denote the Frobenius $\varphi: K \rightarrow K$. Then by functoriality of W_{r} there is a diagram

where the top map is surjective. This implies that $W_{r}(K)$ is a lift of A to $\mathbb{Z} / p^{r} \mathbb{Z}$-algebras. Taking the inverse limit, we get that $W(K)$ is a lift of K to \mathbb{Z}_{p}-algebras.
Proposition 2.4. Let K be a perfect \mathbb{F}_{p}-algebra.
(i) $W(A)$ is a p-adically complete, p-torsion free \mathbb{Z}_{p}-algebra such that $W(A) / p^{r}=W_{r}(A)$ for all r.
(ii) Conversely, if A is any p-adically complete, p-torsion free \mathbb{Z}_{p} algebra with $A / p=K$, then there is a unique multiplicative lift []:K $\rightarrow A$ and the map

$$
W(K) \rightarrow A
$$

given by

$$
x=\left(x_{0}, x_{1}, \ldots\right) \mapsto \sum_{i=0}^{\infty} V^{i}\left[x_{i}\right]=\sum_{i=0}^{\infty} p^{i}\left[x_{i}\right]^{1 / p^{i}}
$$

is an isomorphism.
Remark 2.5. This proposition characterizes the Witt vectors of a perfect \mathbb{F}_{p} algebra K as the unique lift of K to a p-adically complete p-torsion free \mathbb{Z}_{p}-algebra. The existence and uniqueness of $W(K)$ in this case can also be argued formally. Indeed one computes using the Frobenius map $\varphi: K \rightarrow K$ that the cotangent complex $\mathbb{L}_{K / \mathbb{F}_{p}} \simeq 0$. Therefore there is a unique deformation of K over $\mathbb{Z} / p^{r} \mathbb{Z} \rightarrow \mathbb{F}_{p}$ which is necessarily $W_{r}(K)$.

The Frobenius isomorphism $\varphi: K \rightarrow K$ lifts to a Frobenius isomorphism $\varphi: W_{r}(K) \rightarrow$ $W_{r}(K)$ for each r such that the diagram

commutes.
Lemma 2.6. Let K be a perfect \mathbb{F}_{p}-algebra. Then the following relations are satisfied:

1. $F[a]=[a]^{p}$,
2. $V[a]=p[a]^{1 / p}$,
3. $F V=V F=p$,
4. $V^{i}[a] V^{j}[b]=p^{i} V^{j}\left[a b^{p^{j-i}}\right]$ where $j \geq i$.

3 Construction of $\mathbb{A}_{\text {inf }}$

3.1 Tilting

Let A be a commutative ring that's π-adically complete and separated for some $\pi \in S$ with $\pi \mid p$ and let

$$
\varphi: A / p A \rightarrow A / p A
$$

be the Frobenius map.
The tilt of A is the perfect \mathbb{F}_{p}-algebra defined as

$$
A^{b}:={\underset{\zeta}{\zeta}}_{\lim _{\varphi}} A / p A
$$

Lemma 3.1. The natural maps

$$
\lim _{x \rightarrow x^{p}} A \rightarrow A^{b} \rightarrow{\underset{\zeta}{\varphi}}_{\lim _{\varphi}} A / \pi A
$$

are isomorphisms where the first is a map of monoids and the second is a map of rings.
Proof. Let $\left(x_{i}\right),\left(y_{i}\right) \in \lim _{\varliminf_{x \mapsto x^{p}}} A$ be an inverse system of $p^{t h}$-power roots mapping to the same element in A^{b}. Then $x_{i}=y_{i} \bmod p$ and so by induction we deduce that for any n,

$$
x_{i+n}^{p^{n}}=y_{i+n}^{p^{n}} \quad \bmod p^{n+1}
$$

It follows that $x_{i}=y_{i} \bmod p^{n+1}$. Since n was arbitrary then $x_{i}=y_{i}$ by p-adic separatedness so the first map is injective.

Let $\left(y_{i}\right) \in A^{b}$ be an inverse system of $p^{t h}$-power roots in $A / p A$ and pick lifts $\tilde{y}_{i} \in A$. Then one can check that the limit

$$
\lim _{n \rightarrow \infty}\left(\tilde{y}_{i+n}^{p^{n}}\right)=x_{i} \in A
$$

exists and $\left(x_{i}\right) \in \lim _{x \mapsto x^{p}} A$ gives an inverse system mapping to $\left(y_{i}\right)$.
The isomorphism $\lim _{x \rightarrow x^{p}} A \rightarrow{\underset{\zeta}{\zeta}} A / \pi A$ follows by the same argument and the fact that the induced map $A^{b} \rightarrow \lim _{\varphi} A / \pi A$ is a ring homomorphism follows since both rings are characteristic p.

Under the isomorphism in Lemma 3.1, we will identify $x=\left(x_{0}, x_{1}, \ldots\right) \in A^{b}$ with

$$
\left(x^{(0)}, x^{(1)}, \ldots\right) \in \lim _{x \rightarrow x^{p}} A
$$

. Note that $x_{i+1}^{p}=x_{i}$ and $\left(x^{(i+1)}\right)^{p}=x^{(i)}$.
Definition 3.2. Let A be as above. The ring $\mathbb{A}_{\text {inf }}(A)$ is defined by

$$
\mathbb{A}_{\mathrm{inf}}(A):=W\left(A^{\mathrm{b}}\right)
$$

3.2 The maps $\theta_{r}, \tilde{\theta}_{r}$

Let A as above be a π-adically complete ring for some $\pi \in A$ with $\pi \mid p$.
Proposition 3.3. There are isomorphisms
where
(i) φ^{∞} is induced by $\varphi^{r}: W_{r}\left(A^{b}\right) \rightarrow W_{r}\left(A^{b}\right)$ for each r,
(ii) the second arrow is induced by the natural map $A^{b} \rightarrow A / p A \rightarrow A / \pi A$,
(iii) and the third arrow is induced by $A \rightarrow A / \pi A$.

Proof. (i) Since A^{b} is a perfect ring of characteristic p, we have a commutative diagram

where φ is an isomorphism. Taking the inverse limit and using that φ and R commute, we obtain that $\varphi^{\infty}: \lim _{\leftarrow} W_{r}\left(A^{b}\right) \rightarrow W_{r}\left(A^{b}\right)$ is an isomorphism.
(ii) We have the following maps
where the final map is projection onto the first factor. Here we have used that W_{r} commutes with limits, limits commute with limits and $A^{b} \cong \lim _{\varphi} A / \pi A$ by Lemma 3.1 to show the first three isomorphisms. Finally note that φ is an isomorphism on ${\underset{\gtrless}{m}}_{F} W_{r}(A / \pi A)$ since $R \varphi=\varphi R=F$ for Witt vectors of a characteristic p ring. Thus the final projection is also an isomorphism.
(iii) First we claim that for any s,

$$
{\underset{\overleftarrow{~ l i m}}{F}} W_{r}\left(A / \pi^{s} A\right) \rightarrow \underset{F}{\lim _{F}} W_{r}(A / \pi A)
$$

induced by $A / \pi^{s} A \rightarrow A / \pi A$ is an isomorphism.
Indeed it is level-wise surjective so we need to check that the kernel is zero in the limit. At each level the kernel is given by

$$
W_{r}\left(\pi A / \pi^{s} A\right)
$$

which is generated by elements of the form $V^{i}\left[\pi a_{i}\right]$. For some c, consider the Frobenius map

$$
F^{s+c}: W_{r+s+c}\left(A / \pi^{s} A\right) \rightarrow W_{r}\left(A / \pi^{s} A\right) .
$$

Using Lemma 2.6, we compute

$$
F^{s+c} V^{i}\left[\pi a_{i}\right]=p^{i}\left[\pi a_{i}\right]^{p^{s+c-i}}
$$

For $i<c$ this is vanishes since $\pi^{s+c-i}=0$. By Lemma 3.4, we can pick c large enough so that $p^{i}=0$ in $W_{r}\left(A / \pi^{s} A\right)$ for any $i \geq c$. This shows that at each level, the kernel $W_{r}\left(p i A / p i^{s} A\right)$ is killed by a large enough Frobenius map so its 0 in the inverse limit proving the claim.
Now we may take the limit over s to obtain
where the last equality is by π-adic completeness of A.

Lemma 3.4. There exists a large enough $c \gg 0$ (depending on r and s) such that $p^{c}=0 \in$ $W_{r}\left(A / \pi^{s} A\right)$.

Proof. $W_{r}(A / \pi A)$ is a $W_{r}\left(\mathbb{F}_{p}\right)=\mathbb{Z} / p^{r} \mathbb{Z}$ algebra so $p^{r}=0$. Thus p^{r} is in the kernel of the map $W_{r}\left(A / \pi^{s} A\right) \rightarrow W_{r}(A / \pi A)$ so it can be written as

$$
p^{r}=\sum V^{i}\left[a_{i} \pi\right] \in W_{r}\left(A / \pi^{s} A\right)
$$

Now expand

$$
\left(p^{r}\right)^{t}=\left(\sum V^{i}\left[a_{i} \pi\right]\right)^{t}
$$

and note that

$$
V^{j}\left[a_{j} \pi\right] V^{i}\left[a_{i} \pi\right]=p^{j} V^{i}\left[\pi a_{j}\left(\pi a_{i}\right)^{p^{i-j}}\right]
$$

for $i \geq j$ by Lemma 2.6. So for large enough t, the power of π in the product of terms $V^{i}\left[a_{i} \pi\right]$ will be 0 since $\pi^{s}=0$, completing the proof.

Now using the isomorphisms in Proposition 3.3, we obtain an isomorphism

$$
\mathbb{A}_{\mathrm{inf}}(A)=W\left(A^{b}\right) \cong{\underset{\overleftarrow{F}}{F}}^{\lim _{r}} W^{(A)}
$$

Definition 3.5. The map

$$
\tilde{\theta}_{r}: \mathbb{A}_{\text {inf }}(A) \rightarrow W_{r}(A)
$$

is defined as the composition of the isomorphism above with the projection onto $W_{r}(A)$. The $\operatorname{map} \theta_{r}$ is defined as

$$
\theta_{r}:=\tilde{\theta}_{r} \circ \varphi^{r}: \mathbb{A}_{\mathrm{inf}}(A) \rightarrow W_{r}(A) .
$$

Lemma 3.6. Let $x \in A^{b}$ so that $[x] \in W\left(A^{b}\right)=\mathbb{A}_{\text {inf }}(A)$. Then $\theta_{r}([x])=\left[x^{(0)}\right]$ and $\tilde{\theta}_{r}([x])=$ $\left[x^{(r)}\right]$ in $W_{r}(A)$.

Proof. The Teichmuller representative $[x] \in W\left(A^{b}\right)$ maps to the inverse system

$$
\left([x],[x]^{1 / p},[x]^{1 / p^{2}}, \ldots\right) \in{\underset{F}{\leftrightarrows}}_{\lim _{F}} W_{R}\left(A^{b}\right)
$$

under $\left(\varphi^{\infty}\right)^{-1}$. Then commuting the limits and projecting in construction of the second map of Proposition 3.3 gives us

$$
\left([x],[x]^{1 / p},[x]^{1 / p^{2}}, \ldots\right) \mapsto\left(\left[x_{0}\right],\left[x_{0}\right]^{1 / p},\left[x_{0}\right]^{1 / p^{2}}, \ldots\right)=\left(\left[x_{0}\right],\left[x_{1}\right],\left[x_{2}\right], \ldots\right)
$$

for $x=\left(x_{0}, x_{1}, \ldots\right) \in A^{b}$ which maps to $\left(\left[x^{(0)}\right],\left[x^{(1)}\right], \ldots\right)$ under the lift to ${\underset{\longleftarrow}{L}}_{F} W(A)$ in the third isomorphism of Proposition 3.3 which completes the proof.

Corollary 3.7. There are commutative diagrams

where the right and bottom mpas are induced by the projections $A \rightarrow A / p A$ and $A^{b} \rightarrow A / p A$.
Proof. This follows from Lemma 3.6 and the fact that under the identification $x=\left(x_{0}, x_{1}, \ldots\right) \in$ A^{b} with $\left(x^{(0)}, x^{(1)}, \ldots\right) \in \varliminf_{\nless x^{p}} A, x^{(i)}=x_{i} \bmod p$.

Remark 3.8. The above diagram when $r=1$ shows that $\mathbb{A}_{\text {inf }}(A)$ interpolates between characteristic 0 geometry of A and characteristic p geometry of A^{b}. In particular, it is crucial that $\mathbb{A}_{\text {inf }}(A)$ has a Frobenius automorphism φ. This will produce a Frobenius action on the $\mathbb{A}_{\text {inf }}$ cohomology despite the fact that A itself doesn't necessarily have a Frobenius.

Finally we state the compatibilities of $\theta_{r}, \tilde{\theta}_{r}$ with the usual Witt vector maps.
Lemma 3.9. (a) There are commutative diagrams

where λ_{r+1} is an element satisfying $\theta_{r+1}\left(\lambda_{r+1}\right)=V(1) \in W_{r+1}(A)$.
(b) There are commutative diagrams

where $\tilde{\lambda}_{r+1}=\varphi^{r+1}\left(\lambda_{r+1}\right)$ is an element satisfying $\tilde{\theta}_{r+1}\left(\tilde{\lambda}_{r+1}\right)=V(1) \in W_{r+1}(A)$.

Proof. Parts (a) and (b) are equivalent by composing with φ so we prove (a) only. It suffices to check on Teichmuller representatives. The first and second diagrams follow directly from Lemma 3.6 and the properties of R, F and φ.

For the third diagram, note that $V(1)=p[1]^{1 / p}=p=V F$ so

$$
\theta_{r+1}\left(\lambda_{r+1} \varphi^{-1}[x]\right)=V(1)\left[x^{(0)}\right]^{1 / p}=V F\left[x^{(0)}\right]^{1 / p}=V\left[x^{(0)}\right]=V \theta_{r}([x]) .
$$

Corollary 3.10. We can define $\lim _{r \rightarrow \infty} \theta_{r}=: \theta_{\infty}: \mathbb{A}_{\mathrm{inf}}(A) \rightarrow W(A)$ which sits in a commutative diagram

Proof. We may take the limit by the first diagram of Lemma 3.9(a) and the commutative diagram follows by Corollary 3.7.

Finally we discuss the composition of θ_{r} with the ghost map $w: W_{r}(A) \rightarrow A^{r}$.

Lemma 3.11.

$$
w \circ \theta_{r}=\left(\theta, \theta \varphi, \theta \varphi^{2}, \ldots, \theta \varphi^{r-1}\right)
$$

Proof. We can compute for any $x \in A^{b}$, we have

$$
w\left(\theta_{r}(x)\right)=w\left(\left[x^{(0)}\right]\right)=w\left(x^{(0)}, 0, \ldots\right)=\left(x^{(0)}, x^{(0)^{p}}, x^{(0)^{p^{2}}}, \ldots\right)=\left(\theta x, \theta \varphi x, \theta \varphi^{2} x, \ldots\right)
$$

4 Perfectoid rings

We would like to interpret the diagrams

from Corollary 3.7 as a diagram of pro-infinitessimal thickenings.
Indeed for $r=1$ and $A=\mathcal{O}_{C}$ for C a perfectoid field of characteristic 0 , the diagram

is familiar in p-adic hodge theory and the map θ behaves as a sort of 1-parameter deformation of \mathcal{O}_{C}. We'll study this case more carefully in the next section.

In this section we'll explore the properties required by the ring for θ_{r} to behave as such which leads directly to the definition of perfectoid rings.

4.1 Surjectivity and the kernel of θ

Throughout this section, let S be a π-adically complete ring such that $\pi^{p} \mid p \cup^{1}$
Lemma 4.1. The following are equivalent:
(i) every element of $S / \pi p S$ is a $p^{\text {th }}$ power;
(ii) every element of $S / p S$ is a $p^{\text {th }}$ power;
(iii) every element of $S / \pi^{p} p S$ is a $p^{t h}$ power;
(iv) $F: W_{r+1}(S) \rightarrow W_{r}(S)$ is surjective for all $r \geq 1$;
(v) $\theta_{r}: \mathbb{A}_{\mathrm{inf}}(S) \rightarrow W_{r}(S)$ is surjective for all $r \geq 1$;
(vi) $\theta: \mathbb{A}_{\text {inf }}(S) \rightarrow S$ is surjective.

Proof. $(i) \Longrightarrow(i i) \Longrightarrow(i i i)$ is clear since $\pi^{p}|p| \pi p$.
For $(i i i) \Longrightarrow(i)$, let $y \in S$. We can write $y=x_{0}^{p} \bmod p$ by assumption so $y=x_{0}^{p}+\pi^{p} y_{1}$. By induction

$$
y=\sum x_{i}^{p} \pi^{p i}=\left(\sum x_{i} \pi^{i}\right)^{p} \quad \bmod \pi p
$$

For $(i v) \Longrightarrow(i i)$ we have that $F: W_{2}(S) \rightarrow W_{1}(S) \cong S$ is given explicitly by $F\left(a_{0}, a_{1}\right)=$ $a_{0}^{p}+a_{1} p=a_{0}^{p} \bmod p$. Since F is surjective, every element of $S / p S$ is a $p^{t h}$ power.
$(i i) \Longrightarrow(i v)$ is a result of Davis-Kedlaya [DK14].
$(i v) \Longrightarrow(v)$ follows by the definition of θ since F surjective implies $\varliminf_{\varliminf_{F}} W_{r}(S) \rightarrow W_{r}(S)$ is surjective.
$(v) \Longrightarrow(v i)$ is clear.
$(v i) \Longrightarrow$ (ii) follows from the computation $\theta([x])=\left[x^{(0)}\right]=\left[x^{(1)}\right]^{p} \bmod p$ so $x^{(0)}$ is a $p^{t h}$ power in $S / p S$.

Corollary 4.2. Under the equivalent conditions of Lemma 4.1, there exist units $u, v \in S^{\times}$such that $u \pi$ and $v p$ admit a compatible system of p-power roots.

Proof. Applying Lemma 3.1 to S and $S / \pi p S$ gives an isomorphism

$$
\lim _{x \rightarrow x^{p}} S \cong{\underset{\zeta}{\zeta}}_{\lim _{\varphi}} S / \pi p S .
$$

By assumption we can take a compatible system of p-power roots for $\pi \bmod \pi p$ which corresponds to a compatible system $x=\left(x^{(0)}, x^{(1)}, \ldots\right)$ on the left such that $x^{(0)}=\pi \bmod \pi p$. Writing

$$
x^{(0)}=\pi+\pi p y=\pi(1+p y)
$$

[^0]we see that $x^{(0)}$ differs from π by the unit $1+p y$. The same argument works with π replaced by p.

Now we move on to studying the kernel of θ.
Definition 4.3. An element $\xi \in \operatorname{ker} \theta$ is distinguished if ξ_{1} is a unit in S^{b} where $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right) \in$ $W\left(S^{b}\right)$ is its Witt vector expansion.

Proposition 4.4. Let S as above and suppose that $\varphi: S / \pi S \rightarrow S / \pi^{p} S$ is surjective (so that S satisfies all the equivalent properties of Lemma 4.1).
(i) if $\operatorname{ker} \theta$ is principal, then we have
(a) $S / \pi S \rightarrow S / \pi^{p} S$ is an isomorphism;
(b) any generator of $\operatorname{ker} \theta$ is a non-zero divisor;
(c) $\xi \in \operatorname{ker} \theta$ is a generator if and only if ξ is distinguished;
(d) if $\theta_{r}(\xi)=V(1)$ for some r then $\xi \in \operatorname{ker} \theta$ and ξ is distinguished.
(ii) Conversely, if π is a non-zero divisor and $\varphi: S / \pi S \rightarrow S / \pi^{p} S$ is an isomorphism, then ker θ is principal.

Proof sketch. By Corollary 4.2 we can suppose that π has a compatible system of p-power roots and let $\varpi \in S^{b}$ be the corresponding element under $\lim _{\varliminf_{x \rightarrow x^{p}}} S \cong S^{b}$. Using surjectivity of θ and that $\pi^{p} \mid p$, we may write

$$
p+\pi^{p} \theta(x)=0
$$

for some x. Define $\xi:=p+[\varpi]^{p} x$ so that $\theta(\xi)=0$. We want to use the diagram

Here the bottom map is $\mathbb{A}_{\text {inf }}(S) /\left(\xi,[\varpi]^{p}\right)=\mathbb{A}_{\text {inf }}(S) /\left(p,[\varpi]^{p}\right)=S^{b} / \varpi^{p} S^{b} \rightarrow S / \pi^{p} S$.
For (i) suppose $\operatorname{ker}(\theta)$ is generated by some ξ^{\prime}. One shows that ξ is also a generator by writing $\xi=a \xi^{\prime}$ and computing in Witt vector components that ξ_{1}^{\prime} and a_{0} must be units. This implies that a is a unit and that any $\xi^{\prime \prime} \in \operatorname{ker} \theta$ with component $\xi_{1}^{\prime \prime}$ must also be a generator.

To see that ξ (and therefore any other generator) is a non-zero divisor one again expands out $\xi b=0$ into Witt vector components and uses π-adic separatedness to force $b=0$.

For (a), since ξ generates $\operatorname{ker} \theta$, the top morphism in diagram 1 is an isomorphism and so the bottom map $S^{b} / \varpi^{p} S^{b} \rightarrow S / \pi^{p} S$ is an isomorphism. On the other hand S^{b} is perfect so we have

where the left, top and bottom are isomorphisms so the right is an isomorphism.
Finally suppose ξ is any element with $\theta_{r}(\xi)=V(1)=(0,1,0, \ldots)$. Then $\theta(\xi)=0$ by compatibility of θ_{r} with restriction. On the other hand, $R(\xi)=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{r-1}\right)=\theta_{r}(\xi)$ $\bmod p=(0,1,0, \ldots, 0)$ by Corollary 3.7 so $\xi_{1}=1 \bmod p$ lifts to a unit in S^{b}.

For part (ii), suppose conversely that $S / \pi S \rightarrow S / \pi^{p} S$ is an isomorphism and π is a non-zero divisor and let ξ, ϖ as in diagram 1 .

Using surjectivity, one checks surjectivity $S / \pi^{1 / p^{n}} S \rightarrow S / \pi^{1 / p^{n-1}} S$ and concludes that ϖ generates the kernel of $S^{b} \rightarrow S / \pi S$ by expanding any element into components under the isomorphism of Lemma 3.1 and checking that $\pi^{1 / p^{n}}$ divides the corresponding component of any element in the kernel. It follows that $S^{b} / \varpi S^{b} \rightarrow S / \pi S$ is an isomorphism.

Using diagram 1, write $x \in \operatorname{ker}(\theta)$ as $x=\xi y_{0}+[\varpi] x_{1}$ since by commutativity x must become 0 in the composition $\mathbb{A}_{\text {inf }}(S) / \xi \rightarrow S^{b} / \varpi^{p} S^{b} \rightarrow S^{b} / \varpi S^{b}=S / \pi S$. Then

$$
0=\theta(x)=\theta\left(\xi y_{0}\right)+\theta\left([\varphi] x_{1}\right)=\pi \theta\left(x_{1}\right)
$$

so $\theta\left(x_{1}\right)=0$ since π is not a zero divisor. Then $x_{1}=\xi y_{1}+[\varpi] x_{2}$ and so on so by induction x is in the ideal generated by ξ.

4.2 Perfectoid rings

Now we are equipped to defined perfectoid rings.
Definition 4.5. A ring S is perfectoid if

- S is π-adically complete for some $\pi \in S$ such that $\pi^{p} \mid p$;
- $\varphi: S / p S \rightarrow S / p S$ is surjective (equivalently θ is surjective);
- $\operatorname{ker}(\theta)$ is a principal ideal.

The idea is that perfectoid rings are precisely the rings so that $\theta: \mathbb{A}_{\text {inf }}(S) \rightarrow S$ is a 1parameter pro-infinitessimal deformation. We can think of it as deforming S in the ξ direction.

Remark 4.6. (Perfectoid rings in characteristic p) Suppose S is a characteristic p ring. Then S is perfectoid if and only if it is perfect. Indeed if S is perfect then it's 0 -adically complete and the Frobenius is an isomorphism so $S^{b} \cong S$. Thus $\theta: \mathbb{A}_{\text {inf }}(S)=W(S) \rightarrow S$ corresponds to Witt vector restriction and has kernel generated by p.

On the other hand, if S is perfectoid then $p \in \operatorname{ker}(\theta)$ since p is zero in S but $p=V(1)$ so it's distinguished by Lemma $4.4(\mathrm{i})(\mathrm{d})$. Thus p generates $\operatorname{ker}(\theta)$ and so

$$
S^{b}=W\left(S^{b}\right) / p \cong S
$$

is perfect.
Lemma 4.7. Suppose S is perfectoid and ξ a generator of $\operatorname{ker} \theta$. Then the non-zero divisor

$$
\xi_{r}:=\xi \varphi^{-1}(\xi) \ldots \varphi^{-(r-1)}(\xi)
$$

is a generator for $\operatorname{ker}\left(\theta_{r}\right)$. Similarly, the non-zero divisor

$$
\tilde{\xi}_{r}=\varphi^{r}(\xi) \varphi^{r-1}(\xi) \ldots \varphi(\xi)
$$

is a generator for $\operatorname{ker}\left(\tilde{\theta}_{r}\right)$.
Proof. The two statements are equivalent by applying φ^{r} so we prove the first. By 4.4(i)(d), we may suppose that $\theta_{r+1}(\xi)=V(1)$ after multiplying by a unit.

Suppose ξ_{r} is a non-zero divisor generating $\operatorname{ker}\left(\theta_{r}\right)$. Consider the commutative diagram

The top row is exact since ξ is a non-zero divisor and the bottom row is exact by surjectivity of θ_{r}. Commutativity is by Lemma 3.9. A diagram chase implies that since ξ_{r} generates $\operatorname{ker}\left(\theta_{r}\right)$, then $\xi \varphi^{-1}\left(\xi_{r}\right)=\xi_{r+1}$ generates $\operatorname{ker}\left(\theta_{r+1}\right)$. Indeed if $\theta_{r+1}(x)=0$ then $\theta(x)=0$ so $x=\xi \varphi^{-1}(y)$ but $y \in \operatorname{ker}\left(\theta_{r}\right)$ by commutativity of the first square.

4.3 Perfectoid rings with enough roots of unity

The kernel of θ_{r} has particularly nice generators in the case where S is a perfectoid ring with many roots of unity. More specifically, suppose S is perfectoid and contains a compatible system $1, \zeta_{p}, \zeta_{p^{2}}, \ldots$ of primitive p-power roots of unity ${ }^{2}$ This includes as the most impotant example the ring of integers \mathcal{O}_{C} of a perfectoid field C. We will study this example more closely in the next section.

Definition 4.8. Let S and $\zeta_{p^{r}}$ be as above. Define elements

$$
\epsilon:=\left(1, \zeta_{p}, \zeta_{p^{2}}, \ldots\right) \in S^{b}, \quad \mu:=[\epsilon]-1 \in W\left(S^{b}\right)=\mathbb{A}_{\mathrm{inf}}(S)
$$

and

$$
\xi:=1+\left[\epsilon^{1 / p}\right]+\left[\epsilon^{2 / p}\right]+\ldots+\left[\epsilon^{(p-1) / p}\right]=\frac{\mu}{\varphi^{-1}(\mu)} \in W\left(S^{b}\right)=\mathbb{A}_{\text {inf }}(S) .
$$

Lemma 4.9. ξ is a generator of $\operatorname{ker}(\theta)$ satisfying $\theta_{r}(\xi)=V(1)$ for all $r>1$.
Proof. Note that

$$
\theta(\xi)=1+\zeta_{p}+\zeta_{p}^{2}+\ldots+\zeta_{p}^{p-1}=0
$$

by Lemma 3.6 and the definition of ζ_{p}. By functoriality of Witt vectors and the map θ, it suffices to prove the statement for $\mathbb{Z}_{p}^{\text {cycl }}:=\left(\mathbb{Z}_{p}\left[\zeta_{p^{\infty}}\right]\right)_{p}^{\wedge}{ }^{3}$ as the choice of $\zeta_{p^{r}} \in S$ determines a unique map $\mathbb{Z}_{p}^{c y c l} \rightarrow S$.

In particular, we may assume that S is p-torsion free. In this case the ghost map w : $W_{r}(A) \rightarrow A^{r}$ is injective and so it suffices to compute

$$
w\left(\theta_{r}(\xi)\right)=w(V(1)) .
$$

[^1]By Lemma 3.11 We can compute for any $x \in A^{b}$, we have

$$
w\left(\theta_{r}(\xi)\right)=\left(\theta \xi, \theta \varphi \xi, \theta \varphi^{2} \xi, \ldots\right)
$$

Since $\theta(\xi)=0$ and $w(V(1))=w(0,1,0, \ldots)=(0, p, p, \ldots)$, it suffices to show that

$$
\theta \varphi^{i}(\xi)=p
$$

for all $i \geq 1$. In this case

$$
\begin{aligned}
\theta \varphi^{i}(\xi) & =\theta\left(1+\left[\epsilon^{p^{i-1}}\right]+\left[\epsilon^{p^{i-1}}\right]^{2}+\ldots+\left[\epsilon^{p^{i-1}}\right]^{p-1}\right) \\
& =1+\left(\zeta_{p}^{p^{i-1}}\right)+\left(\zeta_{p}^{p^{i-1}}\right)^{2}+\ldots+\left(\zeta_{p}^{p^{i-1}}\right)^{p-1} \\
& =p
\end{aligned}
$$

We obtain the following by Lemma 4.7 and a computation.
Corollary 4.10. The kernel of θ_{r} is generated by

$$
\xi_{r}=\xi \varphi^{-1}(\xi) \ldots \varphi^{-(r-1)}(\xi)=\sum_{i=1}^{p^{r}-1}\left[\epsilon^{1 / p^{r}}\right]^{i}
$$

and the kernel of $\tilde{\theta}_{r}$ is generated by

$$
\tilde{\xi}_{r}=\varphi^{r}\left(\xi_{r}\right)=\sum_{i=0}^{p^{r}-1}[\epsilon]^{i} .
$$

Proposition 4.11. Let S be a perfectoid ring which is flat over \mathbb{Z}_{p} and contains a compatible sequence of primitive $p^{\text {th }}$ roots of unity. Let $\epsilon, \xi_{r}, \tilde{\xi}_{r}$ and μ as above. Then for any r,
(i) μ is a non-zero divisor;
(ii) $\tilde{\theta}_{r}(\mu)=\left[\zeta_{p^{r}}\right]-1 \in W_{r}(S)$ is a non-zero divisor;
(iii) $\mu=\xi_{r} \varphi^{-r}(\mu)$ and $\varphi^{r}(\mu)=\tilde{\xi}_{r} \mu$;
(iv) μ divides $\tilde{\xi}_{r}-p^{r}$.

Proof. $\tilde{\theta}_{r}(\mu)=\left[\zeta_{p^{r}}\right]-1$ by Lemma 3.6. Since S is flat over \mathbb{Z}_{p}, it is torsion free so $w: W_{r}(S) \rightarrow$ S^{r} is injective. Thus it suffices to check that that

$$
w\left(\tilde{\theta}_{r}(\mu)\right)=\left(\zeta_{p^{r}}-1, \zeta_{p^{r-1}}-1, \ldots, \zeta_{p}-1\right)
$$

is not zero divisor (where we computed the expression using Lemma 3.11 and $\theta_{r}=\tilde{\theta}_{r} \circ \varphi^{r}$. Now $\zeta_{p^{r}}-1$ divides p and p is not a zero divisor since S is flat over \mathbb{Z}_{p} so $\zeta_{p^{r}}-1$ is not a zero divisor.
(ii) follows from (i) since $\tilde{\theta}_{r}(\mu)$ is a non-zero divisor in each $W_{r}(S)$ and $\mathbb{A}_{\text {inf }}(S)=\varliminf_{\leftarrow}{ }_{F} W_{r}(S)$.
(iii) is computed by noting that $\xi \varphi^{-1}(\mu)=\mu$.
(iv) follows because $[\epsilon]=1 \bmod \mu$ so

$$
\tilde{\xi}_{r}=\sum_{i=0}^{p^{r}-1}[\epsilon]^{i}=p^{r} \quad \bmod \mu
$$

5 The case of a perfectoid field

The most important case of the above constructions is when $C=\mathbb{C}_{p}$ is a complete nonarchimedean algebraically closed field of mixed characteristic and $S=\mathcal{O}:=\mathcal{O}_{C}$ is the ring of integers. In this case we denote $A_{\mathrm{inf}}:=\mathbb{A}_{\mathrm{inf}}(\mathcal{O})$. More generally everything holds when C is any perfectoid field of mixed characteristic.

As \mathcal{O} is a flat \mathbb{Z}_{p} algebra with enough roots of unity, the discussion in Section 4.3 holds and we let ϵ, ξ, μ, etc be as in loc. cit.
$A_{\text {inf }}$ is well known in p-adic hodge theory and its relation to Fontaine's other period rings is crucial to comparison theorems. We recall these other rings here.
Definition 5.1. (a) Let $A_{\text {crys }}$ be the p-adic completion of the $A_{\epsilon_{\text {inf }}}$-subalgebra of $A_{\text {inf }}\left[\frac{1}{p}\right]$ generated by all elements of the form $\frac{\xi^{m}}{m!}$.
(b) Let $B_{\text {crys }}^{+}=A_{\text {crys }}\left[\frac{1}{p}\right]$ and $B_{\text {crys }}=A_{\text {crys }}\left[\frac{1}{\mu}\right]=B_{\text {crys }}^{+}\left[\frac{1}{\mu}\right]$.
(c) Let $B_{d R}^{+}$be the ξ-adic completition of $B_{\text {crys }}^{+}$and $B_{d R}=B_{d R}^{+}\left[\frac{1}{\xi}\right]$ be its fraction field.

Remark 5.2. (a) The ring $A_{\text {crys }}$ is the universal p-adically complete divided power thickening of \mathcal{O} over \mathbb{Z}_{p}.
(b) The last equality in (b) uses the computation $\mu^{p-1}=\xi^{p} \bmod p$ so that $\mu^{p-1} \in p A_{\text {crys }}$.
(c) $B_{d R}^{+}$is a DVR with residue field C.

The ring A_{inf} satisfies the following properties that we won't prove here:
Lemma 5.3. The kernel of the map

$$
\theta_{\infty}: A_{\mathrm{inf}} \rightarrow W(\mathcal{O})
$$

is generated by μ. That is,

$$
\bigcap_{r} \frac{\mu}{\varphi^{-r}(\mu)} A_{\mathrm{inf}}=\mu A_{\mathrm{inf}}
$$

In particular, the ideal (μ) is independent of the choice of roots of unity.
If C is a spherically complete field, then the cokernel of θ_{∞} is zero. More generally, the cokernel is $W\left(\mathfrak{m}^{b}\right)$-torsion where \mathfrak{m}^{b} is the maximal ideal of \mathcal{O}^{b}.
Remark 5.4. Recall that a non-archimedean field is spherically complete if any decreasing sequence of discs has nonempty intersection.

Another useful property is coherence. Recall that a ring is coherent if every finitely generated ideal is finitely presented.
Proposition 5.5. For each $r \geq 1$, the ring $W_{r}(\mathcal{O})$ is coherent.
Remark 5.6. It's not known whether $A_{\text {inf }}$ is coherent.
Finally it is instructive to think of $A_{\text {inf }}$ analagously to a two dimensional regular local ring ${ }^{4}$ Indeed the pair (p, ξ) where ξ is any generator of $\operatorname{ker}(\theta)$ is a regular sequence, $A_{\text {inf }}$ is (p, ξ)-adically complete, and the radical of (p, ξ) is the maximal ideal of A_{inf}.

[^2]
References

[BMS16] B. Bhatt, M. Morrow, and P. Scholze. Integral p-adic Hodge theory. ArXiv e-prints, February 2016.
[DK14] Christopher Davis and Kiran S. Kedlaya. On the Witt vector Frobenius. Proc. Amer. Math. Soc., 142(7):2211-2226, 2014.
[Mor16] M. Morrow. Notes on the A_inf-cohomology of Integral p-adic Hodge theory. ArXiv e-prints, August 2016.
[Rab14] J. Rabinoff. The Theory of Witt Vectors. ArXiv e-prints, September 2014.

[^0]: ${ }^{1}$ Note this is stronger than the conditions we had on A above.

[^1]: ${ }^{2}$ If S is not an integral domain, a primitive root of unity is defined to be a root of the corresponding cyclotomic polynomial.
 ${ }^{3}$ This denotes the p-adic completion

[^2]: ${ }^{4}$ Note that A_{inf} is not two dimensional. In fact it is known that the Krull dimension is at least 3 though we don't know it exactly.

