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ABSTRACT. In this note we show that the generating series for the topological Euler character-
istic of the Hilbert schemes of points on a curve singularity is constructible in families.

1. INTRODUCTION

The goal of this note is to present ideas related to the following expectation:

Expectation 1. Let (C, p) be the germ of a reduced curve singularity over C. The Euler char-
acteristic Hilbert zeta function

Ztop
C,p(t) :=

∑
d≥0

χtop(Hilbd(C, p))td

depends only on the topology of C and combinatorics of an embedded resolution.

Here Hilbd(C, p) is the reduced Hilbert scheme of d points supported on p ∈ C which can
be identified with the parameter space of ideals of codimension d in ÔC,p.

Hilbd(C, p) = {I ⊂ ÔC,p : dimC ÔC,p/I = d}
Furthermore χtop denotes the compactly supported topological Euler characteristic.

By a family of reduced curve singularities (C → B, σ) we mean a flat family of reduced
curves C→ B as well as a section σ : B → C such that Cb \ σ(b) is nonsingular for all b ∈ B.
The main result of this note is the following evidence for Expectation 1.

Theorem 1. Let (C→ B, σ) be a flat family of reduced curve singularities. Then

b 7→ Ztop
Cb,σ(b)

(t)

is a constructible function B → ZJtK.

Theorem 1 implies that the Hilbert zeta function Ztop
C,p(t) is a discrete invariant of the sin-

gularity (C, p). The main question then is exactly what type of discrete information about the
singularity does the Hilbert zeta function encode?

For planar curves Maulik [Mau16], verifying a conjecture of Oblomkov-Shende [OS12],
proved Ztop

C,p(t) is a topological invariant. An answer to the above question for planar curves
has recently emerged due to a large body of work connecting Ztop

C,p(t) to compactified Jacobians,
knot invariants, string theory, enumerative geometry of Calabi-Yau threefolds, affine Springer
theory, the Hitchin fibration, representation theory of Cherednik algebras, etc (e.g. [Kas15,
OS12, Mau16, MS13, MSV15, MY14, DSV13, DHS12, GORS14, OY16, GN15, Ng06]). We
hope that Theorem 1 as well as the rationality result of [BRV17] are the first steps in extending
parts of this picture to non-planar curves.

Date: January 6, 2018.
1



2 BEJLERI

1.1. Proof of Theorem 1. In [BRV17], Ranganathan, Vakil and the author showed that Ztop
C,p(t)

is a rational function of the form P (t)/(1 − t)s where s is the number of branches [BRV17,
Theorem 2.3]1. More precisely, there is an expansion of the following form.

Ztop
C,p(t) =

c1−1∑
a1=0

. . .

cs−1∑
as=0

∑
d≥0

χtop(Hilbd,a1,...,as(C, p))td

+

c1−1∑
a1=0

. . .

cs−1−1∑
as−1=0

1

1− t
∑
d≥0

χtop(Hilbd,a1,...,cs(C, p))td

+

c1−1∑
a1=0

. . .

cs−2−1∑
as−2=0

1

(1− t)2
∑
d≥0

χtop(Hilbd,a1,...,cs−1,cs(C, p))td

...

+
1

(1− t)s
∑
d≥0

χtop(Hilbd,c1,...,cs(C, p))td

Here Hilbd,a1,...,as(C, p) ⊂ Hilbd(C, p) are certain subvarieties indexed by ai ∈ N and ci are
the conductors of each branch (see Section 3).

Furthermore, there are uniform bounds

−δ ≤ d−
s∑
i=1

ai ≤ c− δ.

where δ and c =
∑
ci are the δ-invariant and total conductor (Section 3). In particular, d ≤

2c−δ in any of the terms Hilbd,a1,...,as(C, p) appearing in the expansion above. Multiplying the
expression by (1 − t)s we see that the degree of P (t) is bounded above by 2c − δ + s. From
the expression Ztop

C,p(t) = P (t)/(1 − t)s, we can then determine P (t) from the first 2c − δ + s

coefficients of Ztop
C,p(t).

e Now let (f : C → B, σ) be a family of reduced curve singularity over a base B of finite
type. We may suppose without loss of generality that B is normal. Then by Corollary 3.5 and
Proposition 3.6 there is a finite stratification of the base over which δ, s and c are constant so
we may suppose f is a (δ, s, c)-constant family. By Proposition 2.4 there exists a projective
morphism πd : Hilbd(C/B) → B whose fiber over b ∈ B is Hilbd(Cb, σ(b)). For each d
there exists a finite stratification of B so that over each stratum, the fibers of πd have the same
topological Euler characteristic. We may take the refinement of all these stratifications for
1 ≤ d ≤ 2c − δ + s. This produces a stratification such that χtop(Hilbd(Cb, σ(b)) is constant
on strata for all 1 ≤ d ≤ 2c − δ + s. As these coefficients suffice to determine the full zeta
function Ztop

Cb,σ(b)
(t), we are done.

Remark 1.1. Note in fact that the proof of Theorem 1 applies verbatim with χtop replaced by
any invariant χ satisfying the following two properties: (1) χ factors through the Grothendieck
ring of varieties, (2) χ is constructible in families of varieties. In a future version of this paper
we will generalize the result to many other invariants.

1In fact we show the same is true in the Grothendieck ring of varieties K0(Var)
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2. HILBERT SCHEMES OF POINTS ON CURVES

In this section we will define the Hilbert zeta function ZC,p(t) and construct relative Hilbert
schemes for families of germs of reduced curve singularities (f : C → B, σ). We will always
assume that B is noetherian and that there is an embedding of germs

(C, σ) ⊂ (CN ×B, 0×B)

so that (f : C→ B, σ) is the germ of a family of reduced affine curves.

2.1. Hilbert zeta functions. For X a quasiprojective variety, the Hilbert scheme Hilbd(X)
is the moduli space for flat families of length d subschemes of X . Using the identification
between length d subschemes Z ⊂ X and ideal sheaves J with length(OX/J) = d, we will
represent the closed points of Hilbd(X) by the corresponding ideals.

There is a well defined Hilbert-Chow morphism (see, for example, [FGI+05, Chapter 7])

h : Hilbd(X)→ Symd(X)

sending a subscheme to its support:

[J ] 7→
∑

p∈Supp(OX/J)

length(OX,p/Jp)[p].

When X is a smooth curve, h is an isomorphism.
Let Y ⊂ X be a closed k-subvariety. Then Symd(Y ) ⊂ Symd(X) is a closed subvariety and

we define Hilbd(X, Y ) the Hilbert scheme with support in Y as the scheme theoretic preimage
h−1(Symd(Y )) by the Hilbert-Chow morphism h : Hilbd(X) → Symd(X). Set theoretically,
Hilbd(X, Y ) ⊂ Hilbd(X) consists of length d subschemes Z ⊂ X with support supp(OZ)
contained in Y .

We define the motivic Hilbert zeta function with support in Y as:

ZY⊂X(t) :=
∑
d≥0

[Hilbd(X, Y )]td ∈ 1 + tK0(Var)JtK

Furthermore, for any ring homomorphism µ : K0(Var) → A we define the µ-Hilbert zeta
function with support in Y by

ZY⊂X(t, µ) :=
∑
d≥0

µ(Hilbd(X, Y ))td ∈ 1 + tAJtK.

The Hilbert zeta function respects the following scissor relation for Y ⊂ X closed with open
complement U [BRV17, Lemma 2.5].

ZX(t) = ZU(t) · ZY⊂X(t)

Our main object of study is ZC,p(t) for p ∈ C a singular point on a reduced curve and its
specialization Ztop

C,p = ZC,p(t, χtop). Note that Hilbd(C, p) depends only on the completed local
ring ÔC,p. In fact there is a natural identification of the punctual Hilbert scheme

Hilbd(C, p) = {I | I ⊂ ÔC,p, dimC(ÔC,p/I) = d}

as a parameter space for colength d ideals in R.
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2.2. Relative Hilbert schemes of points. Let (f : C → B, σ) be a family of reduced curve
singularities and m ⊂ OC the ideal of the section S := σ(B) ⊂ C. The proof of the following
closely follows [Ber12, Lemma 2.22]

Lemma 2.1. Let Z ⊂ C be a subscheme flat and proper over B of degree d. Then md ⊂ I(Z).

Proof. We may suppose without loss of generality B is affine. Since our family embeds into
(Cn×B, 0×B) as the germ of some subvariety, m is finitely generated. Consider m̄ := m/I ⊂
OC/I = OZ where I = I(Z) is the ideal sheaf of Z. Note that I ⊂ m and

√
I =

√
m as Z

is proper over B so it is necessarily supported on the section. Therefore every element of m̄ is
nilpotent and m̄ is finitely generated so m̄n = 0 for large n.

On the other hand, m̄ is the ideal of σ(B) inside Z so it is contained in every maximal ideal
of OZ . Therefore by Nakayama’s lemma [AM69, Proposition 2.6] m̄k = m̄k+1 implies that
m̄ = 0. In particular, m̄n = 0 if and only if n ≥ n0 = min{k : m̄k = m̄k+1}. It follows that
m̄j/m̄j−1 6= 0 for any j < n0 and so for any k ≤ n0

OZ/m̄
k

has rank at least k above some point b ∈ B. Since Z is finite of degree d we must have k ≤ d.
Therefore n0 ≤ d and m̄d = 0.

�

Let Sd = SpecB(OC/m
d) be the dth formal neighborhood of the section in C.

Lemma 2.2. Sd is finite over B.

Proof. Sd → B is quasi-finite and the induced morphism (Sd)red → Bred is an isomorphism
by existence of a section so Sd → B is proper. �

In particular, Sd → B is projective with relatively ample line bundle OSd
. By Lemma 2.1,

every flat and proper subscheme Z ⊂ C of degree d over B is a subscheme of Sn for n ≥ d.

Definition 2.3. We define the relative Hilbert scheme Hilbd(C/B, σ) of length d subschemes
supported on a family of curve singularities to be the Hilbert scheme Hilbd(Sd/B).

Proposition 2.4. Hilbd(C/B, σ) is a projective B-scheme and for each b ∈ B, we have an
identification

Hilbd(C/B, σ)×B k(b) = Hilbd(Cb, σ(b)).

Proof. Since Sd → B is a projective morphism and B is Noetherian, then Hilbd(Sd/B) ex-
ists and is projective over B by a theorem of Grothendieck (e.g. [FGI+05, Theorem 5.14]).
Furthermore, the formation of Hilbd(Sd/B) is compatible with basechange [FGI+05, (5), page
114] so that

Hilbd(Sd/B)×B k(b) = Hilbd(Spec(OCb
/md

b)).

By Lemma 2.1, every subscheme of Cb of length d supported on σ(b) is a subscheme of
Spec(OCb

/md
b) and so we may identify the right hand side with Hilbd(Cb, σ(b)). �

Remark 2.5. Note that Hilbd(C/B, σ) does not represent the functor for flat families of flat
and proper subschemes of C of degree d over B. However, this is ok for our applications as the
invariants we are interested in are insensitive to the scheme structure.
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3. SINGULAR CURVES AND THEIR DEFORMATIONS

In this section we will recall some facts about reduced curve singularities and their equi-
singular deformations including semicontinuity of δ and s. Furthermore, we show that the
conductor c is also constructible, insuring the existince of a (δ, s, c)-constant stratification for
any family of reduced curve singularities.

Let (C, p) ⊂ (CN , 0) be the germ of a reduced curve singularity with s branches Ci and let
OC = ÔC,p denote the corresponding completed local ring. Let n : C̃ → C be the normaliza-
tion. By picking uniformizers for each branch, we identify OC̃ with the ring

∏s
i=1CJxiK. The

normalization induces a finite extension

OC ↪→ OC̃
∼=

s∏
i=1

CJxiK

of rings which factors through the inclusions OCi
⊂ CJxiK corresponding to the ith branch

ni : C̃i → Ci ⊂ C of the normalization.

(1) Let

δ := dimC(n∗OC̃/OC)

be the δ-invariant of C. Similarly, we denote by δi the δ-invariant dimC CJxiK/OCi
of the

ith branch.
(2) Let

c := AnnOC
(n∗OC̃/OC)

be the conductor ideal. This an ideal of both OC̃ and OC . In particular c is generated by
monomials, say xcii , as an ideal of

∏s
i=1 kJxiK. It’s clear from the definition that ci is the

smallest positive integer such that for all n ≥ ci, xni ∈ OC . We will refer to ci as the
conductor of the ith branch, denote by

c := dimC(OC̃/c) =
s∑
i=1

ci

the conductor of C, and by c = (c1, . . . , cs) the conductor branch-length vector. More
generally, for any finite homomorphism of rings ϕ : R → S the conductor of ϕ is defined
as

c(ϕ) := Annϕ(R)(S/ϕ(R)).

Then it is clear that

ci = dimC(OC̃i
/c(ni)).

(3) The Milnor number µ(C) is defined as dimC(ωC/dOC) where d : OC → ωC is the dif-
ferential composed with the canonical map Ω1

C → n∗Ω
1
C̃
∼= n∗ωC̃ → ωC to the dualizing

sheaf of C. The Milnor number satisfies

µ(C) = 2δ(C)− s+ 1

(see [BG80]).

Denote by vi : OC̃ → N the composition of the projection onto kJxiK with the valuation on
kJxiK. This gives the order of vanishing of a function along the ith branch of the normalization.
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3.1. Equisingular families. Let (f : C → B, σ) be a flat family of germs of reduced curve
singularities. Recall we will always assume thatB is Noetherian and that there is an embedding
of germs

(C, σ) ⊂ (CN ×B, 0×B)

so that (f : C→ B, σ) is the germ of a family of reduced affine curves.

Definition 3.1. A morphism ν : C′ → C is a simultaneous normalization of f if for any b ∈ B,
νb : C′b → Cb is the normalization. We say that f is equinormalizable if the normalization
C̃→ C of the total space is a simultaneous normalization of f .

Theorem 3.2 (Tessier [Tei77], Reynaud, Chiang-Hsieh–Lipman [CHL06]). Let (f : C →
B, σ) be a flat family of reduced curve singularities over a normal base B. Then f is equinor-
malizable if and only if δ(Cb, σ(b)) is constant for b ∈ B.

Definition 3.3. Suppose B is connected, smooth and 1-dimensional with a basepoint 0 ∈ B.
We say that the family (f : C→ B, σ) is equisingular2 if there is a homeomorphism

(C, σ(B)) ∼=top (B × C0, B × σ(0))

compatible with the maps to B.

Theorem 3.4 (Buchweitz–Greuel [BG80, Theorems 5.2.2 and 6.1.7]). Let (f : C → B, σ) be
a flat family of reduced curve singularities.
(a) The function µ(Cb, σ(b)) for b ∈ B is upper semicontinuous.
(b) Suppose B is a smooth, connected and 1-dimensional base. Then the following are equiv-

alent:
(i) (f : C→ B, σ) is equisingular;

(ii) the Milnor number µ(Cb, σ(b)) is constant for b ∈ B;
(iii) δ(Cb, σ(b)) and the number of branches s(Cb, σ(b)) are constant.

Corollary 3.5. There exists a stratification B =
⊔
Bi such that the pullback fi : Ci → Bi is

a µ-constant family for each i. Furthermore, fi is (δ, s)-constant and if Bi is normal then fi is
equinormalizable.

We call such families (δ, s)-constant or equisingular families. If (f : C → B, σ) is an
equisingular family, then the normalization f̃ : C̃→ B is a family of s germs of smooth curves
with degree s multisection. That is, C̃b ∼=

⊔s
i=1 Â1 where Â1 = Spec(CJxK).

Proposition 3.6. Let (f : C→ B, σ) be a (δ, s)-constant family of reduced curve singularities.
Then the conductor c is constructible on B.

Proof. Since the function b → c(Cb, σ(b)) depends only on the closed points of B, we may
assume without loss of generality that B is normal. In this case f is equisingular and the
normalization n : C̃→ C is the simultaneous normalization. Consider the sequence

0→ OC → n∗OC̃ → Q→ 0.

As f is equinormalizable, we have exactness of

0→ OCb
→ n∗OC̃b

→ Qb → 0

so that length(Qb) = δ is constant for all b ∈ B. Thus Q is finite of constant rank over B so it
is flat.

2There are several notions of equisingular deformations in the literature that are not always equivalent.
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Lemma 3.7. Let (f : C → B, σ) be a family of reduced curve singularities and let Q be a
coherent sheaf on C that is flat and finite over B. Then b → colengthOCb

(AnnOCb
(Qb)) is

constructible.

Proof. Let d be the degree of Q over B and for any k ≤ d consider Hilbk(C/B, σ) with tauto-
logical subscheme Zk ⊂ Hilbk(C/B, σ)×BC. LetQH the pullback ofQ to Hilbk(C/B, σ)×BC
and QZ the pullback of Zk. Then QH is flat over Hilbk(C/B, σ) of constant degree d over and
QZ , as a quotient of QH , has degree at most d over Hilbk(C/B, σ).

LetHk
d ⊂ Hilbk(C/B, σ) be the closed subset whereQZ has degree exactly d, or equivalently

the locus over which QH → QZ is an isomorphism. The image of Hk
d via Hilbk(C/B, σ)→ B

is constructible inB and is by construction the locus over whichQ is supported on a subscheme
of length at most k. In particular, the image of Hd

d is all of B and the function

ϕ : b→ min{k : ∈ im(Hd
k )}

is constructible. On the other hand, since V (AnnOCb
(Qb)) = Supp(Qb) is the smallest sub-

scheme on which Qb is supported, then

ϕ(b) = colengthOCb
(AnnOCb

(Qb)).

�

To complete the proof, note that δ is constant so

c(Cb, σ(b)) = δ + colengthOCb
(AnnOCb

(Qb))

is constructible by the lemma.
�

Corollary 3.8. For any (δ, s)-constant family, we may further stratify so that c is constant and
Z → B is flat. We call such families (δ, s, c)-constant families.
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