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1. INTRODUCTION
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In [2], it is shown that the motivic Hilbert zeta function of a reduced curve singularity is a
rational function with denominator (1 − t)r where r is the number of branches. It is natural to
ask if this above rationality holds for non-reduced curves. For generically reduced curves one
expects the answer to be yes:

Conjecture 1. Let (C, 0) be the germ of a generically reduced curve singularity. Then ZHilb
0⊂C (t)

is a rational function with denominator (1− t)r where r is the number of branches.

For generically nonreduced curves, the picture seems more complicated. In this note, we
compute the example of a “uniformly thickened” planar curve.

Theorem 1.1 (Section 4). Let C be a smooth curve and let X be a uniformly n-fold thickening
with two dimensional tangent space so that Xred = C. Then

ZHilb
X (t) =

n∏
m=1

ZC(Lm−1tm)

where ZC(t) is the motivic zeta function of C.

Remark 1.2. We remark in particular that ZHilb
X (t) is in particular a rational function with

explicitly computable denominator.

The key computation in the proof of Theorem 1.1 is the local case of the germ of the non-
reduced branch yn = 0 in (A2, 0).

Proposition 1.3. Let Cn = Speck[x, y]/(yn). Then the Hilbert zeta function of Cn is given by

ZHilb
0⊂Cn

(t) :=
∑
d

[Hilbd(Cn, 0)]t
d =

n∏
m=1

(
1

1− Lm−1tm

)
.

Remark 1.4. Note that

lim
n→∞ZHilb

0⊂Cn
(t) =

∞∏
m=1

(
1

1− Lm−1tm

)
= ZHilb

(0⊂A2)(t)

as expected (see Proposition 2.1).
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2. HILBERT SCHEME OF POINTS ON THE PLANE

In this section, we give some background on Hilbd(A2) following [7, 4].
The action of (C∗)2 on k[x, y] by (t1, t2).(x, y) = (t1x, t2y) induces an action on Hilbd(A2).

The fixed points of the torus action are indexed by partitions λ ⊢ d.
We denote the monomial ideal by Iλ and define

Bλ := {xiyj | (i, j) ∈ λ}

and
Zλ := Speck[x, y]/Iλ.

The subset
Uλ := {[Z] ∈ Hilbn(A2) | Bλ spans OZ}

is a maximal torus invariant open affine neighborhood of [Zλ]. Coordinate functions on Uλ are
given by cr,si,j satisfying

xrys =
∑
λ

cr,si,j x
iyj mod I

for [I] ∈ Uλ.

FIGURE 1. The function cr,si,j depicted as an arrow from box (r, s) to box (i, j).

We represent these as arrows starting at box (r, s) and ending at box (i, j) ∈ λ. Note that if
(r, s) ∈ λ, then

cr,si,j ≡
{

1 (r, s) = (i, j)
0 else

Therefore, the nonconstant functions correspond to arrows that start at (r, s) ∈ N2 \ λ and end
in λ.

For each box (i, j) ∈ λ, there are two distinguished arrows di,j and ui,j pointing southeast
and northwest respectively as depicted:

FIGURE 2. The distinguished arrows di,j and ui,j associated to box (i, j) in blue.

The torus acts on OUλ
by

(t1, t2) · cr,si,j = tr−i
1 ts−j

2 cr,si,j

The cotangent space T∗
λ to the monomial subscheme [Zλ] in Uλ has basis given by the set

distinguished arrows di,j and ui,j as (i, j) runs through each box in λ.
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Let σ : C∗ → (C∗)2 be a 1-parameter subgroup σ(t) = (tp, tq) for q ≫ p > 0. This
induces a Bialynicki-Birula decomposition of Hilbd(P2) into affine cells. With these weights,
a cell is either contained in Hilbn(A2, 0) or is disjoint from it. Thus we get a Bialynicki-Birula
decomposition of Hilbd(A2, 0) into affine cells Dλ

∼= Ab(λ) indexed by partitions.
The cell Dλ ⊂ Uλ is the vanishing locus of all positive weight coordinate functions cr,si,j .

From the choice of weights, we see that cr,si,j is positive weight for σ if and only if s > j
(weakly south pointing arrows) or s = j and r > i (strictly west pointing arrows). In particular,
the cotangent space to [Zλ] in Dλ is spanned by the set of ui,j that are not horizontal. Therefore

b(λ) = dimDλ = #{(i, j) ∈ λ | ui,j is not horizontal }

Let |λ| denote the number of boxes, h(λ) the height (longest column) of the diagram and
l(λ) the length (longest row) of the diagram. Then a combinatorial argument shows that

b(λ) = |λ|− l(λ)

FIGURE 3. The arrow ui,j is not horizontal if and only if the box (i, j) is not
top most in its column. Such boxes are clearly in bijection with boxes not in the
first row.

Now we can compute ZHilb
(0⊂A2)

(t).

Proposition 2.1.

ZHilb
(0⊂A2)(t) =

∞∏
m=1

(
1

1− Lm−1tm

)
Proof. Since Hilbd(A2, 0) is stratified by affine spaces, it suffices to compute the Betti number
generating function. We see from above that

b2i(Hilb
d(A2, 0)) = #{λ ⊢ d | b(λ) = i}.

Let
P(q, t) :=

∑
λ

ql(λ)t|λ|.

Then the generating function for the Betti numbers (up to a factor of 2) is

P(1/q, qt) =
∑
λ

q|λ|−l(λ)t|λ|.

Since l(λ) is the number of parts (columns) of the partition, P(q, t) is just the generating
function for the number of parts of a partition. This is

P(q, t) =
∏
m⩾1

(
1

1− qtm

)
and we get the result by substituting q 7→ 1/L and t 7→ Lt. □
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3. PROOF OF PROPOSITION 1.3

Let Cn = Speck[x, y]/(yn). An ideal I defines a subscheme of Cn if and only if yn ∈ I. It
follows that Hilbd(Cn) is locally out of Hilbd(A2) by the vanishing of the functions c0,ni,j for
all (i, j) ∈ λ on the open set Uλ.

In particular, a monomial ideal Iλ defines a subscheme of Cn if and only if the height h(λ) is
bounded by n. That is, λ fits inside a horizontal height n strip. Equivalently, each part (column)
of the partition is at most size n.

Therefore,

Hilbd(Cn) ⊂

 ⋃
h(λ)⩽n

Uλ

 \

 ⋃
h(λ)>n

Uλ

 .

The affine cell Dλ is defined by the vanishing of positive weight arrows. If h(λ) ⩽ n, then
c0,ni,j has weight q(n− j)−pi > 0 since j < n. Therefore, c0,ni,j is identically zero on Dλ. That
is:

Lemma 3.1. If h(λ) ⩽ n, Dλ ⊂ Hilbd(Cn, 0) and otherwise Dλ ∩ Hilbd(Cn, 0) = ∅. That
is, Hilbd(Cn, 0) admits an affine stratification by the cells Dλ for h(λ) ⩽ n.

Proposition 3.2. The Hilbert zeta function of Cn is given by

ZHilb
0⊂Cn

(t) =

n∏
m=1

(
1

1− Lm−1tm

)
.

Proof. As before, it suffices to compute the Betti number generating function (up to a factor of
2) and dimDλ = |λ|− l(λ). Letting

P(q, t) =
∑

λ,h(λ)⩽n

ql(λ)t|λ|,

the generating function is given by P(1/q, qt). This is the generating function for partitions
with parts bounded by n and statistic given by number of parts. As above this is given by

P(q, t) =

n∏
m=1

(
1

1− qtm

)
and we obtain the Hilbert zeta function by q 7→ 1/L and t 7→ Lt.

□

Remark 3.3. For a general monomial curve C ⊂ A2, one can run the same argument as
to write the Hilbert zeta function as a sum over partitions of explicit powers of L. However,
these powers become more complicated to compute since Lemma 3.1 no longer holds. In this
case Dλ ∩ Hilbd(C, 0) is an explicit affine subspace of Dλ given by the vanishing of certain
coordinate functions cr,si,j depending on the monomials generating the ideal of C.

4. LOCALLY PLANAR UNIFORMLY THICKENED CURVES

A ribbon is a uniform double structure on a smooth curve [1]. More generally, we define a
uniformly n-fold thickened curve to be a non-reduced curve X with smooth Xred = C and such
that the completed local ring at every point of X is isomorphic to the germ of (Cn, 0).

Example 4.1. Let C ⊂ S be asmooth curve inside a smooth surface with ideal I. Then the
curve X with ideal In is a uniformly n-fold thickened curve.
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Theorem 4.2. Let X be a uniformly n-fold thickened curve with reduced subvariety C. Then

ZHilb
X (t) =

n∏
m=1

ZC(Lm−1tm).

In particular, it is a rational function.

Proof. There is a Hilbert-Chow morphism h : Hilbd(X) → Symd(C) sending a subscheme of
X to its support. We can stratify Symd(C) by partitions d =

∑
idi where the d points have

collided into di points of multiplicity i. Then over each stratum h is a Zariski locally trivial
fibration with fiber ∏

Hilbi(Cn, 0)
di .

From the explicit form of the power structure on the Grothendieck ring of varieties (see also
[6]), wee see that

ZHilb
X (t) = (ZHilb

0⊂Cn
)[C] =

n∏
m=1

(
1

1− Lm−1tm

)[C]

.

By [5, Statement 2],(
1

1− Lm−1tm

)[C]

=

(
1

1− t

)[C] ∣∣
t 7→Lm−1tm

= ZC(Lm−1tm),

thus completing the proof. □

One expects that sometimes the moduli space of sheaves on a ribbon, or more generally a
uniformly n-fold thickened curve X, should be related to the moduli space of rank n vector
bundles on the underlying smooth curve (see, for example, [3]).

Question 1. Is the expression above for ZHilb
X (t) related to motivic invariants of the moduli

space of rank n vector bundles on the smooth curve Xred?
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