Problem 1. Let $c(t)$ be an arbitrary parametrization of a Frenet curve in \mathbb{R}^{3}. Show that the curvature and torsion are computed by the following formulas.

$$
\kappa(t)=\frac{\|\dot{c} \times \ddot{c}\|}{\|\dot{c}\|^{3}} \quad \tau(t)=\frac{\operatorname{det}(\dot{c}, \ddot{c}, \dddot{c})}{\|\dot{c} \times \ddot{c}\|^{2}}
$$

You may need to use the chain rule to relate the \dot{c} to the derivative with respect to arc length.
Problem 2. Show that for any two points $p, q \in \mathbb{R}^{n}$, a regular curve with minimal distance from p to q is necessarily the straight line segment from p to q. You may need to use the Cauchy-Schwarz inequality

$$
\langle v, w\rangle \leq\|v\| \cdot\|w\| \text { with equality if and only if } v \text { and } w \text { are parallel }
$$

applied to the tangent vector and the difference $p-q$.
Problem 3. Let c be a regular parametrized plane curve. The evolute of c is the curve traced out by the centers of the osculating circles of c. Explicitly, we can write the evolute as a parametrized curve

$$
z=c+\frac{1}{\kappa} e_{2} .
$$

(1) Show that the evolute is a regular curve if and only if $\kappa^{\prime} \neq 0$.
(2) Show that for each t, the tangent vector to the evolute is perpendicular to the curve c.

Problem 4. The catenary is the plane curve which traces out the shape of a horizontal rope hanging under its own weight. It is given by the equation

$$
c(t)=(t, \cosh (t)) .
$$

(1) Show that the curvature of c is given by

$$
\kappa(t)=\frac{1}{\cosh ^{2}(t)} .
$$

(2) Show that the evolute of c is given by

$$
z(t)=(t-\sinh (t) \cosh (t), 2 \cosh (t)) .
$$

Is the evolute a regular curve?
Recall that the functions $\cosh (t)$ and $\sinh (t)$ are defined as

$$
\cosh (t)=\frac{e^{t}+e^{-t}}{2} \quad \sinh (t)=\frac{e^{t}-e^{-t}}{2}
$$

Problem 5. Suppose all the normal lines to a space curve c pass through a fixed point. Show that the curve is contained in a circle.

