Problem 1. Consider the ellipse parametrized by $c(t)=(a \cos t, b \sin t)$ with $a \neq b$. Find the vertices of the ellipse, i.e. the local extrema of the function $\kappa(t)$.

Problem 2. The cycloid is the curve traced out by a fixed point on a circle as the circle rolls along a straight line (figure above).
(1) Find a parametrization of the cycloid.
(2) Compute the curvature of the cycloid.

Problem 3. Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular curve parametrized by arc length. Show that for any point $s_{0} \in s$, the curvature of γ at s_{0} is equal to the curvature of the projection of $\pi \circ \gamma: I \rightarrow \mathbb{R}^{2}$ at s_{0} where π is the projection onto the osculating plane.

Problem 4. Consider a plane curve give in polar coordinates (r, θ) by the equation $r=r(\theta)$ and denote by $r^{\prime}=\frac{d r}{d \theta}$.
(1) Show that the arc length from θ_{1} to θ_{2} can be calculated as

$$
\int_{\theta_{1}}^{\theta_{2}} \sqrt{r^{\prime 2}+r^{2}} d \theta
$$

(2) Show that the curvature is given by

$$
\kappa(\theta)=\frac{2 r^{\prime 2}-r r^{\prime \prime}+r^{2}}{\left(r^{\prime 2}+r^{2}\right)^{3 / 2}} .
$$

(3) Calculate the curvature for the Archimedean spiral given by $r(\theta)=a \theta$.

Problem 5. Let $c: I \rightarrow \mathbb{R}^{3}$ be a Frenet curve with nonzero torsion τ and consider the unit normal vector $e_{2}(s)$, called the principal normal vector. We say that c is a Bertrand curve if there exists a scalar function r such that the curve

$$
\bar{c}(s):=c(s)+r(s) e_{2}(s)
$$

has the same principal normal vector as $c(s)$, namely $e_{2}(s)$. In this case, we say c and \bar{c} are a Bertrand pair. Suppose c and \bar{c} are a Bertrand pair.
(1) Show that $r(s)$ is constant. Conclude that the distance between c and \bar{c} is also constant.
(2) Show that the angle between the tangent vectors of c and \bar{c} is constant.
(3) Show that there exist constants a and b such that $a \kappa+b \tau \equiv 1$ where κ and τ are the curvature and torsion of c.
(4) Give an example of a Bertrand pair.

