Problem 1. Let $c: I \rightarrow \mathbb{R}^{n}$ be an arc-length parametrized Frenet curve. Show that

$$
\begin{gathered}
\operatorname{det}\left(c^{\prime}, c^{\prime \prime}, \ldots, c^{(n)}\right)=\prod_{i=1}^{n-1}\left(\kappa_{i}\right)^{n-i} . \\
C
\end{gathered}
$$

Problem 2. Consider a line segment L between points A and B and let $l>\operatorname{length}(L)$. Let C be a curve of length l passing through A and B such that $L \cup C$ is a simple closed curve (see the picture above). Show that the curve C such that $L \cup C$ bounds the largest possible area is an arc of a circle.

Problem 3. Recall Green's theorem: let C be a positively oriented simple closed curve bounding a region D in the plane and let L, M be two C^{1} functions, then

$$
\oint_{C} L d x+M d y=\iint_{D}\left(M_{x}-L_{y}\right) d x d y .
$$

Use this to show that

$$
A=\frac{1}{2} \int_{a}^{b}\left(x y^{\prime}-y x^{\prime}\right) d t
$$

where $\alpha:[a, b] \rightarrow \mathbb{R}^{2}, \alpha(t)=(x(t), y(t))$ is a parametrization of C and A is the area of D.
Problem 4. Let $f: U \rightarrow \mathbb{R}^{n}$ be a regular parametrized hypersurface. Show that the matrix $\left(g_{i j}\right)$ of the first fundamental form can be written as

$$
\left(g_{i j}\right)=(J f)^{T} J f
$$

where $J f$ is the Jacobian matrix of f.
Problem 5. A surface of revolution is obtained by rotating a regular curve in the $x-z$ plane around the z axis; it can be parametrized by

$$
f(t, \theta)=(r(t) \cos \theta, r(t) \sin \theta, h(t))
$$

where the curve in the $x-z$ plane is given by $(r(t), h(t))$. Compute the first fundamental form of f.

