Problem 1. Consider the parametrized surface element $f(u, v)=\left(a u \cos v, b u \sin v, u^{2}\right)$. Draw a picture of the image of f and compute its first fundamental form.

Problem 2. Consider the parametrized surface element

$$
f(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}}\right) .
$$

(1) Let S^{2} be the sphere $x^{2}+y^{2}+z^{2}=1$. Show that $f(u, v)$ is a regular parametrization of $S^{2} \backslash(0,0,1)$ which is bijective (and thus gives a chart exhibiting $S^{2} \backslash(0,0,1)$ as a regular surface).
(2) Compute the first fundamental form $\left(g_{i j}\right)$ of f.
(3) Use this to compute the surface area

$$
\iint_{S^{2}} d A
$$

Problem 3. Consider the Möbius strip

$$
f(u, v)=\left[\sin (u)\left(1+v \sin \left(\frac{u}{2}\right)\right), \cos (u)\left(1+v \sin \left(\frac{u}{2}\right)\right), v \cos \left(\frac{u}{2}\right)\right]
$$

where $(u, v) \in[0,2 \pi] \times(-1,1)$.
(1) Show that $f(0, v)=f(2 \pi,-v)$ and conclude that $\left.f\right|_{\mathbb{R} \times\{0\}}$ is a simple closed curve.
(2) Compute the normal vector field

$$
\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} .
$$

(3) Conclude that the Möbius strip is not orientable.

Problem 4. Show that the area of a compact region Q of graph $z=f(x, y)$ is given by

$$
\iint_{\pi(Q)} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

where π is the projection onto the (x, y) plane.
Problem 5. Let $g: S \rightarrow \mathbb{R}$ be a differential function. The gradiant ∇g is defined as the unique vector field satisfying

$$
\langle\nabla g(p), v\rangle=d g_{p}(v)
$$

for any p and $v \in T_{p} S$. Let $f: U \rightarrow S$ be a chart of $p \in S$.
(1) Show that

$$
\nabla g=\frac{g_{u} G-g_{v} F}{E G-F^{2}} f_{u}+\frac{g_{v} E-g_{u} F}{E G-F^{2}} f_{v}
$$

(2) Let $C=\{g(q)=$ constant $\}$ be a level curve. Suppose $\nabla g \neq 0$ for all $p \in C$. Show that C is a regular curve and that ∇g is normal to C.

