Problem 1. Let $c: I \rightarrow S \subset \mathbb{R}^{3}$ be a curve contained in a regular surface S.
(1) Show that the curvature κ of c satisfies

$$
\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2}
$$

where κ_{g} is the geodesic curvature and κ_{n} is the normal curvature.
(2) Suppose that S has positive Gaussian curvature, $K>0$. Show that κ satisfies

$$
\kappa \geq \min \left\{\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right\}
$$

where κ_{i} are the principal curvatures of S.
Problem 2. Fix a point $p \in S$ a regular surface. Let θ be a parametrization of the unit tangent directions at p, (e.g. if e_{1}, e_{2} is an orthonormal basis of $T_{p} S$ and we parametrize the unit tangents as $e_{1} \cos \theta+e_{2} \sin \theta$ for $\left.\theta \in[0,2 \pi]\right)$. Show that the mean curvature satisfies

$$
H(p)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa_{n}(\theta) d \theta
$$

where $\kappa_{n}(\theta)$ is the unit normal curvature in the direction of θ.
Problem 3. Consider the catenoid parametrized by

$$
f: \mathbb{R} \times[0,2 \pi) \rightarrow \mathbb{R}^{3} \quad f(u, v)=(\cosh u \cos v, \cosh u \sin v, u)
$$

Compute the following:
(1) the first fundamental form $\left(g_{i j}\right)$,
(2) the second fundamental form $\left(h_{i j}\right)$,
(3) the principal curvatures κ_{i},
(4) the Gaussian curvature K and mean curvature H.

Problem 4. Suppose that a regular surface $S \subset \mathbb{R}^{3}$ is tangent to a plane $H \subset \mathbb{R}^{3}$ along a regular curve C. That is, $H \cap S=C$ and $H=T_{p} S$ for all $p \in C$. Show that every point of S along C is parabolic or a level point.

Problem 5. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function and let $S=\{z=g(x, y)\} \subset \mathbb{R}^{3}$ be the graph of g.
(1) Compute the first and second fundamental forms $g_{i j}$ and $h_{i j}$.
(2) Let $D^{2} g$ denote the Hessian matrix of g, that is, the matrix of second partial derivatives of g, and let $D g$ denote the Jacobian matrix of g. Show that the Gaussian curvature of S is given by

$$
K=\frac{\operatorname{det} D^{2} g}{\left(1+\|D g\|^{2}\right)^{2}}
$$

(3) Compute the mean curvature H of S.
(4) Recall that for every regular surface S and $p \in S$, there exist coordinates such that S is the graph of a function g locally around p. Argue that these coordinates can be chosen so that $g(0,0)=0$ and that $D g(0,0)=(0,0)$. Conclude that in this case that at the point p, $\left(h_{i j}\right)=D^{2} g, K=\operatorname{det} D^{2} g$ and $H=\frac{1}{2} \operatorname{Tr} D^{2} g$.

