Problem 1. Consider the torus of revolution $T_{a,b}$ obtained by rotating the circle $\gamma(u) = (a + b \cos \frac{u}{b}, b \sin \frac{u}{b})$ about the z axis. It has parametrization

$$f(u,v) = \left(\left(a + b\cos\frac{u}{b}\right)\cos v, \left(a + b\cos\frac{u}{b}\right)\sin v, b\sin\frac{u}{b} \right)$$

where $0 < u < 2\pi b$ and $0 < v < 2\pi$ and a > b > 0. Note that γ is an arc-length parametrization.

- (1) Compute the first fundamental form of $T_{a,b}$.
- (2) Compute the Gauss curvature K and the mean curvature H of $T_{a,b}$.
- (3) Compute the integral

$$W(a,b) = \int_{T_{a,b}} H^2 dA$$

as a function of (a, b) and show that $W(a, b) \ge 2\pi^2$ with equality achieved when $a/b = \sqrt{2}$.

Problem 2. Consider the surface S described by the equation z = xy. Determine the lines of curvature and the asymptotic curves of S.