Problem 1. Consider the torus of revolution $T_{a, b}$ obtained by rotating the circle $\gamma(u)=(a+$ $b \cos \frac{u}{b}, b \sin \frac{u}{b}$) about the z axis. It has parametrization

$$
f(u, v)=\left(\left(a+b \cos \frac{u}{b}\right) \cos v,\left(a+b \cos \frac{u}{b}\right) \sin v, b \sin \frac{u}{b}\right)
$$

where $0<u<2 \pi b$ and $0<v<2 \pi$ and $a>b>0$. Note that γ is an arc-length parametrization.
(1) Compute the first fundamental form of $T_{a, b}$.
(2) Compute the Gauss curvature K and the mean curvature H of $T_{a, b}$.
(3) Compute the integral

$$
W(a, b)=\int_{T_{a, b}} H^{2} d A
$$

as a function of (a, b) and show that $W(a, b) \geq 2 \pi^{2}$ with equality achieved when $a / b=\sqrt{2}$.
Problem 2. Consider the surface S described by the equation $z=x y$. Determine the lines of curvature and the asymptotic curves of S.

