Problem 1. Let $S \subset \mathbb{R}^{n+1}$ be a regular hypersurface and let ∇ denote the covariant derivative. Suppose $X, X_{1}, X_{2}, Y, Y_{1}$ and Y_{2} are smooth tangent vector fields to S and f, f_{1} and f_{2} smooth (scalar) functions. Show the following properties for the covariant derivative:
(1) (linearity) $\nabla_{f_{1} X_{1}+f_{2} X_{2}} Y=f_{1} \nabla_{X_{1}} Y+f_{2} \nabla_{X_{2}} Y$;
(2) (additivity) $\nabla_{X}\left(Y_{1}+Y_{2}\right)=\nabla_{X} Y_{1}+\nabla_{X} Y_{2}$;
(3) (product rule) $\nabla_{X}(f Y)=\left(\nabla_{X} f\right) Y+f \nabla_{X} Y$
(4) (compatibility with the metric) $\nabla_{X}\left\langle Y_{1}, Y_{2}\right\rangle=\left\langle\nabla_{X} Y_{1}, Y_{2}\right\rangle+\left\langle Y_{1}, \nabla_{X} Y_{2}\right\rangle$

Problem 2. Consider the cone C and circular wedge S (pictured above on the left and right respectively). Here α is the constant cone angle which corresponds to the wedge having angle $2 \pi \sin \alpha$. Consider S as a surface in \mathbb{R}^{3} lying in the (x, y)-plane.
(1) Write down a parametrization for S in terms of ρ and θ.
(2) Write down a parametrization of an open subset of C in terms of ρ and θ.
(3) Compute the first fundamental form of S and C in these coordinates.
(4) Conclude that S and C are locally isometric away from the cone point.

Problem 3. Suppose $f: U \rightarrow S \subset \mathbb{R}^{3}$ is a chart such that the metric takes the form

$$
\left(g_{i j}\right)=\lambda(u, v)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

for a smooth function λ. Such a chart is called a conformal parametrization or isothermal coordinates. Show that in such coordinates, the Gauss curvature can be written as

$$
K=-\frac{1}{2 \lambda}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right) \log \lambda
$$

Problem 4. Show that no point of the sphere has a neighborhood isometric to a neighborhood of the plane.

Problem 5. Show that there does not exist a regular surface in \mathbb{R}^{3} with the following metric and second fundamental forms.

$$
g_{i j}(u, v)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad h_{i j}(u, v)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

