Problem 1. Fix a point $p \in S$ and let C be a curve through p. Show that the geodesic curvature $\kappa_{g}(p)$ of C at p is equal to the curvature $\kappa(p)$ at p of the normal projection of C onto the tangent plane $T_{p} S$.

Problem 2. Suppose S is a surface with metric g and suppose that we have isotherman coordinates $\left(u^{1}, u^{2}\right)$, where the metric takes the form

$$
\left(g_{i j}\right)=\lambda\left(u^{1}, u^{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

where $\lambda>0$ is a non-negative smooth function.
(1) Write down the geodesic equations in this chart.
(2) Consider the special case $S=\left\{u^{2}>0\right\} \subset \mathbb{R}^{2}$ and $\lambda=u^{2}$. Note here this metric may not necessarily arise from a parametrization of a surface in \mathbb{R}^{3} but we can still compute with it as an abstract metric. Compute the geodesic $\gamma(t)=\left(u^{1}(t), u^{2}(t)\right)$ with initial condition $\gamma(0)=(a, b)$ and $\dot{\gamma}(0)=\left(0, \frac{1}{\sqrt{b}}\right), b>0$.
The Poincaré upper half plane is $\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ equipped with the abstract metric

$$
g=\frac{1}{y^{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Problem 3. Show that the geodesic equations for the upper half plane can be written as

$$
\frac{d}{d s} \frac{x^{\prime}}{y^{2}}=0 \quad \frac{d^{2} y}{d s^{2}}=\frac{1}{y}\left(\left(x^{\prime}\right)^{2}-\left(y^{\prime}\right)^{2}\right)
$$

where $\gamma(s)=(x(s), y(s))$ is an arc-length parametrized curve.
Problem 4. Show that the geodesics on the upper half plane are vertical lines as well as semicircles centered at a point on the x-axis. Hint: what is the equation of a circle with center $(b, 0)$ and radius r ?

Problem 5. Calculate the Gaussian curvature K of the upper half plane.

