Problem 1. Consider the upper half plane $\mathbb{H}=\{(x, y) \mid y>0\}$ with metric

$$
g=\frac{1}{y^{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

as in problem Set 8. Recall the Riemannian curvature tensor $R$ is defined by the formula

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

for tangent vector fields $X, Y$ and $Z$.
(1) Compute the coefficients $R^{s}{ }_{j k l}$ of the curvature tensor defined by the basis expansion

$$
R\left(\frac{\partial f}{\partial u^{j}}, \frac{\partial f}{\partial u^{k}}\right) \frac{\partial f}{\partial u^{l}}=R_{j k l}^{s} \frac{\partial f}{\partial u^{s}} .
$$

(2) Compute the coefficients of curvature with lowered indices: $R_{i j k l}:=g_{i s} R_{j k l}^{s}$.
(3) Compute the Ricci curvature, defined as the tensor with coefficients $R_{j l}=g^{i k} R_{i j k l}$.
(4) Compute the scalar curvature, defined as the scalar function $S=g^{j l} R_{j l}$ where $R_{j l}$ is the Ricci curvature.

Problem 2. Let $f: U \rightarrow S \subset \mathbb{R}^{n+1}$ be a chart for a regular surface. Show that the Christoffel symbol of the second kind can be expressed as

$$
\Gamma_{i j}^{k}=g^{k l}\left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle .
$$

Recall that we computed the following formula for $\Gamma_{i j}^{k}$ in class:

$$
\Gamma_{i j}^{k}=\frac{g^{k l}}{2}\left(-g_{i j, l}+g_{j l, i}+g_{l i, j}\right) .
$$

Problem 3. Show that the Gauss equation can be written as

$$
R_{i j k l}=h_{i k} h_{j l}-h_{i l} h_{j k}
$$

where $R_{i j k l}$ is the lower index Riemannian curvature tensor. Conclude that the Theorem Egregium in dimension 2 is equivalent to the statement

$$
K=\frac{R_{1212}}{\operatorname{det} g}
$$

Problem 4. We will define the covariant derivative of the shape operator, $\nabla_{X} L$, via the formula

$$
\left(\nabla_{X} L\right) Y=\nabla_{X}(L Y)-L\left(\nabla_{X} Y\right) .
$$

Note this is designed so that there is a "product rule" $\nabla_{X}(L Y)=\left(\nabla_{X} L\right) Y+L\left(\nabla_{X} Y\right)$. Define the coefficients $\nabla_{i} h_{k}^{j}$ of $\nabla L$ via the formula

$$
\left(\nabla_{\frac{\partial f}{\partial u^{i}}} L\right) \frac{\partial f}{\partial u^{k}}=\nabla_{i} h_{k}^{j} \frac{\partial f}{\partial u^{j}} .
$$

Show that the Codazzi-Mainardi equation is equivalent to the equation

$$
\nabla_{i} h_{k}^{j}=\nabla_{k} h_{i}^{j} .
$$

