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1 Introduction

One of the characterizing features of algebraic geometry is that the set of all geometric
objects of a fixed type (e.g. smooth projective curves, subspaces of a fixed vector space,
or coherent sheaves on a fixed variety) often itself has the structure of an algebraic variety
(or more general notion of algebro-geometric space). Such a space M is the moduli space
classifying objects of the given type and in some sense the study of all objects of the given
type is reduced to the studying the geometry of the spaceM. This self-referential nature of
algebraic geometry is a crucial aspect of the field.

More precisely, suppose we are interested in studying some class of geometric objects C
with a suitable notion of a family of objects of C

π : X :=
⊔
{Xb ∈ C : b ∈ B} → B

parametrized by some base scheme B. To a first approximation, we may attempt to construct
a moduli space for the class C in two steps. First we find a family π : X → B such that for
each object X ∈ C, there exists a b ∈ B with Xb

∼= X. Next we look for an equivalence
relation on B such that b ∼ b′ if and only if Xb

∼= Xb′ and such that the quotient of B by
this equivalence relation inherits the structure of an algebraic variety. If this happens, we
may call M := B/ ∼ a moduli space and the family of objects M inherits from π the
universal family (we will discuss this more carefully soon). In particular, the points ofM are
in bijection with isomorphism classes of objects in C.

Moduli spaces give a good answer to the question of classifying algebraic varieties, or
more generally objects of some class C. In the best case scenario, we may have that

M =
⊔
Γ

MΓ

where d is some discrete invariant (not necessarily an integer) and each componentMΓ is of
finite type. Then classifying the objects of C reduces to (1) classifying the discrete invariants
Γ, and (2) computing the finite type spacesMΓ.

Example 1. The prototypical example which we will discuss at length later in the class is that of
smooth projective curves.1 Here there is one discrete invariant, the genus g, and the moduli space is
a union

M =
⊔

g∈Z≥0

Mg

1For us a curve is a finite type k-scheme with pure dimension 1 for k a field.
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of smooth 3g− 3-dimensional components. This example was originally studied by Riemann in his
1857 paper Theorie der Abel’schen Functionen where he introduced the word moduli to refer to
the 3g− 3 parameters that (locally) describe the spaceMg.

1.1 Facets of moduli theory

This class will focus on the following three facets of moduli theory.

Existence and construction

Hilbert schemes, algebraic stacks, GIT, Artin algebraization, coarse and good moduli
spaces

Compactifications

Semi-stable reduction, Deligne-Mumford-Knudsen-Hassett compactifications, wall-
crossing, KSBA stable pairs

Applications

Enumerative geometry and curve counting, computing invariants, constructing rep-
resentations, combinatorics, arithmetic statistics

Of course we won’t have time to cover everything written above (and there are count-
less more topics that fit under each heading) but I hope to give a feeling of the techniques
and tools employed in moduli theory as well as the far reaching applications.

1.2 A note on conventions

For most of the class we will be working with finite type (or essentially of finite type)
schemes over a field. I will make an effort to make clear when results require assumptions
on the field (algebraically closed, characteristic zero) or when we work over a more general
base. Not much will be lost if the reader wishes to assume everything is over the complex
numbers throughout.

2 Motivating examples

Before diving in, I want to give some motivating examples of works that crucially relied
on the tools and techniques of moduli theory. Many of the moduli theoretic ideas that come
up in these examples will be discussed through the course.

2.1 Counting rational curves on K3 surfaces

Recall that a K3 surface is a smooth projective surface X with trivial canonical sheaf

ωX := Λ2ΩX
∼= OX

and H1(X,OX) = 0. A polarized K3 surface is a pair (X, H) where X is a K3 surface and H is
an ample line bundle.
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It turns out that for each g, there is a moduli space

M2g−2

parametrizing polarized K3 surfaces with c1(H)2 = 2g − 2.2 The linear series |H|3 is g-
dimensional and the curves in |H| have genus g. In particular one expects finitely many
rational curves in |H|4.

Let n(g) denote the number of rational curves in |H| for a generic polarized complex
K3 surface (X, H) ∈ M2g−2. Note that the existence of a moduli space M2g−2 allows us
to define generic as “corresponding to a point that lies in some Zariski open and dense
subset of M2g−2.” Then we have the following formula, conjectured by Yau and Zaslow,
and proved by Beauville.

Theorem 1 (Beauville-Yau-Zaslow).

1 + ∑
g≥1

n(g)qg = ∏
n≥1

1
(1− qn)24

In particular, the numbers n(g) are constant for general (X, H).

The proof here uses, among other things, a careful study of the compactified Jacobians
of the (necessarily singular!) rational curves in |H| and Hilbert schemes of points on X, two
topics we will visit later in the class.

2.2 The n!-conjecture

A partition of n, denoted λ ` n, is a sequence of integers λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 with

∑ λi = n.

We can represent λ by a Young diagram of left aligned rows of boxes where the ith row has
λi boxes. Each box inherits a coordinate (a, b) ∈ N2 recording its position. In particular,
the diagram has n boxes. For example, the partition 2 + 1 = 3 corresponds to the following
diagram.

(0, 1)

(0, 1)(0, 1)

We can list the n boxes (a1, b1), . . . , (an, bn) of the diagram and then consider the matrix xa1
1 yb1

1 xa1
2 yb1

2 . . . xa1
n yb1

n
... . . . ...

xan
1 ybn

1 xan
2 ybn

2 . . . xan
n yan

n


where the xi and yi are 2n indeterminates. Finally, let ∆λ be the determinant of the above
matrix. Note that ∆λ is a homogeneous polynomial in both the xi variables and the yi vari-
ables. Furthermore, Sn acts by permuting the xi and the yi, and under this action, Sn acts on
∆λ by the sign representation. In particular, ∆λ is well defined up to a sign.

2Recall that c1(H)2 may be defined as the degree of OX(C)|C where C is the vanishing of a section of H.
3Recall the linear series of H is the space of divisors linearly equivalent to H, or equivalently, the projec-

tivization P(H0(X, H)).
4Recall C is a rational curve if its normalization has genus 0.
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Finally consider the vector space

Dλ := k[∂x, ∂y]∆λ

spanned by all partial derivatives of ∆λ. This space carries a natural action of Sn. The n! con-
jecture, proposed by Haiman and Garsia and later proved by Haiman, states the following.

Theorem 2 (Haiman). Dλ as an Sn representation is isomorphic to the regular representation. In
particular, dimk Dλ = n!.

In our example partition above, we have the matrix 1 1 1
x1 x2 x3
y1 y2 y3


with determinant

∆λ = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1.

The partial derivatives of ∆λ are itself, constants, and the following linear forms.

x3 − x2, y2 − y3
x1 − x3, y3 − y1
x2 − x1, y1 − y2

The two columns above each span a copy of the standard two dimensional representation,
∆λ spans the sign, and the constants span the trivial representation.

The theorem is proved by a careful study of the geometry of the Hilbert scheme of
points on A2 which we will study in depth later in the class. In fact, if we denote by Hn the
Hilbert scheme of n points in A2, then the n! Theorem is equivalent to a particular moduli
space Xn → Hn lying over Hn being Gorenstein!5

Remark 1. The motivation for the n! conjecture came from symmetric function theory, and in partic-
ular, Macdonald positivity which is a corollary. In fact Macdonald positivity also has an interesting
interpretation in terms of Hilbert schemes of points, and more precisely, the McKay correspondence
for Sn acting on A2n. We will revisit this later.

2.3 Alterations

Let X be a reduced locally Noetherian scheme over a field k. In many arguments it is
useful to be able to replace X with a regular scheme that is “very close” to X. More precisely,
a resolution of singularities of X is a morphism f : X′ → X such that

• X′ is regular,

• f is proper 6, and

• f is birational7.

5This Xn is called the isospectral Hilbert scheme.
6This rules out the trivial operation of taking X′ to be the regular locus of X
7This is one possible meaning of X′ being very close to X.
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Hironaka famously showed that when k has characteristic 0, resolutions of singularities
always exist. The characteristic p case remains open. However, we have a positive result if
we weaken the notion of being “very close” to X.

We say that f : X′ → X is an alteration if it is proper, surjective, and generically fi-
nite. Then de Jong proved the following theorem which serves as a suitable replacement of
Hironaka’s theorem for many applications.

Theorem 3 (de Jong). Let X be a variety over a field k. Then there exists an alteration f : X′ → X
with X′ regular.

The proof of de Jong’s theorem crucially uses the existence and properness of the Deligne-
Mumford compactification ofMg,n by pointed stable curves. The following diagram gives
a very basic sketch of the ideas involved.

X′′′
(5)
// X′′ //

(4)
��

X′ //

(2)
��

X

(0)
��

Y′′
(3)
// Y′

(1)
// Y

Here, after possibly replacing X by some blowup, we find a projection (0) of relative
dimension 1 with regular generic fiber. Then after taking an alteration (1) of Y, we can con-
struct an alteration X′ → X so that (2) has as fibers curves with at worst nodal singularities.
Producing this map (2) with such properties is precisely where the existence of the Deligne-
Mumford compactification is used! Then by induction on dimension, we have an alteration
(3) with Y′′ regular. Now the pullback (4) is a morphism with at worst nodal fibers over a
regular base. In this situation X′′ has nice singularities that can be explicitly resolved by (5)
to obtain a regular X′′′ with the composition X′′′ → X an alteration.
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