Lecture 10: Flattening stratifications, functoriality properties of Hilb and Quot

10/09/2019

1 Flattening stratifications (cont.)

Theorem 1. (*Flattening stratification*) Let $f : X \to S$ be a projective morphism over a Noetherian scheme S and let \mathcal{F} be a coherent sheaf on X. For every polynomial P there exists a locally closed subscheme $i_P : S_P \subset S$ such that a morphism $\varphi : T \to S$ factors through S_P if and only if $\varphi^* \mathcal{F}$ on $T \times_S X$ is flat over T with Hilbert polynomial P. Moreover, S_P is nonempty for finitely many P and the disjoint union of inclusions

$$i:S'=\bigsqcup_P S_P\to S$$

induces a bijection on the underlying set of points. That is, $\{S_P\}$ is a locally closed stratification of S.

We began last time by proving the following special case corresponding to X = S.

Proposition 1. Let \mathcal{F} be a coherent sheaf on S Noetherian. Then there exists a finite locally closed stratification $\{S_d\}$ of S such that $\mathcal{F}|_{S_d}$ is locally free of rank d. Moreover, for any locally Noetherian scheme T, a morphism $\varphi : T \to S$ factors as $T \to S_d \subset S$ if and only if $\varphi^* \mathcal{F}$ is locally free of rank d.

Now the idea of the proof in general is to use the following result from lecture 5.

Corollary 1. Let $f : X \to S$ be a projective morphism with S noetherian. If \mathcal{F} is a coherent sheaf on X then \mathcal{F} is flat over S if and only if $f_*\mathcal{F}(d)$ is a locally free sheaf of finite rank for all $d \gg 0$.

The idea of the proof then is to apply the proposition to the sheaves $f_*\mathcal{F}(d)$ and find a stratification that is universal for these pushforwards being locally free. Then by the corollary and some base-change arguments, this stratification will be universal for \mathcal{F} being flat.

Proof. (flattening stratifications in general)

The first step of the proof is to bound the Hilbert polynomials of the fibers of \mathcal{F} using the generic freeness theorem (from problem set 1).

Theorem 2. Let A be noetherian integral domain, B a finitely generated A-algebra, and M a finite B-module. Then there exists an $f \in A$ such that M_f is a free A_f -module.

Now we will use this to produce a finite stratification of *S* into reduced locally closed subschemes $V_i \subset S$ for i = 1, ..., m such that $\mathcal{F}|_{V_i}$ is flat over V_i (via the pullback $X_{V_i} \to V_i$ of $X \to S$). Toward this end, we may take S_{red} and assume that *S* is reduced. Let $\cup Y_j = S$ be

the decomposition into irreducible components and fix a component Y_0 . Let $U_0 \subset Y_0$ be the complement of where Y_0 meets Y_i :

$$U_0 = Y_0 \setminus \{Y_i \cap Y_1\}_{i \neq 0}.$$

Now U_0 is an integral scheme. Let Spec $A \subset U_0$ be a dense open affine subscheme where A is an integral domain. Then we may apply the generic freeness theorem to the pullback \mathcal{F}_A to $X_A \to \text{Spec } A$. This gives us an open subscheme $\text{Spec } A_f \subset \text{Spec } A \subset$ U_0 such that \mathcal{F}_{A_f} is flat over $\text{Spec } A_f$. Let $V_0 = \text{Spec } A_f$ and let $S_1 = S \setminus V_0$ its closed complement. Now we repeat in this way to produce an integral open subset $V_i \subset S_i$ where \mathcal{F}_{V_i} is flat over V_i . By Noetherian induction, this process terminates so we get a stratification of S by locally closed subsets $\{V_0, \ldots, V_m\}$ with the desired property.

Let us denote by $f_i : X_i \to V_i$ the pullback of $X \to S$ and by \mathcal{F}_i the pullback of \mathcal{F} to \mathcal{F}_i . Now by construction, \mathcal{F}_i is flat over V_i and by constancy of Hilbert polynomials, for each $s \in V_i$, the Hilbert polynomial $P_{\mathcal{F}_s}(d)$ is constant say equal to a polynomial P_m . Thus there are finitely many polynomials $\{P_1(d), \ldots, P_m(d)\}$ such that for each $s \in S$, $P_{\mathcal{F}_s}(d) = P_m(d)$ for some m. Next, by Serre vanishing, there exists a d_i such that

$$R^{j}(f_{i})_{*}\mathcal{F}_{i}(d) = 0$$

for all $d \ge d_i$. In this case, by cohomology and base change, $(f_i)_* \mathcal{F}_i(d)$ is locally free of rank $P_{\mathcal{F}_s}(d)$ and the basechange map

$$(f_i)_*\mathcal{F}_i(d)\otimes k(s)\to H^0(X_s,\mathcal{F}_s(d))$$

is an isomorphism. Letting $N = \max\{d_i\}$, we now have the following:

- (1) There are finitely many polynomials P_1, \ldots, P_m such that for each $s \in S$, $P_{\mathcal{F}_s}(d) = P_i(d)$ for some *i*;
- (2) $H^i(X_s, \mathcal{F}_s(d)) = 0$ for all $d \ge N$;
- (3) $f_*\mathcal{F}(d) \otimes k(s) \cong H^0(X_s, \mathcal{F}_s(d))$ has dimension $P_i(d)$ for all $d \ge N$.

Now we will construct the flattening stratification for \mathcal{F} using properties (1), (2) and (3). Note that the preliminary stratification into reduced strata V_i above was just an auxillary tool to prove properties (1), (2) and (3).

Fix *n* such that deg $P_{\mathcal{F}_s}(d) \le n$ for all $s \in S$ which exists by (1).¹ We have the following fact.

Fact 1. Let Pol_n be the set of polynomials over \mathbb{Q} of degree at most n. Then for any N,

$$Pol_n \to \mathbb{Z}^{n+1}$$
 (1)

$$P \mapsto (P(N), P(N+1), \dots, P(N+n))$$
⁽²⁾

is a bijection.

¹Actually we already knew this because $X \subset \mathbb{P}^n_S$ for some *n* and we can take this *n*. However, this is only because we are using a stronger version of projectivity in this class.

Now we can apply the flattening stratification in the special case of the coherent sheaves $\{\mathcal{E}_i := f_*\mathcal{F}(N+i)\}_{i=0}^n$ on S. Thus for each i and e, we have a stratum $W_{i,e}$ that is universal for the property that \mathcal{E}_i is locally free of rank e. In particular, for any $s \in W_{i,e}$, by the base change properties (2) and (3), we have $e = \operatorname{rk}\mathcal{E}_i|_{W_{i,e}} = P_{\mathcal{F}_s}(N+i)$. Now for any sequence $(e_0, \ldots, e_n) \in \mathbb{Z}^{n+1}$, which by the basic fact corresponds to a polynomial P, we have the scheme theoretic intersection

$$W_P^0 := \bigcap_{i=0}^n W_{i,e_i}.$$

By definition, a map $\varphi : T \to S$ factors through W_p^0 if and only if $\varphi^* f_* \mathcal{F}(N+i)$ is locally free of rank $e_i = P(N+i)$ for i = 0, ..., n. In particular, $s \in W_p^0$ if and only if $P_{\mathcal{F}_s}(d) = P(d)$ and so by finiteness of the Hilbert polynomials, $\{W_p^0\}$ is a finite locally closed stratification of *S* which has the correct closed points. However, we need to determine the correct scheme structure.

By the vanishing condition (2), we know that the formation of $f_*\mathcal{F}(N+a)$ is compatible with arbitrary base change for all $a \ge 0$. Now for each $d \ge 0$, let we can apply the flattening stratification to the sheaf $f_*\mathcal{F}(N+n+d)|_{W_p^0}$ to obtain a locally closed subscheme W_p^d universal for this sheaf being locally free of rank P(N+n+d). Note that at every closed point of W_p^0 , the rank of $f_*\mathcal{F}(N+n+d)$ is equal to P(N+n+d) and so W_p^d has the same underlying reduced subscheme. In particular, it is actually a closed subscheme of W_p^0 and so is cut out by some ideal I_p^d . Now consider the chain

$$I_P^1 \subset I_P^1 + I_P^2 \subset \dots$$

By the Noetherian condition, this sequence stabilizes to some ideal *I* cutting out a closed subscheme $S_P \subset W_P^0$ with the same underlying reduced scheme. Equivalently, S_P is the scheme theoretic intersection of the W_P^d for all *d*.

Since $S_P \subset W_P^0$ is a homeomorphism of underlying topological spaces, then $\{S_P\}$ is a finite locally closed stratification of *S*. By definition, $\varphi : T \to S$ factors through S_P if and only if for all $a \ge 0$,

$$\varphi^* f_* \mathcal{F}(N+a)$$

is locally free of rank P(N + a) but by the base change property,

$$\varphi^* f_* \mathcal{F}(N+a) = (f_T)_* \mathcal{F}_T(N+a).$$

Therefore, $\varphi : T \to S$ factors through S_P if and only if $(f_T)_* \mathcal{F}_T(N + a)$ is locally free of rank P(N + a) for all $a \ge 0$ if and only if \mathcal{F}_T is flat over T with Hilbert polynomial P(d) by the corollary from lecture 5. Thus S_P has the required universal property.

2 Functoriality properties of Hilbert schemes

2.1 Closed embeddings

We proved the following in Step 1 of the construction of Hilbert schemes but its useful enough to make explicit.

Proposition 2. Let $i : X \to Y$ be a closed embedding of projective S-schemes for S noetherian. Then there is a natural closed embedding $i_* : \operatorname{Hilb}_{X/S}^P \to \operatorname{Hilb}_{Y/S}^P$.

2.2 Base-change

Let $f : X \to S$ be a projective morphism to a noetherian scheme and $S' \to S$ any morphism. Consider the pullback

Note that f' is projective. Suppose \mathcal{E} is any coherent sheaf on X and let \mathcal{E}' be the pullback of \mathcal{E} to X'. The following is clear from the definition of the Quot functor.

Proposition 3. *The following is a pullback square of functors.*

$$\begin{array}{ccc} \mathcal{Q}_{\mathcal{E}',X'/S'} \longrightarrow \mathcal{Q}_{\mathcal{E},X/S} \\ & & \downarrow \\ & & \downarrow \\ S' \longrightarrow S \end{array}$$

In particular, we conclude that

$$\operatorname{Quot}_{\mathcal{E}',X'/S'}\cong \operatorname{Quot}_{\mathcal{E},X/S}\times_S S'$$

2.3 Pullbacks

Let $f : X \to Y$ be a flat morphism of projective *S*-schemes. Since flatness and the Hilbert polynomial are stable under base-change, we have the following:

Proposition 4. There is a pullback morphism

$$f^*: \operatorname{Hilb}_{Y/S} \to \operatorname{Hilb}_{X/S}$$

induced by taking a closed subscheme $Z \subset T \times_S Y$ to the pullback $g^{-1}(Z) \subset T \times_S X$.

Proof. Since $f : X \to Y$ is flat, then so is $f_T : T \times_S X \to T \times_S Y$ and so $g^{-1}(Z) \to Z$ is also flat. Then the composition $g^{-1}(Z) \to Z \to T$ is also flat and so is an element of $\operatorname{Hilb}_{X/S}^p(T)$.

2.4 Pushforwards

Let $f : X \to Y$ be a morphism of projective *S*-schemes. We can ask if there is a "push-forward" map f_* in general. We saw above there is if f is a closed embedding.

Let us consider the diagram

where $p : Z \to T$ is an element of $\text{Hilb}_{X/S}(T)$. The question is whether the composition $f_T \circ i : Z \to T \times_S Y$ is a closed embedding and thus gives an element of $\text{Hilb}_{Y/S}(T)$ which we can use to define $f_*(p : Z \to T)$. Of course this won't be true in general but it turns out it holds on an open subscheme of $\text{Hilb}_{X/S}$.

Theorem 3. There exists a universal open subscheme $\text{Hilb}_{X \to Y/S} \subset \text{Hilb}_{X/S}$ on which f_* defined by $Z \subset T \times_S X$ maps to $f_T \circ i : Z \to T \times_S Y$ gives a morphism

$$f_*: \operatorname{Hilb}_{X \to Y/S} \to \operatorname{Hilb}_Y.$$

Proof. Equivalently, we want to show there exists an open subscheme $U \subset \operatorname{Hilb}_{X/S}$ such that a morphism $\varphi : T \to \operatorname{Hilb}_{X/S}$ corresponding to a closed subscheme $i : Z \subset T \times_S X$ factors through U if and only if the composition $f_T \circ i : Z \to T \times_S Y$ is a closed embedding. Indeed if such a subscheme exists its clearly universal and then $f_T \circ i$ is an element of $\operatorname{Hilb}_{Y/S}$ such $Z \to T$ is flat and proper regardless of embedding. Now the existence of this $U = \operatorname{Hilb}_{X \to Y/S}$ follows from applying the next lemma to the universal map $g := f_{\operatorname{Hilb}_{X/S} \circ i}$.

Lemma 1. Let $p : Z \to T$ and $q : Y \to T$ be projective T-schemes with p flat and let $g : Z \to T$ a morphism. Then there exists an open subscheme $U \subset T$ such that $\varphi : T' \to T$ factors through U if and only if $\varphi^*g : Z_{T'} \to Y_{T'}$ is a closed embedding.

Proof. Since *Z* and *Y* are projective, the morphism *g* is proper and so we may replace *Y* by the image of *g* and assume without loss of generality that *Y* is the scheme theoretic image of *g*. Then *g* is a closed embedding if and only if it is an isomorphism and so the result reduces to the lemma proved during our study of Hom-schemes.