
Lecture 12: The Picard functor

10/18/2019

1 Picard groups

Our goal now is to study the representability properties of the Picard functor. Recall the
definition of the Picard group.

Definition 1. Let X be a scheme. The Picard group Pic(X) is the set of line bundles (or invertible
sheaves) on X with group operation given by tensor product.

Recall the following well known fact.

Lemma 1. There is a canonical isomorphism Pic(X) ∼= H1(X,O∗X).

2 Picard functors

Let f : X → S be a scheme over S. We want to upgrade the Picard group to a functor
on SchS. Since line bundles pull back to line bundles, we have a natural functor given by

T 7→ Pic(XT).

Thus functor is the absolute Picard functor.
It is natural to ask if this functor is representable. It turns out this is not the case.

Claim 1. The absolute Picard functor is not a sheaf.

Proof. Let L be a line bundle on T such that f ∗T L is not trivial. Let {Uα} be an open cover of
T that trivializes the bundle L. Then the pullback of f ∗T L to XUα is trivial and so L is in the
kernel of the map

Pic(XT)→ Pic

(⊔
α

XUα

)
= ∏

α

Pic(XUα).

Since the problem is the line bundles pulled back from the base scheme T, one proposed
way to fix this is the following definition of the relative Picard functor.

Definition 2. The relative Picard functor PicX/S : SchS → Set is given by

PicX/S(T) = Pic(XT)/ f ∗TPic(T)

where f ∗T : Pic(T)→ Pic(X) is the pullback map.
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The representability of PicX/S is still a subtle question and even the sheaf property is
subtle and doesn’t always hold. However, it does under some assumptions.

Definition 3. We call a proper morphism f : X → S an algebraic fiber space if the natural map
OS → f∗OX is an isomorphism. We say it is a universal algebraic fiber space if for all T → S, the
natural morphism OT → ( fT)∗OXT is an isomorphism. 1

Proposition 1. Suppose f : X → S is a universal algebraic fiber space and that there exists a section
σ : S→ X.2 Then PicX/S is a Zariski sheaf.

Proof. Let us consider the Zariski sheafification PicX/S, Zar of PicX/S. This is the sheafification
of the functor

T 7→ H1(XT,O∗XT
).

If we restrict this to the category of open subschemes of a fixed T, what we get is the sheaf

R1( fT)∗O∗XT
.3

Thus PicX/S, Zar(T) is the global sections of the sheaf R1( fT)∗O∗XT
on T:

PicX/S, Zar(T) = H0(T, R1( fT)∗O∗XT
).

Now consider the Leray spectral sequence

H j(T, Ri( fT)∗O∗XT
) =⇒ Hi+j(XT,O∗XT

).

There is a 5-term exact sequence associated to any spectral sequence which in this case is
given by

0→ H1(T, ( fT)∗O∗XT
)→ H1(X,O∗XT

)→ H0(T, R1( fT)∗O∗XT
)

→ H2(T, ( fT)∗O∗XT
)→ H2(X,O∗XT

).

Since f is a universal algebraic fiber space, ( fT)∗O∗XT
∼= O∗T and so the first map in the exact

sequence can be identified with the pullback

f ∗T : Pic(T)→ Pic(XT).

Thus we have an exact sequence

0→ Pic(T)→ Pic(XT)→ PicX/S, Zar(T).

We want to show that the last map above is surjective so that

PicX/S, Zar(T) = Pic(XT)/Pic(T) = PicX/S(T).

By exactness, it suffices to show that

H2(T, ( fT)∗O∗XT
)→ H2(X,O∗XT

)

1Some sources in the literature require algebraic fiber spaces to be projective not just proper morphisms.
2That is, σ is a morphism with f ◦ σ = idS.
3Some take this as the definition of the higher direct image functors and then you have to prove their

properties, otherwise you can define the higher direct image functors as derived functors and check they agree
with this sheafification.
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is injective. This map is given by pulling back by fT. Since fT has a section given by σT, then
we have

σ∗T ◦ f ∗T = id : H2(T, ( fT)∗O∗XT
)→ H2(T, ( fT)∗O∗XT

).

Therefore f ∗T is injective.

Remark 1. In the simplest case when S = Spec k is the spectrum of a field, the condition that
f : X → S is a unviersal algebraic fiber space is equivalent to X being geometrically connected and
geometrically reduced. The condition that there exist a section σ : S→ X is exactly saying that X has
a k-rational point. Note that this is always true after a separable field extension of k, that is, it holds
étale locally. This suggests that to study the relative Picard functor in greater generality, one should
consider the sheafification of PicX/S in the étale topology. Indeed it turns out that in the most general
setting one should consider the fppf4 sheafification of PicX/S. In the setting above where there exists
a section, PicX/S is already an étale and even fppf sheaf. To avoid getting into details of Grothendieck
topologies and descent theory at this point in the class, we will stick with the case where a section σ

exists.

3 Some remarks and examples

Note that the relative Picard functor has the same k-points as the absolute Picard func-
tor:

PicX(k) = Pic(Xk) = Pic(Xk)/Pic(Spec k) = PicX/S(k).

Thus the points of the relative Picard scheme of f : X → S, if it exists, can be identified with
line bundles on the fibers Xs of f . The difference between PicX and PicX/S is only in how we
glue together fiberwise line bundles into line bundles on the total space X.

Even when PicX/S is a Zariski sheaf, it may still exhibit some pathologies.

Example 1. (The Picard functor is not separated.) Let

X = {t f (x, y, z)− xyz = 0} ⊂ P3
A1

t

be a family of cubic curves in the plane over k = k an algebraically closed field, where f (x, y, z) is a
generic cubic polynomial so that the generic fiber of the projection f : X → A1

t = S is smooth and
irreducible. Note that f is a universal algebraic fuber space and we can pick f (x, y, z) appropriately
so that a section σ exists. The special fiber at t = 0, given by V(xyz), is the union of three lines l1, l2
and l3. We will show that in this case, PicX/S fails the valuative criteria for the property of being
separated.

Indeed suppose L0 is a line bundle on X \ X0 viewed as an element of PicX/S(A
1 \ 0) and

suppose there exists some line bundle L on X such that L|X\X0
gives the same element of PicX/S(A

1 \
0) as L0. Explicitly, this means that there exists some line bundle G on A1 \ 0 such that

L|X\X0
⊗ f ∗G = L0.

Then we claim that the twist L(li) = L⊗OX(li) by a component li of the central fiber gives another
element of PicX/S(A

1 \ 0) extending L0 that is not equal to L. In particular, the map PicX/S(A
1)→

PicX/S(A
1 \ 0) is not injective and so the valuative criterion fails.

4faithfully flat and of finite presentation
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To verify the claim, note that OX(li)|X\X0
∼= OX0 and so L(li) does indeed give an extension of

L0 in PicX/S. On the other hand, L and L(li) give the same element of PicX/S(A
1) if and only of

OX(li) is pulled back from A1 which does not hold since the restriction to the scheme theoretic fiber
OX(li)| f−1({t = 0}) is a nontrivial line bundle.

This example shows that to get a well behaved relative Picard functor, we should restrict
to the case that the fibers of f : X → S are integral. Indeed if the fibers are integral, then
any fiber component OX(F) that we can twist by is pulled back from the base and so this
problem doesn’t occur.

Example 2. (The Picard functor need not be universally closed.) Let X = {y2z− x2(x− z) = 0}
in P3

k with S = Spec k for k = k. Then f : X → Spec k is a universal algebraic fiber space and it
has a section given by the rational point [0, 1, 0]. Consider the subscheme D ⊂ A1 ×k X given by
the graph of the morphism

ϕ : A1 → X, t 7→ [t2 + 1, t(t2 + 1), 1].

Let t± = ±
√
(−1), U = A1 \ {t+, t−}, and XU = X \ {Xt+ ∪ Xt−}. Then D|U ⊂ XU is

contained in the regular locus of XU = U × X and so the ideal sheaf of D|U is a line bundle denoted
OXU(−D|U). If an extension of OXU(−D|U) to A1 exists as an element of the relative Picard
functor, then it must be represented by a line bundle on X, and in particular, it must be flat over A1.
On the other hand, we know that the ideal sheaf ID is a flat extension of OXU(−D|U). One can
check that if the extension of OXU(−D|U) exists as an element of the relative Picard functor, it must
be equal to ID up to twisting by a line bundle on the base. Since D → A1 is flat, ID|t± = IDt±

but
Dt± is the closed point [0, 0, 1]. The completed local ring of Xt± at this point is given by kJx, yK/(xy)
and it has maximal ideal (x, y) corresponding to the point [0, 0, 1]. It is easy to see that (x, y) is not
a free kJx, yK/(xy)-module and thus ID is not a line bundle and so no extension of OXU(−D|U) as
an element of the relative Picard functor can exist.

In the above example, what goes wrong is that the flat limit of the given family of line
bundles is not a line bundle, but rather the rank 1 torsion free sheaf IDt±

. Thus suggests that
at least in the case of an integral curve, one can compactify the Picard functor by allowing
such sheaves. We will study this compactified Picard scheme in the case of integral curves lying
on a smooth surface5 later in the class.

4 Outline of the proof of the representability theorem

Our goal will be to prove the following theorem.

Theorem 1. Let f : X → S be a flat projective morphism with integral fibers such that f is a
universal algebraic fiber space and suppose there exists a section σ : S → X.6 Then the relative
Picard functor PicX/S is a representable by a locally of finite type, separated S-scheme with quasi-
projective connected components.

The proof roughly proceeds in the following steps:

5so-called locally planar curves
6In fact all we will need is that PicX/S is a sheaf.
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(I) Given a Cartier divisor, that is, a codimension one closed subschemes D ⊂ X with
locally free ideal sheaf ID ⊂ OX, we can dualize to obtain a line bundle L = I−1

D with
section s : OX → L. This gives a set theoretic bijection

{(L, s) | s : OX → L is injective} ↔ {Cartier divisors}.

(II) We define a relative notion of Cartier divisors and prove that the moduli functor
CDivX/S of relative Cartier divisors is representable by an open subscheme of the
Hilbert scheme HilbX/S. In particular, we have a disjoint union

CDivX/S =
⊔
P

CDivP
X/S

over Hilbert polynomials where each component is quasi-projective.

(III) Using the bijection in (I), we construct a morphism of functors

CDivP
X/S → PicP1

X/S

which on k-points is given by (D ⊂ Xk) 7→ L = I−1
D . Here P1 is the Hilbert polynomial

of I−1
D which depends only on the Hilbert polynomial P of D and that of f : X → S.

Note that since f is flat, any line bundle on XT is flat over T for any T → S and so
there is a disjoint union

PicX/S =
⊔
P

PicP
X/S.

(IV) For a suitable choice of P and P1, after twisting by a large enough multiple of OX(1),
the map

CDivP
X/S → PicP1

X/S

is the quotient of CDivP
X/S in the category of sheaves by a proper and smooth (and in

particular flat) equivalence relation.

(V) We will study proper and flat equivalence relations and show that the quotient of
a quasi-projective scheme by such equivalence relation exists as a quasi-projective
scheme. This uses the existence of Hilbert schemes.
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