Lecture 13: Relative effective Cartier divisors

10/21/2019

1 The universal line bundle on $Pic_{X/S}$

Recall last time we defined for an *S*-scheme $f : X \rightarrow S$ the relative Picard functor

 $\operatorname{Pic}_{X/S} : Sch_S \to Set \ T \mapsto \operatorname{coker}(\operatorname{Pic}(T) \to \operatorname{Pic}(X_T)).$

Under the assumption that *f* is a universal algebraic fiber space¹ and *f* admits a section $\sigma : S \to X$, we showed that $\text{Pic}_{X/S}$ is a Zariski sheaf.

Our main goal will be to show the following:

Theorem 1. Let $f : X \to S$ be a flat projective scheme over S Noetherian. Suppose S is a universal algebraic fiber space and admits a section $\sigma : S \to X$ and that the fibers of f are geometrically integral. Then $\operatorname{Pic}_{X/S}$ is representable by a locally of finite type scheme over S with quasi-projective connected components.

Note that the elements of $\operatorname{Pic}_{X/S}(T)$ are not line bundles, but rather equivalence classes of line bundles under the equivalence given by tensoring by line bundles from the base *T*. In particular, even if the relative Picard functor is representable, it is not immediate that there exists an actual line bundle on $\operatorname{Pic}_{X/S} \times_S X$ that pulls back to the appropriate class in $\operatorname{Pic}_{X/S}(T)$ for all *T*. To show this, let us introduce the following variant of the relative Picard functor.

Definition 1. Let $f : X \to S$ be a universal algebraic fiber space with section $\sigma : S \to X$. The σ -rigidified Picard functor is the functor

$$\operatorname{Pic}_{X/S,\sigma}: Sch_S \to Set$$

such that

 $\operatorname{Pic}_{X/S,\sigma}(T) = \{(L, \alpha) \mid L \text{ is a line bundle on } X_T, \alpha : \mathcal{O}_T \to \sigma_T^*L \text{ is an isomorphism}\} / \sim$

where $(L, \alpha) \sim (L', \alpha')$ if and only if there exists an isomorphism $\epsilon : L \to L'$ such that $\sigma_T^* \epsilon \circ \alpha = \alpha'$. Pic_{X/S,\sigma} is made into a functor by pullback.

Remark 1. Using the σ -rigidification and the assumptions on f one can check directly that $\operatorname{Pic}_{X/S,\sigma}$ is a sheaf in the Zariski topology. In fact under these assumptions it is even a sheaf in the fppf topology.

¹For any $T \to S$, $(f_T)_* \mathcal{O}_{X_T} = \mathcal{O}_T$. Note this holds in particular if f is projective and the fibers of are geometrically integral.

Proposition 1. Suppose $f : X \to S$ is a universal algebraic fiber space with section σ . Then $\operatorname{Pic}_{X/S,\sigma} \cong \operatorname{Pic}_{X/S}$ as functors.

Proof. There is a natural transformation

$$\operatorname{Pic}_{X/S,\sigma} \to \operatorname{Pic}_{X/S}$$

given by forgetting the data of α and composing with the projection $\text{Pic}_X \rightarrow \text{Pic}_{X/S}$ from the absolute Picard functor. On the other hand, given an element $\text{Pic}_{X/S}(T)$ represented by some line bundle *L* on *X*_T, the line bundle

$$L \otimes (f_T)^* \sigma^* L^{-1}$$

has a canonical rigidification given by the inverse of the isomorphism

$$\sigma^*L \otimes \sigma^*L^{-1} \to \mathcal{O}_T$$

and this gives an inverse

$$\operatorname{Pic}_{X/S}(T) \to \operatorname{Pic}_{X/S,\sigma}$$

Corollary 1. Suppose $f : X \to S$ is a universal algebraic fiber space with section $\sigma : S \to X$. Assume that the relative Picard functor is representable. Then there exists a $\sigma_{\operatorname{Pic}_{X/S}}$ -rigidified line bundle \mathcal{P} on $X \times_S \operatorname{Pic}_{X/S}$ that is universal in the following sense. For any S-scheme T and any line bundle L on X_T , let $\varphi_L : T \to \operatorname{Pic}_{X/S}$ be the corresponding morphism. Then $\varphi_L^* \mathcal{P}$ is σ_T -rigidified and

$$L \cong \varphi_L^* \mathcal{P} \otimes f_T^* M$$

for some line bundle M on T. In particular, if T = Spec k, then for any k-point $[L] \in \text{Pic}_{X/S}(k)$, $\mathcal{P}|_{X_k} \cong L$.

2 Relative Cartier divisors

Recall that an effective Cartier divisor $D \subset X$ is a closed subscheme such that at each point $x \in D$, $\mathcal{O}_{D,x} = \mathcal{O}_{X,x}/f_x$ where $f_x \in \mathcal{O}_{X,x}$ is a regular element. That is, D is a pure codimension one locally principal subscheme. Then the ideal sheaf of D is a line bundle $\mathcal{O}_X(-D)$ and the inclusion $\mathcal{O}_X(-D) \cong \mathcal{I}_D \hookrightarrow \mathcal{O}_X$ induces a section

$$s_D: \mathcal{O}_X \to \mathcal{O}_X(D)$$

of the dual line bundle $\mathcal{O}_X(D)$ which is everywhere injective.

Definition 2. Let *L* be a line bundle. A section $s \in H^0(X, L)$ is regular if $s : \mathcal{O}_X \to L$ is injective. Two pairs (s, L) and (s', L') of line bundles with regular sections are said to be equivalent if there exists an pair (α, t) where

$$\alpha: L \to L'$$

is an isomorphism of line bundles and $t \in H^0(X, \mathcal{O}_X^*)$ *is an invertible function such that* $\alpha(a) = ts'$.

Given a line bundle and a regular section (s, L), the vanishing locus V(s) is an effective Cartier divisor with ideal sheaf $s^{\vee} : L^{-1} \hookrightarrow \mathcal{O}_X$ and in this way we have a bijection

{effective Cartier divisors} \leftrightarrow {(*s*, *L*) | *s* is a regular section}/ ~

where \sim is the equivalence relation on pairs (*s*, *L*) given above. We wish to consider the relative notion.

Definition 3. Let $f : X \to S$ be a morphism of schemes. A relative effective Cartier divisor is an effective Cartier divisor $D \subset X$ such that the projection $D \to X$ is flat.

We will show that this notion is well behaved under base-change by any $S' \rightarrow S$.

Lemma 1. Suppose $D \subset X$ is a relative effective Cartier divisor for $f : X \to S$. For any $S' \to S$, denote by $f' : X' \to S'$ the pullback. Then $D' = S' \times_S D \subset X'$ is a relative effective Cartier divisor for f'.

Proof. Flatness of $D' \to S'$ is clear. We need to check that D' is cut out at each local ring $\mathcal{O}_{X',x'}$ by a regular element. Let *x* be the image of *x'* and consider the exact sequence

$$0 \to \mathcal{O}_{X,x} \to \mathcal{O}_{X,x} \to \mathcal{O}_{D,x} \to 0$$

where the first map is multiplication by the regular element f_x . Pulling back along $S' \rightarrow S$ gives us a sequence

$$0 o \mathcal{O}_{X',x'} o \mathcal{O}_{X',x'} o \mathcal{O}_{D',x'} o 0$$

which is exact since $\mathcal{O}_{D,x}$ is flat so the Tor term on the left vanishes. The first map is multiplication by f'_x , the pullback of f_x . Since it is injective, f'_x is a regular element.

Corollary 2. Let $f : X \to S$ be a flat morphism and $D \subset X$ a subscheme flat over S. The following are equivalent:

(a) D is a relative effective Cartier divisor;

(b) $D_s \subset X_s$ is an effective Cartier divisor for each $s \in S$.

Proof. (a) \implies (b) by the previous lemma. Suppose (b) holds. We need to show that for all $x \in X$, $\mathcal{O}_{D,x} = \mathcal{O}_{X,x}/f_x$ where f_x is a regular element. By (b), we have that $\mathcal{O}_{D,x} \otimes k(s) = \mathcal{O}_{X,x} \otimes k(s)/\bar{f}_x$ where \bar{f}_x is a regular element of $\mathcal{O}_{X,x} \otimes k(s) = \mathcal{O}_{X,x}$. Now by Nakayama's lemma we can lift this to an generator f_x of \mathcal{I}_D so that $\mathcal{O}_{D,x} = \mathcal{O}_{X,x}/f_x$ and f_x a regular element.

Now we can define the functor

$$CDiv_{X/S}: Sch_S \rightarrow Set$$

given by

$$CDiv_{X/S}(T) = \{$$
relative effective Cartier divisors $D \subset X_T \}$

Proposition 2. Let $f : X \to S$ be a flat and projective morphism over a Noetherian scheme S. Then $CDiv_{X/S}$ is representable by an open subscheme of $Hilb_{X/S}$. If moreover f is a smooth morphism, then $CDiv_{X/S}$ is proper over S.

Proof. Since an element $CDiv_{X/S}(T)$ is a closed subscheme $D \subset X_T$ which is flat and proper over T, $CDiv_{X/S}$ is a subfunctor of Hilb_{X/S}. We need to show that the inclusion $CDiv_{X/S} \rightarrow$ Hilb_{X/S} is an open subfunctor.

That is, suppose $D \subset X_T$ is flat and proper over T. We need to show there exists an open subset $U \subset T$ such that $\varphi : T' \to T$ factors through U if and only if $D_{T'} \subset X_{T'}$ is an effective Cartier divisor which by the previous lemma is equivalent to the the requirement that $D_t \subset X_t$ is an effective Cartier divisor for each $t \in T'$.

Toward this end, let *H* be the union of irreducible components of Hilb_{*X/S*} which contain the image of $CDiv_{X/S}$ and let $D \subset X \times_S H = X_H$ be the universal proper flat cloesed subscheme over *H*. Note that the non-Cartier locus of $D \subset X_H$ is exactly the locus where I_D is not locally free of rank 1. Since X_H is locally Noetherian and I_D is coherent, the locus where I_D is locally free of rank 1 is locally closed by the locally free stratification (special case of flattening). On the other hand, for any point $x \in X_H \setminus D$, $\mathcal{I}_{D,x} = \mathcal{O}_{X,x}$ is free of rank 1 and thus the stratum contains a dense open subscheme of X_H .² Therefore this stratum is in fact open. Let $Z \subset X_H$ be its complement so that $x \in Z$ if and only if *D* is not Cartier at $x \in X$.

Now we let

$$U := H \setminus f_H(Z) \subset H.$$

Then *U* is open since f_H is proper and $t \in U$ if and only if for all $x \in X_t$, *D* is Cartier at *x* if and only if $D_t \subset X_t$ is an effective Cartier divisor (by the prevolus lemma). Then a *T*-point of *H* factors through *U* if and only if for all $t \in T$, $D_t \subset X_t$ is an effective Cartier divisor if and only if $D_T \subset X$ is an effective Cartier divisor so *U* represents the subfunctor $CDiv_{X/S}$.

Suppose now that f is smooth. We will use the valuative criterion. Let T = Spec R be the spectrum of a DVR with generic point $\eta = \text{Spec } K$ and closed point $0 \in T$ and let D_{η} be an η point of $CDiv_{X/S}$. By properness of the Hilbert functor, we know there exists a unique $D \subset \text{Hilb}_{X/S}(T)$ such that $D|_{\eta} = D_{\eta}$. We need to check that $D \subset X_T$ is in fact a relative effective Cartier divisor. This is equivalent to $D_0 \subset X_0$ being Cartier. By flatness over a DVR, the subscheme D has no embedded points and is pure of codimension 1 since D_{η} is pure of codimension 1. Thus $D_0 \subset X_0$ is a pure codimension 1 subscheme with no embedded points. Since X_0 is smooth, the local rings are UFDs and by a fact of commutative algebra, height 1 primes on UFDs are principal and thus $I_{D_0,x}$ is a principal ideal of $\mathcal{O}_{X_0,x}$ generated by a regular element for each $x \in X_0$.

Example 1. (A non-proper space of effective Cartier divisors) Let $X \subset \mathbb{P}^3_{\mathbb{A}^1_t}$ be defined by the following equation.

$$t(xw - yz) + x^2 - yz = 0$$

For $t \neq 0$, this is the smooth quadric surface which has a family of lines defined by the ideal (x, y). Since X_t is smooth this is a Cartier divisor. However, over t = 0, X_0 is a singular quadric cone $x^2 - yz$ and one can check that the deal (x, y) is not locally principal at the point [0, 0, 0, 1]. Therefore this family of lines gives an element in $CDiv_{X/A^1}(\mathbb{A}^1 \setminus 0)$ which does not extend to $CDiv_{X/A^1}(\mathbb{A}^1)$.

²Why is $X_H \setminus D$ dense in X_H ? This is clear if we add the assumption that the fibers of $f : X \to S$ are integral. In general I want to use the fact that H is the union of components with Hilbert polynomial equal to that of a Cartier divisor to show that $X_H \setminus D$ is dense inside each irreducible component of each fiber. For our purposes we can assume the fibers of $f : X \to S$ are integral since that is the only case we will consider when constructing Picard schemes.