Lecture 14: The Abel-Jacobi map

10/23/2019

1 Representable morphisms

Throughout the course we have used the notion of a subfunctor being an open or closed subfunctor. This is a special case of the notion of representable morphism between functors.

Definition 1. Let F, G be two functors $Sch_S \rightarrow Set$. A morphism $F \rightarrow G$ between functors is said to be representable by schemes if for any scheme T and any morphism $T \rightarrow G$, the pullback of functors $T \times_G F$ is representable by a scheme.

Using Yoneda's lemma, the morphism $F \to G$ is representable by schemes if and only if the following condition holds. Given an element $\xi \in G(T)$, there exists a scheme T' and a morphism $T' \to T$ such that for any scheme T'' and any morphism $\varphi : T'' \to T$, φ factors through T' if and only of $\xi_{T''} \in G(T'')$ is the image of an element $\zeta \in F(T'')$. From this it is clear that open and closed subfunctors are representable morphisms. More generally, we can define the following properties for representable morphisms.

Definition 2. For any of the following properties, we say that a morphism of functors $F \to G$ is representable by \mathcal{P} if and only if $F \to G$ is representable by schemes and for all $T \to G$, the morphism $T \times_G F \to T$ has property \mathcal{P} :

- (a) $\mathcal{P} =$ "closed embeddings",
- (b) $\mathcal{P} =$ "open embeddings",
- (c) $\mathcal{P} =$ "affine morphisms",
- (d) $\mathcal{P} =$ "projective bundles"¹,
- (e) $\mathcal{P} = "proper morphisms"$,
- (f) $\mathcal{P} = "flat morphisms"$,
- (g) $\mathcal{P} =$ "smooth morphisms",
- (h) $\mathcal{P} =$ "finite morphisms",
- (i) $\mathcal{P} =$ "étale morphisms".

Remark 1. In fact this definition makes sense for any property \mathcal{P} of morphisms such that (1) \mathcal{P} is stable under base change, and (2) the property can be checked for a morphism of schemes after taking a Zariski open cover of the target². More generally, one can work with algebraic spaces or algebraic

¹Recall that a projective bundle on a scheme *S* is an *S*-scheme of the form $\mathbb{P}(\mathcal{E})$ for \mathcal{E} a coherent sheaf on *S*.

²That is, the property is local on the target.

stacks and then one can ask for morphisms of (pseudo)functors³ to be representable by schemes, or by algebraic spaces, or by algebraic stacks. Then it makes sense for such morphisms to be representable by \mathcal{P} for any property that is fppf or fpqc local on the target.

2 The Abel-Jacobi map

Recall last time we constructed the moduli space $CDiv_{X/S}$ of relative effective Cartier divisors for any flat and projective $f : X \to S$ over a Noetherian scheme S. The elements of $CDiv_{X/S}(T)$ are Cartier divisors $D \subset X_T$ which are flat over T. Then the ideal sheaf $\mathcal{O}_{X_T}(-D)$ of D is a line bundle on X_T with dual $\mathcal{O}_{X_T}(D)$. We wish to show that sending Dto $\mathcal{O}_{X_T}(D)$ defines a natural transformation of functors $CDiv_{X/S} \to \operatorname{Pic}_{X/S}$.

Proposition 1. *The natural map*

$$CDiv_{X/S}(T) \to \operatorname{Pic}_{X/S}(T)$$

given by $(D \subset X_T) \mapsto [\mathcal{O}_{X_T}(D)]$ is a natural transformation of functors $CDiv_{X/S} \to Pic_{X/S}$.

Proof. We need to check this map is functorial in *T*. Each side is made into a functor under pullback so concretely, we need to check that for any $\varphi : T' \to T$, $\mathcal{O}_{X_{T'}}(D_{T'}) = \varphi^* \mathcal{O}_{X_T}(D)$ up to twisting by a line bundle pulled back from *T'*. Now \mathcal{O}_D is flat over *T*, so pulling back the ideal sequence

$$0 \to \mathcal{O}_{X_T}(-D) \to \mathcal{O}_{X_T} \to \mathcal{O}_D \to 0$$

gives

$$0 \to \varphi^* \mathcal{O}_{X_T}(D) \to \mathcal{O}_{X_{T'}} \to \mathcal{O}_{D_{T'}} \to 0$$

so in particular, $\varphi^* \mathcal{O}_{X_T}(-D) = \mathcal{O}_{X_{T'}}(-D_{T'})$. Now since $\mathcal{O}_{X_T}(-D)$ is locally free, we have

$$\varphi^* \mathcal{O}_{X_T}(D) = \varphi^* \mathcal{O}_{X_T}(-D)^{-1} = \mathcal{O}_{X_{T'}}(-D_{T'})^{-1} = \mathcal{O}_{X_{T'}}(D_{T'})$$

as required.

This map is often called the Abel-Jacobi map and is denoted by

$$AJ_{X/S}: CDiv_{X/S} \to \operatorname{Pic}_{X/S}.$$

Let us study the fibers of $AJ_{X/S}$ over a *k*-point. A *k*-point $t \in \text{Pic}_{X/S}(k)$ for Spec $k \to S$ a point of *S* corresponds to a line bundle *L* on X_k . Then by the bijection between Cartier divisors and line bundles with regular sections up to isomorphism, the fiber $AJ_{X/S}^{-1}(t)$ is the set of pairs (s, L) where $s : \mathcal{O}_X \hookrightarrow L$ is a regular section up to scaling:

$$AJ_{X/S}^{-1}(t) = H^0(X_k, L)^{reg} / H^0(X_k, \mathcal{O}_{X_k}^*).$$

If X_k is geometrically integral, then every nonzero section is regular and we have $AJ_{X/S}^{-1}(t) = \mathbb{P}(H^0(X_k, L))$ is a projective space. This observation is generalized by the following theorem.

³Functors to the category of groupoids rather than to sets. We will discuss this in more detail later.

Theorem 1. Suppose $f : X \to S$ is a flat projective universal algebraic fiber space with section $\sigma : S \to X$. Suppose further that the fibers of f are geometrically integral. Then the Abel-Jacobi map $AJ_{X/S} : CDiv_{X/S} \to Pic_{X/S}$ is representable by a projective bundle. More precisely, for any scheme T and T-point $\varphi_L : T \to Pic_{X/S}$ corresponding to a line bundle L on X_T , there exists a coherent sheaf \mathcal{E} on T such that the pullback $AJ_{X/S}^{-1}(T) \to T$ is isomorphic to the projective bundle $\mathbb{P}(\mathcal{E})$ over T. Moreover, if $R^1(f_T)_*L = 0$, then (1) $(f_T)_*L$ commutes with base change, (2) \mathcal{E} and $(f_T)_*L$ are locally free and dual to each other, and (3) the formation of \mathcal{E} commutes with base change. In particular, if $R^1(f_T)_*L = 0$ for all T-points, then $AJ_{X/S}$ is representable by smooth morphisms.

To prove this theorem, we will use the following proposition, which is on problem set 2, and follows from the existence of the Grothendieck complex.

Proposition 2. Let $f : X \to S$ be a proper morphism over a Noetherian scheme S and let \mathcal{F} be a coherent sheaf on X which is flat over S. Then there exists a coherent sheaf \mathcal{Q} on S with a functorial isomorphism

$$\theta_{\mathcal{G}}: f_*(\mathcal{F} \otimes f^*\mathcal{G}) \to \mathcal{H}om_S(\mathcal{Q}, \mathcal{G})$$

Corollary 1. Suppose $R^1 f_* \mathcal{F} = 0$ so that $f_* \mathcal{F}$ is locally free and commutes with base change by cohomology and base change. Then Q is locally free and is dual to $f_* \mathcal{F}$. In particular, the formation of Q commutes with base change.

Proof. Apply the proposition to the special case $\mathcal{G} = \mathcal{O}_S$ and use that dualizing commutes with tensor products for locally free modules.

Remark 2. Note that by definition, $\operatorname{Pic}_{X/S}$ is compatible with base change in the following sense. For any $S' \to S$ such that $f' : X' \to S'$ is the pullback of $f : X \to S$,

$$\operatorname{Pic}_{X'/S'} = \operatorname{Pic}_{X/S} \times_S S'$$

as functors. Moreover, if f satisfies any of the above assumptions then so does f'. Note also that $CDiv_{X/S} \times_S S' = CDiv_{X'/S'}$. Indeed we already discussed the Hilbert schemes have this property and since the condition of being a relative effective Cartier divisor is compatible with base change, the claim follows. Then it is clear to see from the definition of $AJ_{X/S} \times_S S' = AJ_{X'/S'}$.

Proof. (Proof of theorem) By the remark, we may suppose that T = S. Let $\varphi_L : S \to \operatorname{Pic}_{X/S}$ be an *S*-point corresponding to the class of a line bundle *L* on X^4 Then the pullback $AJ^{-1}(\varphi_L)$ by definition is the functor which we will denote $D_{[L]}$ that takes an *S*-scheme *T* to the set of relative effective Cartier divisors $D \subset X_T$ such that $\mathcal{O}_{X_T}(D) = L_T \otimes f_T^*M$ where *M* is some line bundle on *T*.

Since f is a universal algebraic fiber space, $f_T^* : \operatorname{Pic}(T) \to \operatorname{Pic}(X_T)$ is injective thus if M'is some other line bundle such that $\mathcal{O}_{X_T}(D) = L_T \otimes f_T^*M'$, then $f_T^*M \cong f_T^*M'$ so $M \cong M'$. Thus M is unique up to isomorphism and D corresponds to a regular section s of $L_T \otimes f_T^*M$. Equivalently, s is a regular section of $(f_T)_*(L_T \otimes f_T^*M)$. By the proposition, since L is flat there exists a coherent sheaf Q along with a functorial isomorphism

$$f_*(L \otimes f^*\mathcal{G}) = \mathcal{H}om_S(\mathcal{Q}, \mathcal{G})$$

for all quasi-coherent \mathcal{G} on S. We will show next time that $\mathcal{E} = \mathcal{Q}$ is our required sheaf. \Box

⁴Here is where we are using the assumption that σ has a section so that *T*-points correspond to actual line bundles on X_T . Otherwise, we would need to sheafify and thus *T*-points would correspond to line bundles on some cover $T' \to T$.