
Lecture 15 - 16: The Abel-Jacobi map (cont.),
boundedness, quotients by equivalence relations

10/28/2019 & 10/30/2019

1 AJX/S is representable by projective bundles

Recall last time we defined the Abel-Jacobi map

AJX/S : CDivX/S → PicX/S

by (D ⊂ XT) 7→ OXT(D). We are proving the following.

Theorem 1. Suppose f : X → S is a flat projective universal algebraic fiber space with section
σ : S→ X. Suppose further that the fibers of f are geometrically integral. Then the Abel-Jacobi map
AJX/S : CDivX/S → PicX/S is representable by a projective bundle. More precisely, for any scheme
T and T-point ϕL : T → PicX/S corresponding to a line bundle L on XT, there exists a coherent
sheaf E on T such that the pullback AJ−1

X/S(T) → T is isomorphic to the projective bundle P(E)
over T. Moreover, if R1( fT)∗L = 0, then (1) ( fT)∗L commutes with base change, (2) E and ( fT)∗L
are locally free and dual to each other, and (3) the formation of E commutes with base change. In
particular, if R1( fT)∗L = 0 for all T-points, then AJX/S is representable by smooth morphisms.

Proof. We have reduced to the case that T = S and are considering an S-point ϕL : S →
PicX/S corresponding to a line bundle L on X. Let D[L] denote the fiber product AJ−1

X/S(ϕL).
We saw that T-point of D[L] corresponds to a line bundle M on T as well as a regular section
of LT ⊗ f ∗T M. Sections of this sheaf are the same as sections of ( fT)∗(LT ⊗ f ∗T M) so we are
led to consider the universal coherent sheaf Q on S such that

f∗(K⊗ f ∗G) = HomS(Q,G)

for all quasi-coherent G on S.
We want to take G to be g∗M for g : T → S the structure morphism1. Since L and M are

locally free, we have the projection formula:

g∗(LT ⊗OXT
f ∗T M) = g∗(g∗L⊗XT f ∗T M) = L⊗OX g∗ f ∗T M.

Now f is flat so by flat base change, we have g∗ f ∗T M ∼= f ∗g∗M. Putting this together, we get

H0(LT ⊗OXT
f ∗T M) = H0(L⊗OX f ∗g∗M) = H0( f∗(L⊗OX f ∗g∗M))

= H0(HomS(Q, g∗M)) = HomS(Q, g∗M) = HomT(QT, M).

1Here we have to assume that g is qcqs so that this pushforward is quasi-coherent. You can convince
yourself that it is enough to prove representability in the category of qcqs S-schemes.
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In fact if one is more careful about the construction ofQ, one can show that it commutes with
arbitrary base change so that ( fT)∗(LT ⊗ f ∗T M) = HomT(QT, M) as sheaves rather than just
global sections, that is, the universal sheaf from the proposition for LT over T is the pullback
of the one for L over S.

Now the condition that a section s of LT ⊗OXT
f ∗T M is a regular section is equivalent

to st ∈ H0(Xt, Lt) being nonzero for each t ∈ T and thus the corresponding morphism
us : QT → M must be nonzero at each fiber over t ∈ T. Since M is a line bundle, M⊗ k(t) is
a rank 1 vector space and so us⊗ k(t) is nonzero if and only if it is surjective. By Nakayama’s
lemma, this implies us is surjective as a map of sheaves for all t ∈ T2. Thus us : QT → M is
a rank 1 locally free quotient of QT. By definition, this is a T point of the projective bundle
P(Q) over S.

On the other hand, given a T-point of P(Q), we can reverse the equalities above to
obtain a locally free quotient u : QT → M corresponding to a section s : OXT → LT ⊗ f ∗T M
which is nonzero on every fiber and thus regular. Therefore the vanishing subscheme D ⊂
XT of s satisfies that for all t ∈ T, Dt ⊂ Xt is a Cartier divisor. We need to check that D → T is
flat so that it is a relative effective Cartier divisor. Then by constructionOXT(D) = LT⊗ f ∗T M
and so D ⊂ XT gives a T-point of D[L]. For flatness, we have the following lemma.

Lemma 1. Let f : X → S be a flat morphism of finite type over a Noetherian scheme S and let
D ⊂ X be a closed subscheme such that for each s ∈ S, Ds ⊂ Xs is an effective Cartier divisor. Then
D → S is flat.

Proof. Let x ∈ D ⊂ X with s = f (x). We need to show thatOD,x is a flatOS,s-module. By the
local criterion for flatness, this is equivalent to the vanishing of TorOS,s

1 (k(s),OD,x). Consider
the long exact sequence associated to the ideal sequence

0→ ID,x → OX,x → OD,x → 0.

We have

TorOS,s
1 (k(s),OX,x)→ TorOS,s

1 (k(s),OD,x)→ ID,x ⊗ k(s)→ OX,x ⊗ k(s) = OXs,x.

Since the first term is zero by flatness of X → S, the required vanishing would follow
from injectivity of the last map. To see this injectivity, let f̄x ∈ OXs,x be a regular element
cutting out Ds at x ∈ Xs and let fx ∈ OX,x be a lift. Now multiplication by fx induces a map
OX,x ⊗ k(s) → OX,x ⊗ k(s) which is injective with image IDs,x. Thus we have an injective
map which factors as

OX,x ⊗ k(s)→ ID,x ⊗ k(s)→ OX,x ⊗ k(s)

where the first map is a surjection and so the required map is an injection.

This shows that E = Q is our required sheaf so that AJ−1
X/S(ϕ[L]) → S is representable

by the projective bundle P(E). If R1 f∗L = 0, then by the previous corollary, Q and f∗L are
locally free, dual to eachother, and commute with basechange. In particular, if this holds for
all T-points, then AJX/S is representable by smooth morphisms since a projective bundle is
smooth over the base when E is locally free.

2Here we have to use a finite presentation trick to reduce to T Noetherian as usual.
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2 Boundedness

Definition 1. We say the a moduli functor F : SchS → Set is bounded, or that the objects
parametrized by F form a bounded family, if there exists a finite type scheme T over S as well as
a T-point ξ ∈ F(T) such that for any field t : Spec k→ S and k-point ξt ∈ F(k), there exists a field
extension k′/k and a k′-point t′ ∈ T(k′) such that ξ|t′ = ξt ⊗k k′.

Intuitively, a bounded moduli problem, or a bounded family of geometric objects, is
one where there exists a family f : U → T over a finite type base scheme such that every
isomorphism class of objects in our moduli problem, appears as a fiber of f . In particular,
if F is representable by some fine moduli spaceM, then this induces a surjective morphism
T → M which exhibits the fine moduli space as being finite type over M. Essentially,
boundedness is a way of showing our moduli spaces are finite type.

Example 1. Let F = HP
X/S be the Hilbert functor for P a fixed Hilbert polynomial and f : X → S

a projective morphism over a Noetherian scheme. Then the boundedness of F was a result of uniform
CM regularity which allowed us to embed F into a fixed Grassmannian, which is of finite type.

Now let us consider our situation for the Picard functor: f : X → S is a flat projective
universal algebraic fiber space with section σ : S → X. Then for any T → S and any line
bundle L on XT, L is flat over T. Therefore the Hilbert polynomial PLt(d) is constant for
t ∈ T so the relative Picard functor can be written as a union⊔

P
PicP

X/S.

Our goal is for each of these components PicP
X/S to be bounded. As with the case of the

Hilbert functor, this boils down to a uniform CM regularity result.

Theorem 2. (SGA 6, Exp XIII) Let f : X → S be a projective morphism over a Noetherian scheme
S. Suppose the fibers of f are geometrically integral and of equal dimension r and fix a Hilbert
polynomial P. Then there exists an integer m such that for any field k and k-point ξ ∈ PicP

X/S(k)
corresponding to a line bundle L on Xk, L is m-regular.

Proposition 1. For each Hilbert polynomial P, there exists an m such that the Abel-Jacobi map
AJP(d+m)

X/S : CDivP(d+m)
X/S → PicP(d+m)

X/S is the projectivization of a locally free sheaf. In particular it
is a smooth, proper surjection.

Proof. Pick m so that L on Xk is m-regular for each k-point of PicP
X/S and consider the Abel-

Jacobi map for P(d +m). For any T-point of PicP(d+m)
X/S corresponding to L on XT, L(−m) has

Hilbert polynomial P, and in particular is m-regular. Therefore

Hi(Xt, L|Xt) = 0 i ≥ 1

for all t ∈ T. By cohomology and base change, Ri( fT)∗L = 0 for all i ≥ 1 and so ( fT)∗L is
locally free of rank P(m) and AJP(d+m)

X/S ×
PicP(d+m)

X/S
T ∼= P(E) where E is the locally free sheaf

(( fT)∗L)∨ on T.

Fact 1. For each m ∈ Z, twisting by OX(m) induces an isomorphism

PicP(d)
X/S
∼= PicP(d+m)

X/S .
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Corollary 1. The functor PicP
X/S is bounded.

Proof. By the Proposition, for each P, there exists an m such that the Abel-Jacobi map for
P(d + m) is surjective. Since CDivP(d+m)

X/S is of finite type, so PicP(d+m)
X/S is bounded. By the

previous fact, this functor is isomorphic to PicP(d)
X/S and so we are done.

Now let us say a few words about the proof of the uniform CM-regularity theorem for
the Picard functor. The proof is very similar to the prevoius uniform CM-regularity theorem
for the Quot funcotr. Recall that the idea there was to induct on the dimension of the ambient
projective space and restrict to a hyperplane section. More precisely, the proof there showed
the following.

Proposition 2. Let F be a coherent sheaf on a projective variety X over a field Spec k. Suppose we
have an exact sequence

0→ F (−1)→ F → FH → 0

given by restricting to a hyperplane section H such that FH is m-regular. Then:

(a) Hi(X,F (n)) = 0 for n ≥ m− i, and

(b) the sequence {dim H1(X,F (n)} is monotonically decreasing to zero for n ≥ m− 1.

In particular, H1(X,F (n)) = 0 for n ≥ (m − 1) + dim H1(X,F (m − 1)) so that F is [m +
dim H1(X,F (m− 1))]-regular.

In the previous incarnation of uniform CM-regularity the only place where we used that
F was a subsheaf of O⊕r

X was to bound H0(X,F (m)) in terms of the Hilbert polynomial P.
By the above proposition, we get that

dim H1(X,F (m− 1)) = H0(X,F (m− 1))− P(m− 1)

and so a uniform bound for H0(X,F (m− 1)) gives us a uniform bound for the regularity of
F . Thus, the main technical part of the proof of the theorem is to bound the dimension of
the space of global sections of a line bundle with fixed Hilbert polynomial.

Definition 2. The degree of a projective variety X ⊂ Pn
k of pure dimension r is given by the inter-

section number Hr where H is a section of OX(1).

The idea then is to relate the Hilbert polynomial, the degree, and the space of global sec-
tions and their restrictions to hyperplane sections (for the inductive step!) using Grothendieck-
Riemann-Roch and Serre duality. We won’t say more about the general proof here but let us
consider the easier case of X a smooth projective curve.

2.1 Boundedness of Picard for smooth projective curves

For C an integral projective curve over a field k, we can define the arithmetic genus

pa := dim H1(C,OC).

If Cν → C is the normalization of C, we define the geometric genus by

pg(C) := pa(Cν).
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When C is already normal, and thus regular, we have pg = pa and we simply call this
the genus g = g(C). On such a C we have the canonical bundle

ωC := Ω1
C/k.

Recall the statement of Serre duality.

Theorem 3. (Serre duality) Let C be a projective, integral and regular curve over a field. Then for
any locally free coherent sheaf E on C, there is a natural isomorphism

H1(C, E)∨ ∼= H0(C, ωC ⊗ E∨).

We also have the Riemann-Roch theorem which allows us to compute the Hilbert poly-
nomial of a line bundle.

Theorem 4. (Riemann-Roch) Let L be a line bundle on C a projective, integral and regular curve
over a field. Then

χ(L) := dim H0(C, L)− dim H1(C, L) = deg(L)− g + 1.

Note that for C an integral, regular, projective curve, the degree of C in the sense of
Definition 2 above is the same as the degree of OC(1). Then by Riemann-Roch, for L any
line bundle, we have

PL(m) = Dm + deg(L)− g + 1

where D = deg(C(∞)) = deg(C). Therefore, the Hilbert polynomial of a line bundle de-
pends only on the degree deg(L).

On the other hand, a Cartier divisor D ⊂ C is simply a zero dimensional subscheme
and it has constant Hilbert polynomial d = dimOD and the degree of OC(D) is simply d.
Thus, we can label the components of the Picard functor by the degree d = deg L and the
Abel-Jacobi map takes the form

AJd
X/S : CDivd

C/k = Hilbd
C/k → Picd

C/k.

Applying Riemann-Roch and Serre duality to L = ωC, we get that dim H0(C, ωC) = g
and deg(ωC) = 2g− 2. Then if L is a line bundle with deg L > 2g− 2,

dim H1(C, L) = dim H0(C, ωC ⊗ L−1) = 0

since deg(ωC ⊗ L−1) < 0. Therefore the Abel-Jacobi map is a smooth projective bundle for
d > 2g − 2, in fact equal to the projectivization P((π∗L)∨) where L is the universal line
bundle on C× Picd

C/k and π is the second projection. In particular, this gives boundedness.

3 Quotients by flat and proper equivalence relations

The last technical ingredient we need before we can prove representability of the Pi-
card functor is the existence of quotients by finite equivalence relations for quasi-projective
schemes. We begin with some generalities on categorical quotients.

Let C be a category with fiber products and a terminal object ∗. An equivalence relation
on an object X of C is an object R along with a morphism R → X ×∗ X such for each object
T, the map of sets R(T) ⊂ X(T)× X(T) is the inclusion of an equivalence relation on the set
X(T). The two projections give us two morphisms pi : R → X from an equivalence relation
to X.
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Definition 3. A categorical quotient of X by the equivalence relation R is an object Z as well as
a morphism u : X → Z such that u ◦ p1 = u ◦ p2 such that (Z, u) is initial with respect to this
property. That is, for any f : X → Y such that f ◦ p1 = f ◦ p2, there exists a unique morphism
g : Z → Y such that f factors through u, f = g ◦ u.

If such a pair (Z, u) exists, then it is unique up to unique isomorphism and is denoted
X/R. If X/R exists, we say that it is an effective quotient if the natural map

R→ X×X/R X

is an isomorphism.
More generally, we can consider maps R → X ×∗ X that are not necessarily monomor-

phisms but such that the image of R(T) → X(T)× X(T) is an equivalence relation. In this
can we can replace R with its image in X×∗ X if it exists to reduce to the previous situation.3

Example 2. (The case of a group quotient) Let G be a S-group scheme acting on an S-scheme X. Then
the action is given by a morphism m : G×S X → X and the product m× prX : G×S X → X×S X
is an equivalence relation on X in the category of S-schemes. If an effective quotient exists, we will
denote it X/G. Note that in this case, the fibers of the natural map u : X → X/G are exactly the
orbits of G.

Example 3. (A non-effective quotient) Consider A1 over an algebraically closed field k = k̄. The
group Gm acts on A1 by scaling and there are two orbits, U = A1 \ {0} and {0}. Now A1 →
Spec k is a categorical quotient but the fibers of this map are not orbits so the quotient isn’t effective.

Given an equivalence relation R → X ×S X on an S-scheme X, we say that R has prop-
erty P for any property of morphisms if the morphisms pi : R→ X have this property.

Theorem 5. Let X → S be a quasi-projective scheme over a Noetherian scheme S and suppose that
R → X ×S X is a flat and proper equivalence relation. Then an effective quotient X/R exists and
moreover it is a quasi-projective S-scheme.

3This doesn’t make a difference for us now but when we consider the more general category of algebraic
stacks, taking quotients by a finite map R → X ×S X versus its image R′ ⊂ X ×S X is exactly the difference
between a stack quotient and its coarse moduli space.
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