Lecture 15 - 16: The Abel-Jacobi map (cont.),
boundedness, quotients by equivalence relations

10/28/2019 & 10/30/2019

1 AJx/s is representable by projective bundles

Recall last time we defined the Abel-Jacobi map
A]X/S . CDiUX/S — PiCX/S
by (D C Xr1) — Ox, (D). We are proving the following.

Theorem 1. Suppose f : X — S is a flat projective universal algebraic fiber space with section
o : S — X. Suppose further that the fibers of f are geometrically integral. Then the Abel-Jacobi map
AJx/s : CDivy, g — Picx g is representable by a projective bundle. More precisely, for any scheme
T and T-point @1 : T — Picx g corresponding to a line bundle L on X, there exists a coherent
sheaf € on T such that the pullback A]g}S(T) — T is isomorphic to the projective bundle IP(E)
over T. Moreover, if R'(fr)«L = 0, then (1) (fr)«L commutes with base change, (2) £ and (fr).L
are locally free and dual to each other, and (3) the formation of £ commutes with base change. In
particular, if RY(fr)«L = O for all T-points, then AJx s is representable by smooth morphisms.

Proof. We have reduced to the case that T = S and are considering an S-point ¢ : S —
Picx s corresponding to a line bundle L on X. Let D|;) denote the fiber product AI§} s(oL).
We saw that T-point of D|;; corresponds to a line bundle M on T as well as a regular section
of LT ® f#M. Sections of this sheaf are the same as sections of (f7).(LT ® f;M) so we are
led to consider the universal coherent sheaf Q on S such that

f«(K® f7G) = Homs(Q,G)

for all quasi-coherent G on S.
We want to take G tobe g. M for ¢ : T — S the structure morphismﬂ Since L and M are
locally free, we have the projection formula:

8+(Lr ®oy, frM) = 8«(§L @, frM) = L @0y 8«frM.
Now f is flat so by flat base change, we have g, ffM = f*g.M. Putting this together, we get
HY(Lr ®oy fiM) = H(L®o, f*g:M) = H(f.(L ®0y f*g:M))
= H(Homs(Q, g.M)) = Homg(Q, g.M) = Homr(Qr, M).

Here we have to assume that g is qcgs so that this pushforward is quasi-coherent. You can convince
yourself that it is enough to prove representability in the category of qcqs S-schemes.
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In fact if one is more careful about the construction of Q, one can show that it commutes with
arbitrary base change so that (fr)« (Lt ® f+M) = Homr(Qt, M) as sheaves rather than just
global sections, that is, the universal sheaf from the proposition for Lt over T is the pullback
of the one for L over S.

Now the condition that a section s of Lt ®0x, frM is a regular section is equivalent

to s; € HO(X,g, L;) being nonzero for each t € T and thus the corresponding morphism
us : Qr — M must be nonzero at each fiber over t € T. Since M is a line bundle, M ® k(t) is
arank 1 vector space and so s ® k(t) is nonzero if and only if it is surjective. By Nakayama’s
lemma, this implies u;s is surjective as a map of sheaves for all t € Tﬂ Thus us : O — M s
a rank 1 locally free quotient of Qr. By definition, this is a T point of the projective bundle
P(Q) over S.

On the other hand, given a T-point of IP(Q), we can reverse the equalities above to
obtain a locally free quotient u : Qr — M corresponding to a section s : Ox, — Lt ® ftM
which is nonzero on every fiber and thus regular. Therefore the vanishing subscheme D C
X7 of s satisfies that forallt € T, D; C X;is a Cartier divisor. We need to check that D — T'is
flat so that it is a relative effective Cartier divisor. Then by construction Ox, (D) = Lt ® f;M
and so D C Xr gives a T-point of D|;;. For flatness, we have the following lemma.

Lemma 1. Let f : X — S be a flat morphism of finite type over a Noetherian scheme S and let
D C X be a closed subscheme such that for each s € S, Ds C X, is an effective Cartier divisor. Then
D — S is flat.

Proof. Letx € D C X withs = f(x). We need to show that Op , is a flat Og ;-module. By the

local criterion for flatness, this is equivalent to the vanishing of Tori9 **(k(s), Op,x). Consider
the long exact sequence associated to the ideal sequence

0—=Zpyx— Oxx = Opy — 0.
We have
Tor' % (k(s), Ox.x) — Tor' > (k(s), Opx) = Ipx @ k(s) = Oxr @ k(s) = Ox, .

Since the first term is zero by flatness of X — S, the required vanishing would follow
from injectivity of the last map. To see this injectivity, let £y € Ox, , be a regular element
cutting out D; at x € X, and let f, € Ox , be a lift. Now multiplication by f, induces a map
Oxx ®k(s) = Oxx ® k(s) which is injective with image Ip_y. Thus we have an injective
map which factors as

where the first map is a surjection and so the required map is an injection. O

This shows that £ = Q is our required sheaf so that A]g} s(@[r)) — S is representable
by the projective bundle P(£). If R'f,L = 0, then by the previous corollary, Q and f.L are
locally free, dual to eachother, and commute with basechange. In particular, if this holds for
all T-points, then AJx s is representable by smooth morphisms since a projective bundle is
smooth over the base when & is locally free. O

2Here we have to use a finite presentation trick to reduce to T Noetherian as usual.



2 Boundedness

Definition 1. We say the a moduli functor F : Schs — Set is bounded, or that the objects
parametrized by F form a bounded family, if there exists a finite type scheme T over S as well as
a T-point ¢ € F(T) such that for any field t : Spec k — S and k-point &; € F(k), there exists a field
extension k' /k and a k'-point t' € T (k') such that |y = & Qi k.

Intuitively, a bounded moduli problem, or a bounded family of geometric objects, is
one where there exists a family f : U — T over a finite type base scheme such that every
isomorphism class of objects in our moduli problem, appears as a fiber of f. In particular,
if F is representable by some fine moduli space M, then this induces a surjective morphism
T — M which exhibits the fine moduli space as being finite type over M. Essentially,
boundedness is a way of showing our moduli spaces are finite type.

Example 1. Let F = HY /s e the Hilbert functor for P a fixed Hilbert polynomial and f : X — S
a projective morphism over a Noetherian scheme. Then the boundedness of F was a result of uniform
CM regqularity which allowed us to embed F into a fixed Grassmannian, which is of finite type.

Now let us consider our situation for the Picard functor: f : X — S is a flat projective
universal algebraic fiber space with section ¢ : S — X. Then for any T — S and any line
bundle L on X7, L is flat over T. Therefore the Hilbert polynomial Py, (d) is constant for
t € T so the relative Picard functor can be written as a union

|_|Pic§/5.
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Our goal is for each of these components Pick /s to be bounded. As with the case of the
Hilbert functor, this boils down to a uniform CM regularity result.

Theorem 2. (SGA 6, Exp XIII) Let f : X — S be a projective morphism over a Noetherian scheme
S. Suppose the fibers of f are geometrically integral and of equal dimension r and fix a Hilbert
polynomial P. Then there exists an integer m such that for any field k and k-point ¢ € Pick /5(k)
corresponding to a line bundle L on Xy, L is m-regular.

Proposition 1. For each Hilbert polynomial P, there exists an m such that the Abel-Jacobi map

Alx/s P vm) CDzvX(d+m) — PICX(/d; ") s the projectivization of a locally free sheaf. In particular it
isa smooth proper surjection.

Proof. Pick m so that L on Xj is m-regular for each k-point of Pick /s and consider the Abel-

Jacobi map for P(d + m). For any T-point of Picl;((/ds+ m) corresponding to L on X7, L(—m) has

Hilbert polynomial P, and in particular is m-regular. Therefore
H' (X, Llx)=0i>1

for all t € T. By cohomology and base change, R'(fr).L = 0 for alli > 1 and so (fr).L is

locally free of rank P(m) and AJy g d+m) Xy parm T = P(E) where £ is the locally free sheaf
X/s

((fr)«L)Y on T. O

Fact 1. For each m € Z, twisting by Ox(m) induces an isomorphism

Plcx(/ds) = Pi X(/d; m).
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Corollary 1. The functor Pick g is bounded.

Proof. By the Proposition, for each P, there exists an m such that the Abel-Jacobi map for

P(d + m) is surjective. Since CDivg(/dS+ ") is of finite type, so Pi(:f{(/ds+ ") is bounded. By the

previous fact, this functor is isomorphic to Picf((/ds) and so we are done. O

Now let us say a few words about the proof of the uniform CM-regularity theorem for
the Picard functor. The proof is very similar to the prevoius uniform CM-regularity theorem
for the Quot funcotr. Recall that the idea there was to induct on the dimension of the ambient
projective space and restrict to a hyperplane section. More precisely, the proof there showed
the following.

Proposition 2. Let F be a coherent sheaf on a projective variety X over a field Spec k. Suppose we
have an exact sequence
0—->F(-1)—=F—=Fyg—0

given by restricting to a hyperplane section H such that Fy is m-reqular. Then:
(@) H(X,F(n)) =0forn>m—i,and
(b) the sequence {dim H' (X, F(n)} is monotonically decreasing to zero for n > m — 1.

In particular, H (X, F(n)) = 0 for n > (m — 1) +dim H (X, F(m — 1)) so that F is [m +
dim H'(X, F(m — 1))]-reqular.

In the previous incarnation of uniform CM-regularity the only place where we used that
F was a subsheaf of OF" was to bound H°(X, F(m)) in terms of the Hilbert polynomial P.
By the above proposition, we get that

dim HY (X, F(m — 1)) = H*(X, F(m — 1)) — P(m — 1)

and so a uniform bound for H°(X, 7 (m — 1)) gives us a uniform bound for the regularity of
F. Thus, the main technical part of the proof of the theorem is to bound the dimension of
the space of global sections of a line bundle with fixed Hilbert polynomial.

Definition 2. The degree of a projective variety X C P} of pure dimension r is given by the inter-
section number H" where H is a section of Ox(1).

The idea then is to relate the Hilbert polynomial, the degree, and the space of global sec-
tions and their restrictions to hyperplane sections (for the inductive step!) using Grothendieck-
Riemann-Roch and Serre duality. We won't say more about the general proof here but let us
consider the easier case of X a smooth projective curve.

2.1 Boundedness of Picard for smooth projective curves

For C an integral projective curve over a field k, we can define the arithmetic genus
pa :=dim H(C, O¢).
If C¥ — C is the normalization of C, we define the geometric genus by
pg(C) := pa(CY).
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When C is already normal, and thus regular, we have p, = p, and we simply call this
the genus ¢ = ¢(C). On such a C we have the canonical bundle

wc = Q]C/k.
Recall the statement of Serre duality.

Theorem 3. (Serre duality) Let C be a projective, integral and regular curve over a field. Then for
any locally free coherent sheaf £ on C, there is a natural isomorphism

HY(C, &)Y = HY(C,we ® EY).

We also have the Riemann-Roch theorem which allows us to compute the Hilbert poly-
nomial of a line bundle.

Theorem 4. (Riemann-Roch) Let L be a line bundle on C a projective, integral and reqular curve
over a field. Then

x(L) := dim H*(C,L) — dim H*(C, L) = deg(L) — g + 1.

Note that for C an integral, regular, projective curve, the degree of C in the sense of
Definition 2 above is the same as the degree of O¢(1). Then by Riemann-Roch, for L any
line bundle, we have

Pr(m) =Dm+deg(L) —g+1

where D = deg(¢(o0)) = deg(C). Therefore, the Hilbert polynomial of a line bundle de-
pends only on the degree deg(L).

On the other hand, a Cartier divisor D C C is simply a zero dimensional subscheme
and it has constant Hilbert polynomial d = dim Op and the degree of O¢(D) is simply 4.
Thus, we can label the components of the Picard functor by the degree d = deg L and the
Abel-Jacobi map takes the form

AJ% s : CDivd . = Hilbl ;. — Pict .

Applying Riemann-Roch and Serre duality to L = wc, we get that dim H°(C,w¢) = ¢
and deg(wc) = 2¢ — 2. Then if L is a line bundle with deg L > 2g — 2,

dim H(C,L) = dim H*(C,wc ® L™!) =0

since deg(wc ® L™!) < 0. Therefore the Abel-Jacobi map is a smooth projective bundle for
d > 2¢ — 2, in fact equal to the projectivization IP((77,L)") where L is the universal line
bundle on C X Pic’(’lj s and 7t is the second projection. In particular, this gives boundedness.

3 Quotients by flat and proper equivalence relations

The last technical ingredient we need before we can prove representability of the Pi-
card functor is the existence of quotients by finite equivalence relations for quasi-projective
schemes. We begin with some generalities on categorical quotients.

Let C be a category with fiber products and a terminal object *. An equivalence relation
on an object X of C is an object R along with a morphism R — X x, X such for each object
T, the map of sets R(T) C X(T) x X(T) is the inclusion of an equivalence relation on the set
X(T). The two projections give us two morphisms p; : R — X from an equivalence relation
to X.



Definition 3. A categorical quotient of X by the equivalence relation R is an object Z as well as
a morphism u : X — Z such that u o py = u o py such that (Z,u) is initial with respect to this
property. That is, for any f : X — Y such that f o py = f o p, there exists a unigue morphism
g Z — Y such that f factors through u, f = gou.

If such a pair (Z, u) exists, then it is unique up to unique isomorphism and is denoted
X/R. If X/R exists, we say that it is an effective quotient if the natural map

R—>X><X/RX

is an isomorphism.

More generally, we can consider maps R — X x, X that are not necessarily monomor-
phisms but such that the image of R(T) — X(T) x X(T) is an equivalence relation. In this
can we can replace R with its image in X x, X if it exists to reduce to the previous situationﬁ

Example 2. (The case of a group quotient) Let G be a S-group scheme acting on an S-scheme X. Then
the action is given by a morphism m : G X g X — X and the product m X prx : G Xxg X = X xg X
is an equivalence relation on X in the category of S-schemes. If an effective quotient exists, we will
denote it X/G. Note that in this case, the fibers of the natural map u : X — X /G are exactly the
orbits of G.

Example 3. (A non-effective quotient) Consider A over an algebraically closed field k = k. The
group Gy, acts on A by scaling and there are two orbits, U = A'\ {0} and {0}. Now A! —
Spec k is a categorical quotient but the fibers of this map are not orbits so the quotient isn't effective.

Given an equivalence relation R — X X g X on an S-scheme X, we say that R has prop-
erty P for any property of morphisms if the morphisms p; : R — X have this property.

Theorem 5. Let X — S be a quasi-projective scheme over a Noetherian scheme S and suppose that
R — X xg X is a flat and proper equivalence relation. Then an effective quotient X /R exists and
moreover it is a quasi-projective S-scheme.

3This doesn’t make a difference for us now but when we consider the more general category of algebraic
stacks, taking quotients by a finite map R — X xg X versus its image R’ C X xg X is exactly the difference
between a stack quotient and its coarse moduli space.
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