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1 fpqc Descent

Given a morphism p : S′ → S, we can consider the pullback functor p∗.

p∗ : QCoh(S)→ QCoh(S′)
F 7→ p∗F

Denoting by qi : S′′ := S′×S S′ → S′ the two projections, then the sheaf p∗F carries a natural
isomorphism

ϕ : q∗1 p∗F → q∗2 p∗F .

given by the isomorphism of functors

q∗1 ◦ p∗ ∼= (p ◦ q1)
∗ = (p ◦ q2) ∼= q∗2 ◦ p∗.

Now we can consider the various projections from the triple product,

qij : S′′′ := S′ ×S S′ ×S S′ → S′′.

Then for any sheaf F on S, we have the following commutative diagram.

q∗12q∗1 p∗F
q∗12 ϕ

// q∗12q∗2 p∗F = q∗23q∗1 p∗F
q∗23 ϕ

// q∗23q∗2 p∗F

q∗13q∗1 p∗F
q∗13 ϕ

// q∗13q∗2 p∗F

Said succinctly, we have the cocycle condition

q∗13ϕ = q∗23ϕ ◦ q∗12ϕ. (1)

Let QCoh(p : S′ → S) denote the category of pairs (F ′, ϕ) where F ′ is a quasi-coherent
sheaf on S′ and ϕ : q∗1F ′ → q2F ′ is an isomorphism satisfying the cocycle condition (1).
Then p∗ gives a functor

p∗ : QCoh(S)→ QCoh(p : S′ → S).

The question of descent is the question of when p∗ is an equivalence of categories. We say
that quasi-coherent sheaves satisfy descent along p or that descent holds for p when this
functor is an equivalence.1

1The cateogry QCoh(p : S′ → S) is sometimes called the category of descent data and the descent data in
the image of p∗ is called effective.
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Example 1. Suppose {Ui}i∈I is a Zariski open cover of S and let p : S′ =
⊔

i∈I Ui → S. Then S′′

is the disjoint union of intersections Ui ∩Uj, S′′′ is the disjoint union of triple intersections, and the
cocycle condition is the usual cocycle condition for gluing sheaves so quasi-coherent sheaves satisfy
descent along p.

Definition 1. A morphism p : S′ → S is fpqc2 if it is faithfully flat and each point s′ ∈ S′ has
a quasi-compact open neighborhood U ⊂ S′ with f (U) an open affine subset of S. A morphism
p : S′ → S if fppf if it is faithfully flat and of finite presentation.

fpqc and fppf morphisms satisfy many nice properties.

Fact 1. (i) the property of being fpqc or fppf is compatible under base-change and composition;

(ii) if p : S′ → S is fpqc, then S has the quotient topology of S′ by p. That is, U ⊂ S is open if and
only if f−1(U) ⊂ S′ is open;

(iii) an open faithfully flat morphism is fpqc;

(iv) an fppf morphism is open, and in particular, fpqc.

Many properties of schemes (resp. morphisms) are fpqc local (resp. fpqc local on the
target), meaning they can be checked after pulling back by an fpqc morphism. This includes
the propeties we defined for representability of morphisms in a previous lecture. The fol-
lowing is Grothendieck’s main theorem of descent.

Theorem 1. Let p : S′ → S be an fpqc morphism. Then quasi-coherent sheaves satisfy descent by p:

p∗ : QCoh(S) ∼= QCoh(p : S′ → S).

We can also talk about the question of descent for other objects on S. For example
we can consider the case of schemes X → S. Given such an X we can pull it back along
p to obtain X′ = p∗X → S′ an S′-scheme with an isomorphism ϕ : q∗1X′ → q∗2X′ of S′′-
schemes satisfying the cocycle condition on the triple fiber product S′′′. We have a category
of S′-schemes with descent data SchS′→S consisting of (X′, ϕ) where ϕ : q∗1X → q∗2X is an
isomorphism. Then p∗ gives a functor

p∗ : SchS → SchS′→S

and we can ask when p∗ is an equivalence.

Corollary 1. Let p : S′ → S be an fpqc morphism. Let A f fS be the category of affine S-schemes and
A f fS′→S the category of affine S′-schemes with descent data. Then

p∗ : A f fS → A f fS′→S

is an equivalence. That is, affine S-schemes satisfy fpqc descent. In particular, closed subschemes of S
satisfy fpqc descent.

2“faithfully flat and quasi-compact”
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Proof. The relative spec functor SpecS gives an equivalence of categories between affine S-
schemes and quasi-coherent OS-algebras over S. Moreover, p∗ : QCoh(S) → QCoh(S′) is
compatible with tensor products. Thus, it sends quasi-coherent OS-algebras to OS′-algebras
and the canonical isomorphism ϕ : q∗1 p∗A → q∗2 p∗A is an algebra homomorphism. Thus,
the equivalence

p∗ : QCoh(S)→ QCoh(p : S′ → S)

restricts to an equivalence on the subcategories of algebra objects which by the SpecS equiv-
alence gives us the first claim. For the second statement, closed subschemes of S correspond
to affine morphisms f : X → S such thatOS → f∗OX is a surjection, or equivalently, algebras
such that the canonical map OS → A is a surjection. As before, since p∗ is an equivalence
onto the category of quasi-coherent sheaves with descent data,OS → A is a surjection if and
only if OS′ → A′ is a surjection so closed subschemes descend to closed subschemes.

More generally, for any fpqc morphism, it is a fact that

p∗ : SchS → SchS′→S

is fully faithful. Essential surjectivity (ie effectivity of descent data) is more subtle but the
affine case above suggests that one should restrict to desent data (X, ϕ) for which there exists
an open affine cover of X by U such that ϕ restricts to an isomorphism q∗1U → q∗2U for each
U.

2 Grothendieck topologies and sheaves

Given a category C which has pullbacks, a collection of morphisms T generates3 a
Grothendieck topology if

(1) any isomorphism X → Y is contained in T ;

(2) for any U → X in T and any X′ → X, the pullback U′ → X′ is in T ;

(3) For any U → X and V → U in T , the composition V → X is in T .

Example 2. If Top is the category of topological spaces, then the collection of morphisms of the form
U =

⊔
i∈I Ui → X where {Ui} is an open cover X generate a grothendieck topology. Similarly,

replacing Top by SchS and open cover by Zariski open cover, we obtain the Zariski topology. 4

Definition 2. Let C be a category with Grothendieck topology generated by T . A presheaf F : C →
Set is a sheaf for T if

1. for any collection of objects {Ti}, F(
⊔

Ti) = ∏ F(Ti), and

3Technically, the collection T is not the Grothendieck topology, but rather a Grothendieck pre-topology, and
different pre-topologies may generate the same topology. The notion of sheaves which we will define shortly
depends only on the topology not the pre-topology but we won’t need this distinction here. One should think
of T is a sub-base for the topology.

4Note that here we are using a convenient notational trick of replacing an open covering {Ui} with their
disjoint union

⊔
Ui mapping to X.
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2. for any object X and morphism U → X in T , the sequence

F(X)→ F(U) ⇒ F(U ×X U)

is an equalizer where the maps are induced by the two projections.

The topologies we will consider now, beyond the Zariski topology, are the fpqc and
fppf topologies, where T is the collection of fpqc, respectively fppf morphisms. The main
theorem is the following.

Theorem 2. Let F be a representable functor SchS → Set. Then F is a sheaf for the fpqc topology.

We will leave this as an exercise, with the hint that this follows from fpqc descent. More
precisely, one uses the fact that for an fpqc morphism p : S′ → S, the functor p∗ : SchS →
SchS′→S is fully faithful.

Finally, we recall the notion of sheafification. Let F be any presheaf on a category C with
Grothendieck topology generated by a collection T . For any p : U → X in T , we define

H0(F, p) = Eq(F(U) ⇒ F(U ×X U)).

Now we define the presheaf F+ by

F+(X) = colim(p:U→X)∈T H0(F, p).

There is a natural morphism of presheaves F → F+. We have the following theorem.

Theorem 3. The construction F → (F → F+) is functorial in F. Moreover, for any F, the presheaf
F++ is a sheaf. Moreover, it is universal for sheaves receiving a map from F.

We call F++ the sheafification of F for the topology generated by T .

3 Quotients by flat and proper equivalence relations

We now return to the existence of quotients by flat and proper equivalence relations.
Given an equivalence relation R → X ×S X on an S-scheme X, one can consider the cate-
gorical quotient in the category of fppf sheaves on SchS. In this category, all quotients exist.
Indeed, we can define the quotient (X/R) f pp f as the fppf-sheafification of the presheaf

T 7→ X(T)/R(T)

where the latter denotes the quotient of the set X(T) by the set theoretic equivalence relation
R(T).

Lemma 1. Let f : X → Z be an fppf morphism of S-schemes and let R = X ×Z X ⊂ X ×S X.
Then Z is an effective quotient of X by R in the category of schemes, and moreover, Z represents the
fppf-sheafification (X/R) f pp f .

Proof. Let g : X → Y be any morphism such that g ◦ p1 = g ◦ p2 where pi : R → X are the
two projections. Then as a morphism of sheaves for the fppf topology, g factors uniquely
through (X/R) f pp f as X → (X/R) f pp f → Y. We conclude that if (X/R) f pp f is representable
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by a scheme, then it must be the categorical quotient of X by R. On the other hand, by fppf
descent, in particular, fully faithfulness of the functor

f ∗ : SchZ → SchX→Z,

Z represents the functor (X/R) f pp f and so Z is a categorical quotient of X by R. By assump-
tion, R = X×Z X so the quotient is effective.

Remark 1. This same analysis could have been carried out with the fppf topology replaced by the
fpqc topology.

Theorem 4. Let f : X → S be a quasi-projective scheme over a Noetherian scheme S and let
R ⊂ X ×S X be a flat and proper equivalence relation on X. Then an effective quotient X/R exists
and it is a quasi-projective S-scheme. Moreover, the map q : X → X/R is fppf.

Proof. Since R → X is flat and proper over a Notherian scheme, and so in particular, of
finite presentation, there are a finite number of Hilbert polynomials {P1, . . . , Pn} such that
the fibers of R → X have Hilbert polynomial P = Pi for some i. Let H =

⊔
HilbPi

X/S be the
quasi-projective S-scheme obtained as the union of these components of the Hilbert scheme
of X/S and letZ ⊂ X×S H be the universal family of subschemes over H. Then R ⊂ X×S X
gives an X-point of H, that is, a morphism

g : X → H

such that g∗Z = R.
Let Γg ⊂ X ×S H be the graph of g. Since H → S is separated, Γg ⊂ X ×S H is a closed

embedding. Now for any T, let x1, x2 ∈ X(T) be two T-points which by the isomorphism
Γg → X can be identified with T-points of the graph. Now we have

(x1, x2) ∈ R(T) ⇐⇒ (x1, gx2) ∈ Z(T) ⇐⇒ gx1 = gx2.

The first equality follows by the fact that g∗Z = R and the second from the fact that g is the
second projection from the graph and the properties of an equivalence relation. In particular,
since (x1, x1) ∈ R(T), then (x1, gx1) ∈ Z(T) so Γg ⊂ Z is a closed subscheme of Z .

Now Z → H is an fppf morphism. We claim that as subschemes of the fiber product
Z ×H Z , Γg ×H Z = Z ×H Γg. A T-point of either, by the string of equalities above and
the definition of a graph, corresponds to a pair (x1, x2) ∈ R(T) and so we conclude the
required equality. Then by fpqc descent of closed subschemes, Γg ⊂ Z descends to a closed
subscheme Y ⊂ H with an fppf morphism Γg → Y. By definition of the graph this can
be identified with the morphism g : X → H and so g factors through an fppf morphism
g : X → Y. By the lemma, this fppf morphism is an effective categorical quotient of X by
X ×Y X but again by the above string of equalities, this fiber product is just R. Therefore
g : X → Y is an effective categorical quotient of X by R. Finally, Y is a closed subscheme of
the quasi-projective S-scheme H so Y is quasi-projective.

4 Representability of the Picard functor

We are now ready to prove the main representability result, assuming the above theo-
rem on quotients by flat and proper equivalence relations. We need the following prelimi-
nary result.
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Proposition 1. Let f : X → S be a flat projective universal algebraic fiber space over a Noetherian
scheme S. Suppose S has a section σ : S → X and the fibers of f are geometrically integral. Then
PicX/S is an fppf sheaf.

Proof. Under these assumptions5, the functor PicX/S is isomorphic to the functor of σ-rigidified
line bundles PicX/S,σ. Now using fppf descent one can check that this latter functor is an fppf
sheaf.

Theorem 5. Let f : X → S be a flat projective universal algebraic fiber space over a Noetherian
scheme S. Suppose f has a section σ : S→ X and that the fibers of f are geometrically integral. Then
for each Hilbert polynomial P, the functor PicP

X/S is representable by a quasi-projective S-scheme.

Proof. By uniform CM regularity, there exists an m such that for any k-point of PicP
X/S cor-

responding to a line bundle L on Xk, then Hi(Xk, L(m)) = 0 for all i > 0. In particular, the
Abel-Jacobi map for P1(d) := P(d + m) is representable by smooth and proper surjections.
Let P2 be the Hilbert polynomial of the component of CDivX/S such that for any D ⊂ XT
with Hilbert polynomial P2, OXT(D) has Hilbert polynomial P1 and let us denote

D(P2) := CDivP2
X/S.

Let R denote the fiber product D(P2)×CDiv
P1
X/S
D(P2).

R //

��

D(P2)

��

D(P2) // PicP1
X/S

.

Then R → D(P2) ×S D(P2) is a flat and proper equivalence relation. By the fppf sheaf
condition,

PicP1
X/S

is the quotient in the category of fppf sheaves of D(P2) by R and by the previous theorem,
an effective quotient D(P2)/R exists in the category of quasi-projective S-schemes so this
quotient represents PicP1

X/S. Then tensoring by OX(m) induces an isomorphism

PicP1
X/S
∼= PicP

X/S

so we conclude representability of PicP
X/S by a quasi-projective S-scheme.

5Check which assumptions we actually need.
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