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1 Deformation theory of line bundles

Our goal now is to compute the local structure of the Picard scheme. In particular, we
can ask is it regular or smooth? The first step is to compute the tangent space. Recall the
following basic proposition from scheme theory.

Proposition 1. Let Y be a scheme and ξ : Spec k → Y a k-point. The tangent space TξY is the the
set of maps Spec k[ε]→ Y where ε2 = 0 such that the following diagram commutes

Spec k[ε] // Y

Spec k

OO

ξ

;;

In the case Y is the Picard scheme PicX/S, ξ corresponds to a line bundle L on Xk and
the tangent space is the fiber over [L] of the map of groups

PicX/S(k[ε])→ PicX/S(k).

Using the group action, we can tensor by L−1 so that we get a new point ξ ′ : Spec k→ PicX/S
corresponding to the line bundle L ⊗ L−1 = OXk . Since tensoring by a line bundle is an
isomorphism of functors, it suffices to compute the tangent space forOXk . This is the identity
of the group PicX/S(k) so weve deduced that the tangent space to the Picard scheme is
isomorphic to the kernel of the map above. That is, we have an exact sequence

0→ TξPicX/S → PicX/S(k[ε])→ PicX/S(k).

Proposition 2. The tangent space to ξ : Spec k → PicX/S corresponding to the line bundle OXk is
isomorphic to

H1(Xk,OXk).

Proof. The scheme Xk[ε] has the same underlying topological space as Xk with structure sheaf
OXk[ε]

= OX[ε] := OX ⊗k k[ε]. The map

PicX/S(k[ε])→ PicX/S(k)
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can be identified with the map

H1(Xk,OXk [ε]
∗)→ H1(Xk,O∗Xk

).

Here we are taking cohomology of sheaves of abelian groups on the underlying topological
space Xk. To compute the kernel, consider the short exact sequence of sheaves of abelian
groups, written multiplicatively.

1→ 1 + εOXk → OXk [ε]
∗ → O∗Xk

→ 1.

The multiplicative sheaf 1 + εOXk is isomorphic to the sheaf of additive abelian groups OXk

since ε2 = 0. Taking the long exact sequence of cohomology we get

H0(Xk,OXk [ε]
∗)→ H0(Xk,O∗Xk

)→ H1(Xk,OXk)→ PicX/S(k[ε])→ PicX/S(k).

The first map is surjective, so by exactness, the kernel of interest is H1(Xk,OXk) as claimed.

Having computed the tangent space to PicX/S, we can ask more generally if it is smooth
over S. Recall the following definition of formally smooth.

Definition 1. A map of schemes X → S is formally smooth if for any closed embedding of affine
S-schemes i : T → T′ defined by a square zero ideal, and any solid diagram as below, there exists a
dotted arrow making the diagram commute.

T

i
��

//

  

X
f
��

T′ // S

The advantage of formal smoothness is that it is a condition on the functor of points of
X → S on SchS. On the other hand, we have the following lifting criterion for smoothness.

Proposition 3. A morphism X → S is smooth if and only if it is formally smooth and locally of
finite presentation.

The conditions under which we proved representability of the Picard functor also gu-
rantee that PicX/S → S is locally of finite presentation. Thus we can check smoothness using
formal smoothness. It suffices to consider the case S = Spec R is affine. Then i : T → T′

corresponds to a surjection A′ → A of R-algebras with kernel I satisfying I2 = 0. The lifting
criterion to smoothness then asks the question of when

PicX/S(A′)→ PicX/S(A)

is surjective. Repeating the argument from the computation of the tangent space, we get the
following.

Proposition 4. Suppose f : X → S is an S-scheme which is A-flat. Then we have an exact sequence

0→ H1(XA, f ∗ I)→ Pic(XA′)→ Pic(XA)→ H2(XA, f ∗ I).
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Proof. By A-flatness of X, we have that the sequence

0→ f ∗ I → OXA′
→ OXA → 0,

obtained by pulling back 0 → I → A′ → A → 0 to X, is exact. Since I is square zero, we
have the following exact sequence of multiplicative groups.

1→ 1 + f ∗ I → O∗XA′
→ O∗XA

→ 1

Taking the long exact sequence of cohomology and using the fact that the multiplicative
sheaf 1 + f ∗ I is isomorphic to the additive sheaf f ∗ I and that the map H0(XA,O∗XA′

) →
H0(XA,O∗XA

) is surjective concludes the proof.

Corollary 1. Suppose T → T′ is a square zero thickening of affine schemes corresponding to A′ →
A. Then Pic(T′)→ Pic(T) is an isomorphism.

Proof. By the proposition, we have an exact sequence

H1(T, I)→ Pic(T′)→ Pic(T)→ H2(T, I).

Now I is quasi-coherent and T is affine so the first and last groups vanish.

Putting this all together, we get the following result.

Theorem 1. Let S = Spec R be an affine Noetherian scheme and suppose that f : X → S is as in
the existence theorem for the Picard scheme.1 Then for any A′ → A a morphism of R-algebras with
square-zero kernel I, and any diagram

Spec A
ξ //

��

PicX/S

f
��

Spec A′ // S

there exists an element obs(ξ) ∈ H2(XA, f ∗ I) such that a lift ξ ′ : Spec A′ → PicX/S exists if and
only of obs(ξ) = 0. Moreover, in this case, the set of such lifts is a torsor2 for the group H1(XA, f ∗ I).

Proof. Combining the above proposition and corollary, we see that for T → T′ being a
square-zero thickening of affine schemes, the exact sequence of Proposition 5 becomes an
exact sequence

0→ H1(XA, f ∗ I)→ PicX/S(A′)→ PicX/S(A)→ H2(XA, f ∗ I).

Here we have used the assumptions on f : X → S only to gurantee that PicX/S(A) =
Pic(XA)/Pic(A) and similarly for A′. Then the statement of the theorem is just a reinterpre-
tation of exactness. Indeed ξ gives an element of PicX/S(A) and its image in H2(XA, f ∗ I)
is obs(ξ). Then ξ is in the image of the middle map if and only if it is in the kernel of the
last map if and only of obs(ξ) = 0. When this happens, the set of preimages of ξ under
the middle map has a free and transitive action by the kernel of the middle map, which is
exactly the image of H1(XA, f ∗ I)→ PicX/S(A′).

1These assumptions can be relaxed for deformation theory but we keep them here for simplicity.
2a set with a free and transitive action of
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This is an exampe of a deformation-obstruction theory, in this case for the Picard func-
tor. The connecting map obs : PicX/S(A) → H2(X, f ∗ I) and the association that takes a
square-zero thickening of affine schemes A′ → A to the groups H∗(X, f ∗ I) is functorial in I.
The group H2(X, f ∗ I) is the obstruction group and H1(X, f ∗ I) is the group of first order defor-
mations. The special case where A′ = k[ε]→ A = k gives us the tangent space to PicX/S and,
analagously, the deformation-obstruction theory can be thought of as encoding functorially
the local structure of PicX/S.

In general, one can ask whether a moduli functor admits a deformation-obstruction
theory which has the features above (an obstruction group which receives an obstruction
map whose image vanishes if and only if a lift exists and a deformation group under which
the set of lifts is a torsor if its nonempty which are functorial in the square-zero extension
A′ → A). This forms the basis of Artin’s axiomatic approach to representability of moduli
problems by algebraic spaces and stacks.

From the previous result, we have the following corollary.

Corollary 2. Let f : X → S as in the existence theorem for the Picard scheme and suppose further
that the fibers are curves. Then PicX/S is smooth over S of relative dimension g, the arithmetic genus
of the family of curves f .

Proof. We can suppose without loss of generality that S = Spec R is affine. Then the state-
ment follows from the lifting criterion for smoothness (since PicX/S → S is locally of finite
type and S is Noetherian). To check that the lifting holds, it suffices to check that obstruction
group vanishes. By the theorem this is a second coherent cohomology group which vanishes
since X → S is a curve. Finally, the tangent space to a fiber over Spec k→ S is computed by
H1(Xk,OXk) which is g = pa dimensional.

2 Jacobians of integral curves

We saw previously that when X is a smooth projective curve over a field, the Hilbert
polynomials of line bundles are just indexed by the degree d and the Abel-Jacobi map is
given as

AJd
X/k : Hilbd

X/k → Picd
X/k

from the Hilbert scheme of zero dimensional subschemes with Hilbert polynomial constant
d, that is, subschemes of length d, to the component of the Picard scheme of degree d line
bundles. Moreover, we saw using Riemann-Roch and Serre duality that for d > 2g− 2, AJd

X
is a smooth projective bundle with fiber dimension d − g. By the results of the previous
section on deformation theory, we also know that Picd

X/k is smooth. In particular, since the
genus g is constant in flat families, this holds in the relative setting so that

AJd
X/S : Hilbd

X/S → Picd
X/S

is a smooth projective bundle of rank d− g for d > 2g− 2 whenever f : X → S is a smooth
integral projective one dimensional universal algebraic fiber space with a section over a
Noetherian base. Moreover, we saw in the smooth case Picd

X/S is in fact proper.

Definition 2. The Jacobian JacX/S = Pic0
X/S is the degree zero component of the Picard scheme.
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In particular, when f : X → S is a smooth curve with the assumptions above JacX/S → S
is a smooth and proper group scheme over S so it is an abelian scheme. Moreover, in this
case, if f : X → S has a section σ : S→ X, then twisting by OX(σ(S)) gives an isomorphism
Picn

X/S
∼= Picn+1

X/S and so each component is isomorphic to the Jacobian.3

In the special case when S = Spec C it is the abelian variety corresponding to the g-
dimensional complex analytic torus

H1(X,OX)/H1(X, Z).

Indeed using the exponential sheaf sequence

0 // 2πiZX // OX
exp
// O∗X → 0

one can identify the degree map deg : PicX/S → Z with the connecting map H1(X,O∗X) →
H2(X, Z) and exactness implies ker(deg) is the claimed quotient.

2.1 Singular curves

We are interested more generally in the case that f : X → S is a family of integral but
not necessarily smooth curves. Under the usual assumptions, we have proved the existence
of the Picard scheme and have constructed an Abel-Jacobi map from an open subscheme of
Hilbn

X/S. In the case where the fibers of f are also assumed to be Gorenstein, then the picture
is almost identical.

Remark 1. Recall that a quasi-projective scheme X/k is Gorenstein if it is Cohen-Macaulay and the
dualizing sheaf ωX/k is a line bundle. The most important case for us to note is that local complete
intersection varieties, and in particular hypersurfaces, are Gorenstein. In this case, the theory of
adjunction tells us that if X is a hypersurface in a smooth variety P, then ωX/k = ωP/k⊗OP(X)|X
where for a smooth variety ωP/k = Ωdim X

X/k .

The main input we need is that Riemann-Roch and Serre duality work as expected for
X/k an integral Gorenstein curve.

Theorem 2. Let X/k be an integral Gorenstein curve with arithmetic genus g = pg := dim H1(X,OX).
Then for any line bundle L,

Hi(X, L)∨ ∼= H1−i(X, ωX ⊗ L∨)

and there exists a number d = deg L such that

χ(X, L) = deg L + χ(OX) = deg L + 1− g.

By the previous remark, the theorem holds in particular whenever the integral curve
X is embedded in a smooth surface S. In fact, we ony need to assume such an embedding
locally since both the Cohen-Macualay condition and the condition of being a line bundle
are local. In particular, we have that curves with singularities that can be embedded in the
affine plane4 are Gorenstein. We call such curves locally planar.

3More generally, the components Picn
X/S are torsors over JacX/S.

4equivalently, have tangent space dimension 2
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The upshot, is that for f : X → S a flat family of projective Gorenstein curves satisfying
the usual assumtpions, the structure of PicX/S is almost identical to the smooth case. The
components are indexed by degree d, the Abel-Jacobi map is a smooth projective bundle
above degree 2g− 2 with fibers of dimension d− g, and the degree 0 component JacX/S → S
is a smooth group scheme of relative dimension g where g = pa is the arithmetic genus of
the family. The one thing that fails is properness, as we have seen.

Let X/k be projective Gorenstein curve with arithmetic genus g = pa and let ν : Xν → X
be the normalization so that Xν is a smooth projective curve of genus pg ≤ g, the geometric
genus of X/k. Pulling back gives us a homomorphism

ν∗ : PicX/k → PicXν/k

of group schemes which preserves the degree.
On the other hand, consider the short exact sequence of sheaves on X

1→ O∗X → ν∗O∗Xν → F → 1

where F is the cokernel of the pullback map on invertible functions. Then F is a direct
sum of skyscraper sheaves of abelian groups supported at the singular points of X. Now
we take the long exact sequence of cohomology, noting that H1(X,F ) = 0 since F is sup-
ported on points, that the pullback map on global functions is an isomorphism, and that
H1(X, ν∗O∗Xν) = H1(Xν,O∗Xν) since ν is finite, we get the short exact

1→ H0(X,F )→ H1(X,O∗X)→ H1(Xν,O∗Xν)→ 1

of abelian groups. The latter map is the pullback map ν∗ on Picard groups and since ν∗

preserves degrees, we get a short exact sequence

1→ H0(X,F )→ Pic0(X)→ Pic0(Xν)→ 0.

The same analysis can be performed for XT for any T → Spec k and so we get an exact
sequence of group schemes

1→ F → JacX/k → JacXν/k → 0

where F is the commutative group scheme over k representing the sheafification of the func-
tor

T 7→ H0(XT,FT)
5

The main thing to note is that the group scheme F is a direct sum over each singular point
x ∈ X of a local factor Fx depending only on the stalk Fx of the skyscraper F . On the other
hand, Fx depends only on the completed local ring ÔX,x which allows us to compute F in
examples.

Example 1. (The node) Suppose x ∈ X has a split nodal singularity. That is, the completed local
ring is isomorphic to R = kJx, yK/xy. The normalization has completed local ring R̃ = kJxK× kJyK.
Then the stalk of Fx can be computed from the sequence

1→ R∗ → R̃∗ → Fx → 1.
5Note since F is a union of skyscrapers, this is just the locally constant sheaf associated to the group

H0(X,F ).
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Then the map R̃∗ → k∗ given by ( f , g) 7→ f (0)/g(0) identifies Fx with k∗ so F is the skyscraper
sheaf k∗x and the group scheme F is simply Gm. More generally, suppose X has exactly δ split nodal
singular points and is smooth elsewhere. Then we have an exact sequence

1→ G⊕δ
m → JacX/k → JacXν/k → 0

where JacXν/k is a g− δ dimensional abelian variety.

Example 2. (The cusp) Suppose x ∈ X has a cuspidal singularity with completed local ring isomor-
phic to kJx, yK/{y2 = x3}. Then R̃ = kJtK with the map R → R̃ given by (x, y) 7→ (t3, t2). The
cokernel of R∗ → R̃∗ can be identified with the map R̃→ k given by

g(t) 7→ g(t)− g(0)
t

∣∣
t=0.

Therefore, F = Ga is the additive group and we have an exact sequence

0→ Ga → JacX/k → JacXν/k → 0

3 Compactified Jacobians

Our goal now is to compactify the Jacobian, or more generally Picd for f : X → S a
family of locally planar, or more generally Gorenstein, integral curves.

The idea is to again leverage the Abel-Jacobi map as in the construction of PicX/S. In
the case of curves we have the space of degree d Cartier divisors CDivd

X/S sitting inside of
the Hilbert scheme Hilbd

X/S. While CDivd
X/S is not proper, Hilbd

X/S is and so the idea is to
extend functor of PicX/S to something that admits an Abel-Jacobi map from the proper S-
scheme Hilbd

X/S and then construct a representing object as a quotient of Hilbd
X/S by a flat

and proper equivalence relation.
If D ⊂ X is a length d subscheme that is not necessarily a Cartier divisor, then the ideal

sheaf ID is not a line bundle, but it is a rank 1 torsion free sheaf.

Definition 3. Let X/k be an integral variety over a field. A torsion free sheaf on X is a coherent
sheaf E such that the support Supp(E) has no embedded points. Equivalently, the annihilator of E is
the 0 ideal. The rank of a torsion free sheaf is the rank of the generic fiber Eη.

Now to see that ID for D ⊂ X a closed subscheme of an integral curve X/k is a rank 1
torsion free sheaf, note that ID ⊂ OX and OX is torsion free. Moreover, the inclusion is an
isomorphism away from D so the rank of ID is 1. In this setting, a point D ⊂ X of the Hilbert
scheme is called a generalized divisor.

Definition 4. The degree of a rank 1 torsion free sheaf I on an integral curve X/k is defined as

χ(I)− χ(OX).

This definition of degree generalizes the degree of a line bundle on a smooth projective
curve as computed by Riemann-Roch. Now we can define the compactified Picard functor.

Definition 5. Let f : X → S be a projective family of integral curves. A family of rank 1 degree d
torsion free sheaves on X is an S-flat coherent sheaf I on X such that I|Xs is a rank 1 degree d torsion
free sheaf on Xs for each s ∈ S.
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Definition 6. Let f : X → S be a flat projective family of integral curves. For each integer d, the
compactified Picard functor Picd

X/S : SchS → Set given by

T 7→ {families of rank 1 degree d coherent sheaves on XT → T}/Pic(T).

Note that a line bundle L on XT is in particular a family of rank 1 degree d coherent
sheaves on XT so that Picd

X/S is a subfunctor of Picd
X/S. The special case d = 0, the compact-

ified Jacobian, will be denoted by JacX/S.

Remark 2. Note that as in the case of the usual Picard functor, if our family of f : X → S has a
section σ that is contained in the regular locus, then σ(S) is a relative Cartier divisor of degree 1 and
twisting by OX(−dσ(S)) gives an isomorphism of functors

Picd
X/S → JacX/S.

This happens in particular if S = Spec k and X \ Xsing has a rational point.

The idea now is to extend the Abel-Jacobi map AJd
X/S : CDivd

X/S → Picd
X/S to the com-

pactified Jacobian.

Hilbd
X/S

AJd
X/S // Picd

X/S

CDivd
X/SAJd

X/S

//

OO

Picd
X/S

OO

The extension must be defined on points by sending a flat closed subscheme of degree d
D ⊂ XT to rank 1 torsion free sheaf I∨D := HomXT(ID,OXT). The problem is that when ID
is not a line bundle, taking duals isn’t well behaved in general so its not clear this is a well
defined natural transformation of functors. However, we have the following results due to
Hartshorne. Let us denote I∨D by OX(D) in analogy with the Cartier case.

Proposition 5. (Properties of generalized divisors on Gorenstein curves) Suppose X/k is a Goren-
stein integral curve and let I be a rank 1 torsion free sheaf on X. We have the following:

(a) the natural map I → (I∨)∨ is an isomorphism6,

(b) degOX(D) = deg D,

(c) Riemann-Roch and Serre duality hold for OX(D).

Moreover, we have the usual correspondence between the set of D ⊂ X such that
OX(D) ∼= L and sections H0(X, L). Note that these two are also in bijection with HomX(ID,OX).

The above facts tell us that the Abel-Jacobi map for Picd
X/S works as expected on the

level of points when f : X → S is a flat projective family of integral Gorenstein curves. The
missing piece is that it behaves well under base-change. This comes from a certain general-
ization of the cohomology and base change theorem for Exti groups rather than cohomology
groups due to Altman and Kleiman. In this particular case we get the following.

6that is, I is a reflexive sheaf
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Theorem 3. (Altman-Kleiman) Suppose f : X → S is a flat projective family of integral Gorenstein
curves and I a family of torsion free sheaves on f : X → S. Then HomX(I,OX) is flat and its
formation commutes with arbitrary base change.

The key point here is that the vanishing of H1 that implies that pushforwards commute
with basechange is replaced in this case with a vanishing Ext1

Xk
(Ik,OXk) = 0 which holds

since Xk is Gorenstein. This implies that the Abel-Jacobi map is a well defined natural trans-
formation of functors, and by repeating the argument for the Picard group we obtain the
following theorem of Altman and Kleiman.

Theorem 4. Let f : X → S be a flat projective family of integral Gorenstein curves over a Noetherian
scheme satisfying conditions (∗∗). Then Picd

X/S is representable by a projective S-scheme. Moreover,
the Abel-Jacobi map

AJd
X/S : Hilbd

X/S → Picd
X/S

is identified with the projectivization of a coherent sheaf. When d > 2g− 2 where g is the arithmetic
genus of f : X → S, the Abel-Jacobi map is a smooth projective bundle of rank d− g.

Example 3. Let X/k be a projective geometrically integral Gorenstein curve of genus 1. Then the
the d = 1 Abel-Jacobi map Hilb1

X/k = X → Pic1
X/k is a smooth projective bundle of rank 1− 1 = 0,

that is, its an isomorphism. In this case, Pic1
X/k is the curve itself and the points in the boundary

Pic1
X/k \ Pic1

X/k

correspond to the maximal ideal I of the singular point, or more precisely, itsOX dualHomOX(I,OX).

4 The topology of compactified Jacobians

For this section let us work over k = C the complex numbers. Let X/k be a projective
integral Gorenstein curve. To study the topology of JacX, we will leverage the action of JacX
by tensoring with a degree 0 line bundle.

Toward that end, let I a rank 1 degree 0 torsion free sheaf and L a line bundle. Consider
the endormorphism algebra A = EndOX(I). This is a finite extension of OX with generic
fiber equal to the function field k(X). Thus X′ := Spec XA is an integral curve mapping
finitely and birationally to X. That is, f : X′ → X is a partial normalization of X. Moreover,
I is an A-algebra and by construction, f∗OX′ = A, therefore I is an f∗OX′-module and by
pulling back sections we get an OX′-module I ′ such that f∗I ′ = I . In this way, every rank
1 torsion free sheaf on X is pushed forward from some partial normalization.

Lemma 1. The sheaf I ⊗ L is isomorphic to I if and only if f ∗L ∼= OX′ where f : X′ → X is the
partial normalization associated to I .

Proof. If f ∗L is trivial, then I ⊗ L = f∗(I ′ ⊗ f ∗L) = f∗I ′ = I by the projection formula.
Similarly, consider

Hom(I , I ⊗ L) = End(I)⊗ L = f∗OX′ ⊗ L = f∗(OX′ ⊗ f ∗L) = f∗ f ∗L.

Then if I ∼= I ⊗ L, such an isomorphism would give a nonzero section of f ∗L. On the other
hand, f ∗L is a degree 0 line bundle so if it has a section it is trivial.
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We will consider the topological Euler characteristic etop of Picd
X. This is a topological

invariant valued in the integers. We will need the following properties of the Euler charac-
teristic.

Fact 1. 1. If Z ⊂ X is a closed subvariety and X \ Z = U the open complement, then etop(X) =
etop(U) + etop(Z).

2. If f : X → Y smooth and proper morphism then etop(X) = etop(Y)etop(F) where F is any
fiber of f .7 More generally, suppose f is a proper fibration, the same is true.

3. etop(point) = 1 and etop(S1) = 0. In particular etop(torus) = 0.

When X is smooth, then the Jacobian is a g(X) dimensional abelian variety. In partic-
ular, by the third fact, etop(JacX) = 1 if g = 0 since JacX is a point, and etop(JacX) = 0 for
g > 0 since it is topologically a torus. That is, one can distinguish smooth rational curves by
etop(JacX). The following proposition generalizes this.

Proposition 6. Suppose the normalization Xν of X has genus g(Xν) ≥ 1. Then etop(JacX) = 0.

Proof. Consider the exact sequence of group schemes

0→ F → JacX → JacXν → 0.

We saw above that F is an extension of multiplicative and additive groups Gm and Ga. In
particular, F is divisible as an abstract abelian groups and so this sequence splits as a se-
quence of abelian groups8. Since g(Xν) ≥ 1, then JacXν is an abelian variety of dimension at
least 1. Thus for each n, there exists an element of order n. Using this noncanonical splitting,
we can lift this to an element of order in JacX, that is, a line bundle L on X with L⊗n ∼= OX.
Then the pullback of L to Xν is nontrivial by construction since it pulls back to an element
of order n. In particular, for any partial normalization f : X′ → X, f ∗L is nontrivial. Thus
by the previous lemma, for any rank 1 torsion free sheaf I on X, I ⊗ L 6∼= I . That is, the
action of L has no fixed points on JacX. In fact tensoring by L induces a free action of Z/nZ

on JacX. Therefore etop(JacX) is divisible by n, but n was arbitrary so etop(JacX) = 0.

Now let f : X → S be some flat and propre family of integral Gorenstein curves over
C and suppose Srat := {s ∈ S | Xs is rational}9 is a finite set. Then we have the relative
compactified Jacobian

JacX/S → S

which is proper over S. Now for any proper map Y → S of complex varieties, there is a
locally closed decomposition S = tSα such that Yα → Sα is a proper fibration with fiber Fα.
Using additivity and multiplicativity propertes of etop above, we see that

etop(Y) = ∑
α

etop(Sα)etop(Fα).

In our case at hand where Y = JacX/S → S, by the proposition, we see that etop(Fα) = 0 over
any stratum where where the curve Xs has geometric genus ≥ 1. Therefore the whole sum
collapses to the points Srat which are assumed to be finite. Therefore we get the following
computation.

7Note that the fibers of a smooth and proper morphism have diffeomorphic underlying complex manifolds.
8not necessarily as group schemes
9Recall a curve is rational of the genus of Xν is 0, that is, Xν ∼= P1.
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Proposition 7.
etop(JacX/S) = ∑

s∈Srat

etop(JacXs).

In particular, etop(JacX/S) counts the number of rational curves in the fibers f : X → S,
weighted with multiplicity given by the topological Euler characteristic of their compactified
Jacobian. Beauville used this to give a proof of a remarkable formula of Yau-Zaslow counting
the number of rational curves on a K3 surface which we will now sketch.

5 The Yau-Zaslow formula

We continue working over C. Recall that a K3 surface is a smooth projective surface X
with trivial canonical sheaf

ωX := Λ2ΩX
∼= OX

and H1(X,OX) = 0. A polarized K3 surface is a pair (X, H) where X is a K3 surface and H is
an ample line bundle. The degree of (X, H) is d = c1(H)2.

Consider the linear series |H| = P(H0(X, H)). It is a g-dimensional space where
d = 2g − 2 and the curves in |H| have arithmetic genus g by the adjunction formula. In-
side X × |H| we have a universal family of curves C → |H| with the fiber over a point
being the curve in the linear series parametrized by that point. Indeed one can identify
|H| with a component of the Hilbert scheme corresponding to effective Cartier divisors
D with OX(D) ∼= H. In general, this is an Abel-Jacobi fiber but in this case we see that
H1(X,OX) = 0 by definition of a K3 so PicX is zero dimensional and so the fibers are the
components. Then C → |H| is simply the universal family of the Hilbert scheme over this
component.

Lemma 2. There are finitely many rational curves parametrized by |H|.

Proof. Suppose that the locus in |H| ∼= Pg parametrizing rational curves is higher dimen-
sional. Then there exists an irreducible curve B0 ⊂ |H| contained in the rational locus and
over B0 there is a family of rational curves R0 → B0. Taking the normalization of both sides,
we obtain a family R → B where B is integral and the generic fibers are smooth rational
curves. Thus R → B contains a generically ruled surface R′ → B as a component. On the
other hand, we have a map R′ → X which is dominant. This is a contradiction as X is a
K3.

Let n(g) denote the number of rational curves in |H| for a generic polarized complex
K3 surface (X, H) Then we have the following formula of Yau-Zaslow. We will sketch the
proof of Beauville which is based on the topology of compactified Jacobians.

Theorem 5 (Yau-Zaslow).

1 + ∑
g≥1

n(g)qg = ∏
n≥1

1
(1− qn)24

In particular, the numbers n(g) are constant for general (X, H).
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Proof. (Sketch) Let (X, H) be a generic genus g K3 surface. It is hard theorem which we
won’t cover here that in this case, every curve in |H| is integral and in fact has at worst
nodal singularities.10 Let C → |H| be the universal family of curves in this linear series. By
the integrality we have a relative compactified Picard. consider the degree g piece

Picg
C/|H| → |H|.

This family is fiberwise isomorphic to JacC/|H| → |H| (though it could be globally different
if there is no global section of C → |H|) so the argument in the previous section tells us that

etop(Picg
C/|H|) = ∑

Cs rational curves in |H|
etop(JacCs).

We saw in the above examples that C is a nodal cubic, JacC
∼= C and in particular has

topological euler characteristic 1. This generalizes as follows.

Lemma 3. If C is an integral rational curve with at worst nodal singularities, then etop(JacC) = 1.

We won’t give the details of the proof but the idea is that topologically, JacC is a product
over local contributions that are each homeomorphic to the above example and so the euler
characteristic is still 1. Thus we get that

ng = etop(Picg
C/|H|).

Now given a point of Picg
C/|H| corresponding to a pair (C, L) where C is smooth and L

is a line bundle of degree g, then
χ(C, L) = 1

by Riemann-Roch. On the other hand, by semi-continuity of coherent cohomology, there
exists an open subset U ⊂ Picg

C/|H| parametrizing such pairs where H1(C, L) = 0. On this
open subset, we in fact that that H0(C, L) = 1 and so L has a unique section. The zero locus
of this section is a zero dimensional degree g subscheme of X which gives a point of Hilbg

X,
the Hilbert scheme of g points. This gives a rational and generically injective map

Picg
C/|H| 99K Hilbg

X.

The source and the target of this map are in fact smooth holomorphic symplectic vari-
eties11 of the same dimension. In particular, this map is birational and then it follows from
a result of Batyrev and Kontsevich or a result of Huybrechts that the source and the target
then have the same euler characteristics.12

Thus we have that
ng = etop(Hilbg

X).

10Of course this isn’t true for any (X, H) and here is where the genericity assumption comes in. In fact this
statement was only conjectured at the time of the proof of the Yau-Zaslow formula and it was only proved a
few years later.

11A holomorphic symplectic variety V is one with a holomorphic 2-form ωH0(V, Ω2
V) which is anti-

symmetric, closed, and nondegenerate. In this case the existence of such a form on these two moduli spaces
follows from more general work of Mukai on moduli of sheaves on a K3 surface, which both of these spaces
are examples of.

12In fact they are even diffeomorphic.
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Finally, in the next few classes we will study the geometry of the Hilbert scheme of points
on surfaces and prove both the above smoothness and irreducibility claim, as well as the
formula that in this particular case of X being a K3,

∑
g≥0

etop(Hilbg
X)q

g = ∏
n≥1

1
(1− qn)24 ,

completing the proof.
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