Lecture 22: Hilbert schemes of points on surfaces

1 The topology of Hilbert schemes of points on surfaces

Let S = C and X/S a smooth quasi-projective surface. Our goal now is to study the
topology of the Hilbert schemes of points Hilby parametrizing subschemes Z C X with
Hilbert polynomial constant n. That is, Z is a zero dimensional subscheme with

dimc OZ =n.

Our goal is to sketch the proof of the following theorem, which is a combination of
results due Fogarty, Briancon, and Gottsche.

Theorem 1. Let X /C be a smooth quasi-projective surface. Then HilbY is a smooth and irreducible
quasi-projective 2n-fold. Moreover, the topological Euler characteristic of the Hilbert schemes of
points on X are given by the following formula.

1
Y ewop(Hilb%)g" = T

n>0 ms0 (1 — gn)eerX)

This completes the sketch of the proof of the Yau-Zaslow formula from last class, and
in fact also implies the following about compactified Jacobians.

Theorem 2. Let C be an integral locally plana curve over C. Then Jacc is an irreducible variety
of dimension g = ¢(C). In particular, Jacc C Jacc is dense.

2 The case of X = A?

The Hilbert scheme Hilb),, admits a particularly concrete combinatorial description
due to Haiman. Let us denote Hilb’fA,z by H". Since AZ is affine, we can identify H" with the
set

{I c C[x,y] | dimc Cl[x,y]/I = n}.

2.1 The torus action

There is an action of the algebraic torus T = G2,, , on A2 which on polynomial
1,2 Y
functions is given

f(x,y) = f(tix, tay).

IThat is, the tangent space dimension is at most 2 at each p € C.




This extends to an action on H" by

t-1={f(tix,toy) | f € I}.
The torus fixed points, denoted by (H")T, correspond to those ideals generated by f such
that f(t1x, tay) = tit5 f(x,y), that is, by monomials x%”.
Recall that a partition of n, A - n, is a decreasing sequence of positive integers A1 > A, >
... > Ar > O such that
Z)\i = n.

The number k = I(A) is the length of A, the size n is denoted by |A|, and the A; are the parts
of A. We can represent a partition by its Young diagram, a left aligned arrangement of boxes
with A; boxes in the i row. We identify A with its Young diagram and label A as a subset of
IN? with the box in the i*" column and j** row labeled by (i, f).

Lemma 1. There is a bijection between monomial ideals in H" and partitions of n given by

I MDD ={(i,)) | xy ¢ I}
and
A== {xXy | (r,s) & A}
This is enough to compute the Euler characteristic of H" by the following fact. Let Y be

a finite type C-scheme with an action of an algebraic torus T = G/, and let YT be the T-fixed
locus. Then

etop(Y) = etop(YT).
Indeed etop(T) = 0 for any r > 0 and non-zero dimensional orbit of T is homeomorphic to
an algebraic torus and so only the set of zero dimensional orbits, i.e., YT, contributes to the
Euler characteristic. As a corollary, we obtain

Corollary 1. The Euler characteristic e;o,(H") = p(n) the number of partitions of n. Moreover,

Y eup(H)" = T 1

_aqm
n>0 m>1 q

Proof. By the previous fact,
etop(Hn) = etop((Hn)T)
by (H")T is the finite set of monomial ideals so its Euler characteristic is just the cardinality.
Thus,
erop(H") = #{monomial partitions} = #{A - n}.

Thus, it suffices to compute the generating series

> p(n)q".

n>0

Consider the infinite product
1

1—gm

[1

m>1

and expand using 1/(1 — x) = ¥_x'. Given a partition A, we can write it as

Y mky =n

where there are are k, parts of size m. Then the infinite product exactly counts expressions
of this form. n



2.2 Local structure

Let By = {x'y/ | (i,j) € A}. Note that By forms a basis for C[x,y]/I,. We will define
open subfunctors U, C H" as follows. Given any test scheme S and a map S — H" cor-
responding to a closed subscheme Z C S x A? flat over S, the pushforward 7,0y along
7 : Z — S carries a canonical section s;; : Og — 71,07 for each monomial x'y/. We can take
the direct sum

Z Si]‘ : O?n — 7'(*02.
(i,j)er
Then U, is the subfunctor representing those S-points such that s, is an isomorphism. The
points of U, are exactly those ideals I such that B, is a basis for C[x, y]/I.

Proposition 1. U, is a T-invariant open affine neighborhood of I,.

Proof. Tt is clear that [I}] € U, and that U, is T-invariant. We will write down explicit
coordinates for U,. Given a monomial x"y* we have a unique expansion

Xyt =Y cE(Dx'y mod I
(Lj)er

forany I € U, where czr]S (I) are coefficients depending on I. The CZS are in fact global sections

of Oy,. To see this, using the notation above, note that for any S-point (Z C S x A?)
of U, and any monomial x"y°, we have a section s,s : Og — 7.Oz. Pulling back by the
isomorphism s), we obtain a section s%s,s : Og — OF" where the components of the target
are indexed by (i,j) € A. Then the functions c}; on S are exactly the components of s}ss.

Since [ is an ideal, it is closed under multiplication by x and y. Multiplying the above
equation x and y respectively, re-expanding both sides in the basis B,, and equating coeffi-
cients gives us the following.

V+1 S __ Z Chkch+1 k (1)
(hk)eA

7‘ S+1 Z Cll;?cch k+1 (2)
(hk)eA

Now we leave it to the reader to check that U, is represented by Spec of the ring
Oy :=Clc;} | (i,]) € A]/(relations (1) & (2)).
O

Remark 1. In fact the U are the pullbacks of the natural open affine subfunctors that cover a Grass-
mannian under the embedding of the Hilbert scheme into a Grassmannian used to construct H". In
particular, U, over all A cover H".

Now we will compute the cotangent space to H" at a monomial ideal I. For this ideal,

we have (1) = (r.5)
rs 1 (G,))=(rs) €A
iy () = { 0 else



Thus the maximal ideal m)y C O, corresponding to the point [[] € U, C H" is generated
by ¢ for (r,s) & A. The cotangent space to an affine scheme is given by m, /mZ. Examining

the relations above, we see that all the terms on the right are in m3 except for the term

s o

rs
i—1,j€ Ci

C l] - 1_1’]'.

Here we are using that CZ = 1. Thus we have that

r+1,5 _ rs

Cij =il

mod m3.

r,s+1

Similarly, c; ;= clffjfl mod mi. For each box (i,j) € A we define two special functions Ujj

and d;; as in the following diagram.
put in picture and discussion of arrows

Now a simple combinatorial argument shows that each function is either zero or equiv-

alent to one of the d;; or u;; in mﬁ. Since there are 2n such functions, we conclude the

following.

Proposition 2. The cotangent space to H" at I) has dimension at most 2n.

2.3 Initial degenerations

Let p : G,y — T be a character of the torus so that p(t) = (#%,t’). Then we define the
initial ideal, if it exists, to be the flat limit

inpl :=limp(t) - I.

t—0

More precisely, the action of T on H" composed with p induces an action of G,,. Then the
orbit of I can be viewed as a morphism

corresponding to the family of ideals I, = ({f(t'x,t%y) | f € I}) C Og,[x,y]. If this
morphism extends to an equivariant morphism

Q- A' — H" ,
the initial ideal is exactly the ideal corresponding to the point §;(0).

Fact 1. There exists a generic enough p such that the fixed points of the G, action under p are the
same as those for T, (H")? = (H")T, and such that @ exists for each I.

Exercise 1. Check that the co-character p(t) = (¢t P,t719) for p > q > 0 works.

Since @; has G -equivariant it sends fixed points to fixed points so ¢;(0) € (H")T is a
monomial ideal.

Proposition 3. H" is connected.



Proof. By the above fact, every point of H" is connected to a monomial ideal by an initial
degeneration over A'. Thus, it suffices to show that the monomial ideals lie in the same
connected component. Let A; be partitions corresponding to ideals I; for i = 1,2. Suppose
the partitions differ in exactly one box.

Ay = (AN (i) U (1,5)

Let ] = I; N I corresponding to the partition 4 = A; U A, C IN2. Then the family of ideals
lup =]+ (ax'y — px'y’)

gives map ¢ : P! — H" with ¢(0,1) = I and ¢(1,0) = L. Now any partition can be
obtained from the row partition (1) by moving one box at a time. This shows each monomial

ideal is in the same connected component as the row so H" is connected.
O

Example 1. Let Ay = (1,1,1,1) and A, = (2,1,1) so that the ideals A; differ by one box. These
correspond to the ideals I = (x,y*) and I, = (x?,xy,y>) respectively. Consider the ideal | =
LN = (x2,xy,y*) corresponding to the partition u = Ay U Ay C IN?. Then the one parameter
family (x%, xy, y*, ay® — ax) of ideals connects these two points of H*.

Remark 2. Note that the curves in H" constructed above to connect two monomial ideals parametrize
subschemes Z supported on the origin. That is, such that Z,.; = {(0,0)}.

2.4 The Hilbert-Chow morphism for A?
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