Lecture 22: Hilbert schemes of points on surfaces

1 The topology of Hilbert schemes of points on surfaces

Let $S = \mathbb{C}$ and X/S a smooth quasi-projective surface. Our goal now is to study the topology of the Hilbert schemes of points Hilb_X^n parametrizing subschemes $Z \subset X$ with Hilbert polynomial constant *n*. That is, *Z* is a zero dimensional subscheme with

$$\dim_{\mathbb{C}} \mathcal{O}_Z = n.$$

Our goal is to sketch the proof of the following theorem, which is a combination of results due Fogarty, Briançon, and Göttsche.

Theorem 1. Let X/\mathbb{C} be a smooth quasi-projective surface. Then Hilb_X^n is a smooth and irreducible quasi-projective 2*n*-fold. Moreover, the topological Euler characteristic of the Hilbert schemes of points on X are given by the following formula.

$$\sum_{n\geq 0} e_{top}(\operatorname{Hilb}_X^n) q^n = \prod_{m\geq 0} \frac{1}{(1-q^n)^{e_{top}(X)}}$$

This completes the sketch of the proof of the Yau-Zaslow formula from last class, and in fact also implies the following about compactified Jacobians.

Theorem 2. Let *C* be an integral locally planar¹ curve over \mathbb{C} . Then $\overline{\text{Jac}}_C$ is an irreducible variety of dimension g = g(C). In particular, $\text{Jac}_C \subset \overline{\text{Jac}}_C$ is dense.

2 The case of $X = \mathbb{A}^2$

The Hilbert scheme $\text{Hilb}_{\mathbb{A}^2}^n$ admits a particularly concrete combinatorial description due to Haiman. Let us denote $\text{Hilb}_{\mathbb{A}^2}^n$ by \mathbf{H}^n . Since \mathbb{A}^2 is affine, we can identify \mathbf{H}^n with the set

$$\{I \subset \mathbb{C}[x,y] \mid \dim_{\mathbb{C}} \mathbb{C}[x,y]/I = n\}$$

2.1 The torus action

There is an action of the algebraic torus $T = \mathbb{G}_{m,t_1,t_2}^2$ on $\mathbb{A}_{x,y}^2$ which on polynomial functions is given

$$f(x,y)\mapsto f(t_1x,t_2y).$$

¹That is, the tangent space dimension is at most 2 at each $p \in C$.

This extends to an action on \mathbf{H}^n by

$$t \cdot I = \{f(t_1x, t_2y) \mid f \in I\}.$$

The torus fixed points, denoted by $(\mathbf{H}^n)^T$, correspond to those ideals generated by f such that $f(t_1x, t_2y) = t_1^a t_2^b f(x, y)$, that is, by monomials $x^a y^b$.

Recall that a *partition of n*, $\lambda \vdash n$, is a decreasing sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k > 0$ such that

$$\sum \lambda_i = n$$

The number $k = l(\lambda)$ is the *length* of λ , the size *n* is denoted by $|\lambda|$, and the λ_i are the *parts* of λ . We can represent a partition by its *Young diagram*, a left aligned arrangement of boxes with λ_j boxes in the *j*th row. We identify λ with its Young diagram and label λ as a subset of \mathbb{N}^2 with the box in the *i*th column and *j*th row labeled by (i, j).

Lemma 1. There is a bijection between monomial ideals in \mathbf{H}^n and partitions of n given by

$$I \mapsto \lambda(I) = \{(i,j) \mid x^i y^j \notin I\}$$

and

$$\lambda \mapsto I_{\lambda} = (\{x^r y^s \mid (r,s) \notin \lambda\}.$$

This is enough to compute the Euler characteristic of \mathbf{H}^n by the following fact. Let Y be a finite type \mathbb{C} -scheme with an action of an algebraic torus $T = \mathbb{G}_m^r$ and let Y^T be the *T*-fixed locus. Then

$$e_{top}(Y) = e_{top}(Y^T).$$

Indeed $e_{top}(T) = 0$ for any r > 0 and non-zero dimensional orbit of T is homeomorphic to an algebraic torus and so only the set of zero dimensional orbits, i.e., Y^T , contributes to the Euler characteristic. As a corollary, we obtain

Corollary 1. The Euler characteristic $e_{top}(\mathbf{H}^n) = p(n)$ the number of partitions of n. Moreover,

$$\sum_{n\geq 0} e_{top}(\mathbf{H}^n) q^n = \prod_{m\geq 1} \frac{1}{1-q^m}$$

Proof. By the previous fact,

$$e_{top}(\mathbf{H}^n) = e_{top}((\mathbf{H}^n)^T)$$

by $(\mathbf{H}^n)^T$ is the finite set of monomial ideals so its Euler characteristic is just the cardinality. Thus,

 $e_{top}(\mathbf{H}^n) = \#\{\text{monomial partitions}\} = \#\{\lambda \vdash n\}.$

Thus, it suffices to compute the generating series

$$\sum_{n\geq 0}p(n)q^n$$

Consider the infinite product

$$\prod_{m\geq 1}\frac{1}{1-q^m}$$

and expand using $1/(1-x) = \sum x^i$. Given a partition λ , we can write it as

$$\sum mk_m = n$$

where there are are k_m parts of size *m*. Then the infinite product exactly counts expressions of this form.

2.2 Local structure

Let $B_{\lambda} = \{x^i y^j \mid (i, j) \in \lambda\}$. Note that B_{λ} forms a basis for $\mathbb{C}[x, y]/I_{\lambda}$. We will define open subfunctors $U_{\lambda} \subset \mathbf{H}^n$ as follows. Given any test scheme *S* and a map $S \to \mathbf{H}^n$ corresponding to a closed subscheme $Z \subset S \times \mathbb{A}^2$ flat over *S*, the pushforward $\pi_* \mathcal{O}_Z$ along $\pi : Z \to S$ carries a canonical section $s_{ij} : \mathcal{O}_S \to \pi_* \mathcal{O}_Z$ for each monomial $x^i y^j$. We can take the direct sum

$$s_{\lambda} = \sum_{(i,j)\in\lambda} s_{ij} : \mathcal{O}_{S}^{\oplus n} \to \pi_* \mathcal{O}_Z.$$

Then U_{λ} is the subfunctor representing those *S*-points such that s_{λ} is an isomorphism. The points of U_{λ} are exactly those ideals *I* such that B_{λ} is a basis for $\mathbb{C}[x, y]/I$.

Proposition 1. U_{λ} is a *T*-invariant open affine neighborhood of I_{λ} .

Proof. It is clear that $[I_{\lambda}] \in U_{\lambda}$ and that U_{λ} is *T*-invariant. We will write down explicit coordinates for U_{λ} . Given a monomial $x^r y^s$ we have a unique expansion

$$x^r y^s = \sum_{(i,j)\in\lambda} c^{rs}_{ij}(I) x^i y^j \mod I$$

for any $I \in U_{\lambda}$ where $c_{ij}^{rs}(I)$ are coefficients depending on I. The c_{ij}^{rs} are in fact global sections of $\mathcal{O}_{U_{\lambda}}$. To see this, using the notation above, note that for any *S*-point $(Z \subset S \times \mathbb{A}^2)$ of U_{λ} and any monomial $x^r y^s$, we have a section $s_{rs} : \mathcal{O}_S \to \pi_* \mathcal{O}_Z$. Pulling back by the isomorphism s_{λ} , we obtain a section $s_{\lambda}^* s_{rs} : \mathcal{O}_S \to \mathcal{O}_S^{\oplus n}$ where the components of the target are indexed by $(i, j) \in \lambda$. Then the functions c_{ij}^{rs} on *S* are exactly the components of $s_{\lambda}^* s_{rs}$.

Since *I* is an ideal, it is closed under multiplication by *x* and *y*. Multiplying the above equation *x* and *y* respectively, re-expanding both sides in the basis B_{λ} , and equating coefficients gives us the following.

$$c_{ij}^{r+1,s} = \sum_{(h,k)\in\lambda} c_{hk}^{rs} c_{i,j}^{h+1,k}$$
(1)

$$c_{ij}^{r,s+1} = \sum_{(h,k)\in\lambda} c_{hk}^{rs} c_{ij}^{h,k+1}$$
(2)

Now we leave it to the reader to check that U_{λ} is represented by Spec of the ring

$$\mathcal{O}_{\lambda} := \mathbb{C}[c_{ij}^{rs} \mid (i,j) \in \lambda] / (\text{relations (1) \& (2)}).$$

Remark 1. In fact the U_{λ} are the pullbacks of the natural open affine subfunctors that cover a Grassmannian under the embedding of the Hilbert scheme into a Grassmannian used to construct \mathbf{H}^n . In particular, U_{λ} over all λ cover \mathbf{H}^n .

Now we will compute the cotangent space to \mathbf{H}^n at a monomial ideal I_{λ} . For this ideal, we have

$$c_{ij}^{rs}(I_{\lambda}) = \begin{cases} 1 & (i,j) = (r,s) \in \lambda \\ 0 & \text{else} \end{cases}$$

Thus the maximal ideal $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{\lambda}$ corresponding to the point $[I_{\lambda}] \in U_{\lambda} \subset \mathbf{H}^{n}$ is generated by c_{ij}^{rs} for $(r, s) \notin \lambda$. The cotangent space to an affine scheme is given by $\mathfrak{m}_{\lambda}/\mathfrak{m}_{\lambda}^{2}$. Examining the relations above, we see that all the terms on the right are in $\mathfrak{m}_{\lambda}^{2}$ except for the term

$$c_{i-1,j}^{rs}c_{ij}^{ij}=c_{i-1,j}^{rs}$$

Here we are using that $c_{ij}^{ij} = 1$. Thus we have that

$$c_{ij}^{r+1,s} = c_{i-1,j}^{rs} \mod \mathfrak{m}_{\lambda}^2.$$

Similarly, $c_{ij}^{r,s+1} = c_{i,j-1}^{rs} \mod \mathfrak{m}_{\lambda}^2$. For each box $(i, j) \in \lambda$ we define two special functions u_{ij} and d_{ij} as in the following diagram.

put in picture and discussion of arrows

Now a simple combinatorial argument shows that each function is either zero or equivalent to one of the d_{ij} or $u_{i,j}$ in \mathfrak{m}^2_{λ} . Since there are 2n such functions, we conclude the following.

Proposition 2. The cotangent space to \mathbf{H}^n at I_{λ} has dimension at most 2*n*.

2.3 Initial degenerations

Let $\rho : \mathbb{G}_m \to T$ be a character of the torus so that $\rho(t) = (t^a, t^b)$. Then we define the initial ideal, if it exists, to be the flat limit

$$in_{\rho}I := \lim_{t \to 0} \rho(t) \cdot I.$$

More precisely, the action of *T* on \mathbf{H}^n composed with ρ induces an action of \mathbf{G}_m . Then the orbit of *I* can be viewed as a morphism

$$\varphi_I: \mathbb{G}_m \to \mathbf{H}^n$$

corresponding to the family of ideals $I_{\rho} = (\{f(t^a x, t^b y) \mid f \in I\}) \subset \mathcal{O}_{\mathbb{G}_m}[x, y]$. If this morphism extends to an equivariant morphism

$$\bar{\varphi}_I: \mathbb{A}^1 \to \mathbf{H}^n$$
,

the initial ideal is exactly the ideal corresponding to the point $\bar{\varphi}_I(0)$.

Fact 1. There exists a generic enough ρ such that the fixed points of the \mathbb{G}_m action under ρ are the same as those for T, $(\mathbf{H}^n)^{\rho} = (\mathbf{H}^n)^T$, and such that $\bar{\varphi}_I$ exists for each I.

Exercise 1. Check that the co-character $\rho(t) = (t^{-p}, t^{-q})$ for $p \gg q > 0$ works.

Since $\bar{\varphi}_I$ has \mathbb{G}_m -equivariant it sends fixed points to fixed points so $\bar{\varphi}_I(0) \in (\mathbf{H}^n)^T$ is a monomial ideal.

Proposition 3. H^n is connected.

Proof. By the above fact, every point of \mathbf{H}^n is connected to a monomial ideal by an initial degeneration over \mathbb{A}^1 . Thus, it suffices to show that the monomial ideals lie in the same connected component. Let λ_i be partitions corresponding to ideals I_i for i = 1, 2. Suppose the partitions differ in exactly one box.

$$\lambda_2 = (\lambda_1 \setminus (i,j)) \cup (r,s)$$

Let $J = I_1 \cap I_2$ corresponding to the partition $\mu = \lambda_1 \cup \lambda_2 \subset \mathbb{N}^2$. Then the family of ideals

$$I_{\alpha,\beta} = J + (\alpha x^i y^j - \beta x^r y^s)$$

gives map $\varphi : \mathbb{P}^1 \to \mathbf{H}^n$ with $\varphi(0,1) = I_1$ and $\varphi(1,0) = I_2$. Now any partition can be obtained from the row partition (*n*) by moving one box at a time. This shows each monomial ideal is in the same connected component as the row so \mathbf{H}^n is connected.

Example 1. Let $\lambda_1 = (1, 1, 1, 1)$ and $\lambda_2 = (2, 1, 1)$ so that the ideals λ_i differ by one box. These correspond to the ideals $I_1 = (x, y^4)$ and $I_2 = (x^2, xy, y^3)$ respectively. Consider the ideal $J = I_1 \cap I_2 = (x^2, xy, y^4)$ corresponding to the partition $\mu = \lambda_1 \cup \lambda_2 \subset \mathbb{N}^2$. Then the one parameter family $(x^2, xy, y^4, \alpha y^3 - \alpha x)$ of ideals connects these two points of \mathbf{H}^4 .

Remark 2. Note that the curves in H^n constructed above to connect two monomial ideals parametrize subschemes *Z* supported on the origin. That is, such that $Z_{red} = \{(0,0)\}$.

2.4 The Hilbert-Chow morphism for \mathbb{A}^2