
Lecture 22: Hilbert schemes of points on surfaces

1 The topology of Hilbert schemes of points on surfaces

Let S = C and X/S a smooth quasi-projective surface. Our goal now is to study the
topology of the Hilbert schemes of points Hilbn

X parametrizing subschemes Z ⊂ X with
Hilbert polynomial constant n. That is, Z is a zero dimensional subscheme with

dimCOZ = n.

Our goal is to sketch the proof of the following theorem, which is a combination of
results due Fogarty, Briançon, and Göttsche.

Theorem 1. Let X/C be a smooth quasi-projective surface. Then Hilbn
X is a smooth and irreducible

quasi-projective 2n-fold. Moreover, the topological Euler characteristic of the Hilbert schemes of
points on X are given by the following formula.

∑
n≥0

etop(Hilbn
X)q

n = ∏
m≥0

1

(1− qn)etop(X)

This completes the sketch of the proof of the Yau-Zaslow formula from last class, and
in fact also implies the following about compactified Jacobians.

Theorem 2. Let C be an integral locally planar1 curve over C. Then JacC is an irreducible variety
of dimension g = g(C). In particular, JacC ⊂ JacC is dense.

2 The case of X = A2

The Hilbert scheme Hilbn
A2 admits a particularly concrete combinatorial description

due to Haiman. Let us denote Hilbn
A2 by Hn. Since A2 is affine, we can identify Hn with the

set
{I ⊂ C[x, y] | dimC C[x, y]/I = n}.

2.1 The torus action

There is an action of the algebraic torus T = G2
m,t1,t2

on A2
x,y which on polynomial

functions is given
f (x, y) 7→ f (t1x, t2y).

1That is, the tangent space dimension is at most 2 at each p ∈ C.
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This extends to an action on Hn by

t · I = { f (t1x, t2y) | f ∈ I}.

The torus fixed points, denoted by (Hn)T, correspond to those ideals generated by f such
that f (t1x, t2y) = ta

1tb
2 f (x, y), that is, by monomials xayb.

Recall that a partition of n, λ ` n, is a decreasing sequence of positive integers λ1 ≥ λ2 ≥
. . . ≥ λk > 0 such that

∑ λi = n.

The number k = l(λ) is the length of λ, the size n is denoted by |λ|, and the λi are the parts
of λ. We can represent a partition by its Young diagram, a left aligned arrangement of boxes
with λj boxes in the jth row. We identify λ with its Young diagram and label λ as a subset of
N2 with the box in the ith column and jth row labeled by (i, j).

Lemma 1. There is a bijection between monomial ideals in Hn and partitions of n given by

I 7→ λ(I) = {(i, j) | xiyj 6∈ I}

and
λ 7→ Iλ = ({xrys | (r, s) 6∈ λ}.

This is enough to compute the Euler characteristic of Hn by the following fact. Let Y be
a finite type C-scheme with an action of an algebraic torus T = Gr

m and let YT be the T-fixed
locus. Then

etop(Y) = etop(YT).

Indeed etop(T) = 0 for any r > 0 and non-zero dimensional orbit of T is homeomorphic to
an algebraic torus and so only the set of zero dimensional orbits, i.e., YT, contributes to the
Euler characteristic. As a corollary, we obtain

Corollary 1. The Euler characteristic etop(Hn) = p(n) the number of partitions of n. Moreover,

∑
n≥0

etop(Hn)qn = ∏
m≥1

1
1− qm .

Proof. By the previous fact,
etop(Hn) = etop((Hn)T)

by (Hn)T is the finite set of monomial ideals so its Euler characteristic is just the cardinality.
Thus,

etop(Hn) = #{monomial partitions} = #{λ ` n}.
Thus, it suffices to compute the generating series

∑
n≥0

p(n)qn.

Consider the infinite product

∏
m≥1

1
1− qm

and expand using 1/(1− x) = ∑ xi. Given a partition λ, we can write it as

∑ mkm = n

where there are are km parts of size m. Then the infinite product exactly counts expressions
of this form.
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2.2 Local structure

Let Bλ = {xiyj | (i, j) ∈ λ}. Note that Bλ forms a basis for C[x, y]/Iλ. We will define
open subfunctors Uλ ⊂ Hn as follows. Given any test scheme S and a map S → Hn cor-
responding to a closed subscheme Z ⊂ S ×A2 flat over S, the pushforward π∗OZ along
π : Z → S carries a canonical section sij : OS → π∗OZ for each monomial xiyj. We can take
the direct sum

sλ = ∑
(i,j)∈λ

sij : O⊕n
S → π∗OZ.

Then Uλ is the subfunctor representing those S-points such that sλ is an isomorphism. The
points of Uλ are exactly those ideals I such that Bλ is a basis for C[x, y]/I.

Proposition 1. Uλ is a T-invariant open affine neighborhood of Iλ.

Proof. It is clear that [Iλ] ∈ Uλ and that Uλ is T-invariant. We will write down explicit
coordinates for Uλ. Given a monomial xrys we have a unique expansion

xrys = ∑
(i,j)∈λ

crs
ij (I)xiyj mod I

for any I ∈ Uλ where crs
ij (I) are coefficients depending on I. The crs

ij are in fact global sections
of OUλ

. To see this, using the notation above, note that for any S-point (Z ⊂ S ×A2)
of Uλ and any monomial xrys, we have a section srs : OS → π∗OZ. Pulling back by the
isomorphism sλ, we obtain a section s∗λsrs : OS → O⊕n

S where the components of the target
are indexed by (i, j) ∈ λ. Then the functions crs

ij on S are exactly the components of s∗λsrs.
Since I is an ideal, it is closed under multiplication by x and y. Multiplying the above

equation x and y respectively, re-expanding both sides in the basis Bλ, and equating coeffi-
cients gives us the following.

cr+1,s
ij = ∑

(h,k)∈λ

crs
hkch+1,k

i,j (1)

cr,s+1
ij = ∑

(h,k)∈λ

crs
hkch,k+1

ij (2)

Now we leave it to the reader to check that Uλ is represented by Spec of the ring

Oλ := C[crs
ij | (i, j) ∈ λ]/(relations (1) & (2)).

Remark 1. In fact the Uλ are the pullbacks of the natural open affine subfunctors that cover a Grass-
mannian under the embedding of the Hilbert scheme into a Grassmannian used to construct Hn. In
particular, Uλ over all λ cover Hn.

Now we will compute the cotangent space to Hn at a monomial ideal Iλ. For this ideal,
we have

crs
ij (Iλ) =

{
1 (i, j) = (r, s) ∈ λ

0 else
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Thus the maximal ideal mλ ⊂ Oλ corresponding to the point [Iλ] ∈ Uλ ⊂ Hn is generated
by crs

ij for (r, s) /∈ λ. The cotangent space to an affine scheme is given by mλ/m2
λ. Examining

the relations above, we see that all the terms on the right are in m2
λ except for the term

crs
i−1,jc

ij
ij = crs

i−1,j.

Here we are using that cij
ij = 1. Thus we have that

cr+1,s
ij = crs

i−1,j mod m2
λ.

Similarly, cr,s+1
ij = crs

i,j−1 mod m2
λ. For each box (i, j) ∈ λ we define two special functions uij

and dij as in the following diagram.
put in picture and discussion of arrows
Now a simple combinatorial argument shows that each function is either zero or equiv-

alent to one of the dij or ui,j in m2
λ. Since there are 2n such functions, we conclude the

following.

Proposition 2. The cotangent space to Hn at Iλ has dimension at most 2n.

2.3 Initial degenerations

Let ρ : Gm → T be a character of the torus so that ρ(t) = (ta, tb). Then we define the
initial ideal, if it exists, to be the flat limit

inρ I := lim
t→0

ρ(t) · I.

More precisely, the action of T on Hn composed with ρ induces an action of Gm. Then the
orbit of I can be viewed as a morphism

ϕI : Gm → Hn

corresponding to the family of ideals Iρ = ({ f (tax, tby) | f ∈ I}) ⊂ OGm [x, y]. If this
morphism extends to an equivariant morphism

ϕ̄I : A1 → Hn,

the initial ideal is exactly the ideal corresponding to the point ϕ̄I(0).

Fact 1. There exists a generic enough ρ such that the fixed points of the Gm action under ρ are the
same as those for T, (Hn)ρ = (Hn)T, and such that ϕ̄I exists for each I.

Exercise 1. Check that the co-character ρ(t) = (t−p, t−q) for p� q > 0 works.

Since ϕ̄I has Gm-equivariant it sends fixed points to fixed points so ϕ̄I(0) ∈ (Hn)T is a
monomial ideal.

Proposition 3. Hn is connected.
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Proof. By the above fact, every point of Hn is connected to a monomial ideal by an initial
degeneration over A1. Thus, it suffices to show that the monomial ideals lie in the same
connected component. Let λi be partitions corresponding to ideals Ii for i = 1, 2. Suppose
the partitions differ in exactly one box.

λ2 = (λ1 \ (i, j)) ∪ (r, s)

Let J = I1 ∩ I2 corresponding to the partition µ = λ1 ∪ λ2 ⊂N2. Then the family of ideals

Iα,β = J + (αxiyj − βxrys)

gives map ϕ : P1 → Hn with ϕ(0, 1) = I1 and ϕ(1, 0) = I2. Now any partition can be
obtained from the row partition (n) by moving one box at a time. This shows each monomial
ideal is in the same connected component as the row so Hn is connected.

Example 1. Let λ1 = (1, 1, 1, 1) and λ2 = (2, 1, 1) so that the ideals λi differ by one box. These
correspond to the ideals I1 = (x, y4) and I2 = (x2, xy, y3) respectively. Consider the ideal J =
I1 ∩ I2 = (x2, xy, y4) corresponding to the partition µ = λ1 ∪ λ2 ⊂ N2. Then the one parameter
family (x2, xy, y4, αy3 − αx) of ideals connects these two points of H4.

Remark 2. Note that the curves in Hn constructed above to connect two monomial ideals parametrize
subschemes Z supported on the origin. That is, such that Zred = {(0, 0)}.

2.4 The Hilbert-Chow morphism for A2
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