Lecture 22: Hilbert schemes of points on surfaces

1 The topology of Hilbert schemes of points on surfaces

Let $S=\mathbb{C}$ and X / S a smooth quasi-projective surface. Our goal now is to study the topology of the Hilbert schemes of points $\operatorname{Hilb}_{X}^{n}$ parametrizing subschemes $Z \subset X$ with Hilbert polynomial constant n. That is, Z is a zero dimensional subscheme with

$$
\operatorname{dim}_{C} \mathcal{O}_{Z}=n
$$

Our goal is to sketch the proof of the following theorem, which is a combination of results due Fogarty, Briançon, and Göttsche.

Theorem 1. Let X / C be a smooth quasi-projective surface. Then $H i l b_{X}^{n}$ is a smooth and irreducible quasi-projective $2 n$-fold. Moreover, the topological Euler characteristic of the Hilbert schemes of points on X are given by the following formula.

$$
\sum_{n \geq 0} e_{\text {top }}\left(\operatorname{Hilb}_{X}^{n}\right) q^{n}=\prod_{m \geq 0} \frac{1}{\left(1-q^{n}\right)^{e_{\text {top }}(X)}}
$$

This completes the sketch of the proof of the Yau-Zaslow formula from last class, and in fact also implies the following about compactified Jacobians.

Theorem 2. Let C be an integral locally planar ${ }^{1}$ curve over \mathbb{C}. Then $\overline{\mathrm{Jac}}_{C}$ is an irreducible variety of dimension $g=g(C)$. In particular, $\mathrm{Jac}_{C} \subset \mathrm{Jac}_{C}$ is dense.

2 The case of $X=\mathbb{A}^{2}$

The Hilbert scheme $\operatorname{Hilb}_{\mathbb{A}^{2}}^{n}$ admits a particularly concrete combinatorial description due to Haiman. Let us denote $\operatorname{Hilb}_{\mathbb{A}^{2}}^{n}$ by \mathbf{H}^{n}. Since \mathbb{A}^{2} is affine, we can identify \mathbf{H}^{n} with the set

$$
\left\{I \subset \mathbb{C}[x, y] \mid \operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / I=n\right\} .
$$

2.1 The torus action

There is an action of the algebraic torus $T=\mathbb{G}_{m, t_{1}, t_{2}}^{2}$ on $\mathbb{A}_{x, y}^{2}$ which on polynomial functions is given

$$
f(x, y) \mapsto f\left(t_{1} x, t_{2} y\right) .
$$

[^0]This extends to an action on \mathbf{H}^{n} by

$$
t \cdot I=\left\{f\left(t_{1} x, t_{2} y\right) \mid f \in I\right\}
$$

The torus fixed points, denoted by $\left(\mathbf{H}^{n}\right)^{T}$, correspond to those ideals generated by f such that $f\left(t_{1} x, t_{2} y\right)=t_{1}^{a} t_{2}^{b} f(x, y)$, that is, by monomials $x^{a} y^{b}$.

Recall that a partition of $n, \lambda \vdash n$, is a decreasing sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq$ $\ldots \geq \lambda_{k}>0$ such that

$$
\sum \lambda_{i}=n
$$

The number $k=l(\lambda)$ is the length of λ, the size n is denoted by $|\lambda|$, and the λ_{i} are the parts of λ. We can represent a partition by its Young diagram, a left aligned arrangement of boxes with λ_{j} boxes in the $j^{\text {th }}$ row. We identify λ with its Young diagram and label λ as a subset of \mathbb{N}^{2} with the box in the $i^{\text {th }}$ column and $j^{\text {th }}$ row labeled by (i, j).
Lemma 1. There is a bijection between monomial ideals in \boldsymbol{H}^{n} and partitions of n given by

$$
I \mapsto \lambda(I)=\left\{(i, j) \mid x^{i} y^{j} \notin I\right\}
$$

and

$$
\lambda \mapsto I_{\lambda}=\left(\left\{x^{r} y^{s} \mid(r, s) \notin \lambda\right\} .\right.
$$

This is enough to compute the Euler characteristic of \mathbf{H}^{n} by the following fact. Let Y be a finite type \mathbb{C}-scheme with an action of an algebraic torus $T=\mathbb{G}_{m}^{r}$ and let Y^{T} be the T-fixed locus. Then

$$
e_{\text {top }}(Y)=e_{\text {top }}\left(Y^{T}\right)
$$

Indeed $e_{\text {top }}(T)=0$ for any $r>0$ and non-zero dimensional orbit of T is homeomorphic to an algebraic torus and so only the set of zero dimensional orbits, i.e., Y^{T}, contributes to the Euler characteristic. As a corollary, we obtain
Corollary 1. The Euler characteristic $e_{\text {top }}\left(\boldsymbol{H}^{n}\right)=p(n)$ the number of partitions of n. Moreover,

$$
\sum_{n \geq 0} e_{\text {top }}\left(\boldsymbol{H}^{n}\right) q^{n}=\prod_{m \geq 1} \frac{1}{1-q^{m}}
$$

Proof. By the previous fact,

$$
e_{\text {top }}\left(\mathbf{H}^{n}\right)=e_{\text {top }}\left(\left(\mathbf{H}^{n}\right)^{T}\right)
$$

by $\left(\mathbf{H}^{n}\right)^{T}$ is the finite set of monomial ideals so its Euler characteristic is just the cardinality. Thus,

$$
e_{\text {top }}\left(\mathbf{H}^{n}\right)=\#\{\text { monomial partitions }\}=\#\{\lambda \vdash n\} .
$$

Thus, it suffices to compute the generating series

$$
\sum_{n \geq 0} p(n) q^{n}
$$

Consider the infinite product

$$
\prod_{m \geq 1} \frac{1}{1-q^{m}}
$$

and expand using $1 /(1-x)=\sum x^{i}$. Given a partition λ, we can write it as

$$
\sum m k_{m}=n
$$

where there are are k_{m} parts of size m. Then the infinite product exactly counts expressions of this form.

2.2 Local structure

Let $B_{\lambda}=\left\{x^{i} y^{j} \mid(i, j) \in \lambda\right\}$. Note that B_{λ} forms a basis for $\mathbb{C}[x, y] / I_{\lambda}$. We will define open subfunctors $U_{\lambda} \subset \mathbf{H}^{n}$ as follows. Given any test scheme S and a map $S \rightarrow \mathbf{H}^{n}$ corresponding to a closed subscheme $Z \subset S \times \mathbb{A}^{2}$ flat over S, the pushforward $\pi_{*} \mathcal{O}_{Z}$ along $\pi: Z \rightarrow S$ carries a canonical section $s_{i j}: \mathcal{O}_{S} \rightarrow \pi_{*} \mathcal{O}_{\mathrm{Z}}$ for each monomial $x^{i} y^{j}$. We can take the direct sum

$$
s_{\lambda}=\sum_{(i, j) \in \lambda} s_{i j}: \mathcal{O}_{S}^{\oplus n} \rightarrow \pi_{*} \mathcal{O}_{Z}
$$

Then U_{λ} is the subfunctor representing those S-points such that s_{λ} is an isomorphism. The points of U_{λ} are exactly those ideals I such that B_{λ} is a basis for $\mathbb{C}[x, y] / I$.

Proposition 1. U_{λ} is a T-invariant open affine neighborhood of I_{λ}.
Proof. It is clear that $\left[I_{\lambda}\right] \in U_{\lambda}$ and that U_{λ} is T-invariant. We will write down explicit coordinates for U_{λ}. Given a monomial $x^{r} y^{s}$ we have a unique expansion

$$
x^{r} y^{s}=\sum_{(i, j) \in \lambda} c_{i j}^{r s}(I) x^{i} y^{j} \quad \bmod I
$$

for any $I \in U_{\lambda}$ where $c_{i j}^{r s}(I)$ are coefficients depending on I. The $c_{i j}^{r s}$ are in fact global sections of $\mathcal{O}_{U_{\lambda}}$. To see this, using the notation above, note that for any S-point $\left(Z \subset S \times \mathbb{A}^{2}\right)$ of U_{λ} and any monomial $x^{r} y^{s}$, we have a section $s_{r s}: \mathcal{O}_{S} \rightarrow \pi_{*} \mathcal{O}_{Z}$. Pulling back by the isomorphism s_{λ}, we obtain a section $s_{\lambda}^{*} s_{r s}: \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}^{\oplus n}$ where the components of the target are indexed by $(i, j) \in \lambda$. Then the functions $c_{i j}^{r s}$ on S are exactly the components of $s_{\lambda}^{*} s_{r s}$.

Since I is an ideal, it is closed under multiplication by x and y. Multiplying the above equation x and y respectively, re-expanding both sides in the basis B_{λ}, and equating coefficients gives us the following.

$$
\begin{align*}
& c_{i j}^{r+1, s}=\sum_{(h, k) \in \lambda} c_{h k}^{r s} c_{i, j}^{h+1, k} \tag{1}\\
& c_{i j}^{r, s+1}=\sum_{(h, k) \in \lambda} c_{h k}^{r s} c_{i j}^{h, k+1} \tag{2}
\end{align*}
$$

Now we leave it to the reader to check that U_{λ} is represented by Spec of the ring

$$
\mathcal{O}_{\lambda}:=\mathbb{C}\left[c_{i j}^{r s} \mid(i, j) \in \lambda\right] /(\text { relations }(1) \&(2)) .
$$

Remark 1. In fact the U_{λ} are the pullbacks of the natural open affine subfunctors that cover a Grassmannian under the embedding of the Hilbert scheme into a Grassmannian used to construct \mathbf{H}^{n}. In particular, U_{λ} over all $\lambda \operatorname{cover} \boldsymbol{H}^{n}$.

Now we will compute the cotangent space to \mathbf{H}^{n} at a monomial ideal I_{λ}. For this ideal, we have

$$
c_{i j}^{r s}\left(I_{\lambda}\right)=\left\{\begin{array}{lr}
1 & (i, j)=(r, s) \in \lambda \\
0 & \text { else }
\end{array}\right.
$$

Thus the maximal ideal $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{\lambda}$ corresponding to the point $\left[I_{\lambda}\right] \in U_{\lambda} \subset \mathbf{H}^{n}$ is generated by $c_{i j}^{r s}$ for $(r, s) \notin \lambda$. The cotangent space to an affine scheme is given by $\mathfrak{m}_{\lambda} / \mathfrak{m}_{\lambda}^{2}$. Examining the relations above, we see that all the terms on the right are in $\mathfrak{m}_{\lambda}^{2}$ except for the term

$$
c_{i-1, j}^{r s} c_{i j}^{i j}=c_{i-1, j}^{r s} .
$$

Here we are using that $c_{i j}^{i j}=1$. Thus we have that

$$
c_{i j}^{r+1, s}=c_{i-1, j}^{r s} \quad \bmod \mathfrak{m}_{\lambda}^{2} .
$$

Similarly, $c_{i j}^{r, s+1}=c_{i, j-1}^{r s} \bmod \mathfrak{m}_{\lambda}^{2}$. For each box $(i, j) \in \lambda$ we define two special functions $u_{i j}$ and $d_{i j}$ as in the following diagram.
put in picture and discussion of arrows
Now a simple combinatorial argument shows that each function is either zero or equivalent to one of the $d_{i j}$ or $u_{i, j}$ in $\mathfrak{m}_{\lambda}^{2}$. Since there are $2 n$ such functions, we conclude the following.

Proposition 2. The cotangent space to \boldsymbol{H}^{n} at I_{λ} has dimension at most $2 n$.

2.3 Initial degenerations

Let $\rho: \mathbb{G}_{m} \rightarrow T$ be a character of the torus so that $\rho(t)=\left(t^{a}, t^{b}\right)$. Then we define the initial ideal, if it exists, to be the flat limit

$$
\operatorname{in}_{\rho} I:=\lim _{t \rightarrow 0} \rho(t) \cdot I
$$

More precisely, the action of T on \mathbf{H}^{n} composed with ρ induces an action of \mathbf{G}_{m}. Then the orbit of I can be viewed as a morphism

$$
\varphi_{I}: \mathbb{G}_{m} \rightarrow \mathbf{H}^{n}
$$

corresponding to the family of ideals $I_{\rho}=\left(\left\{f\left(t^{a} x, t^{b} y\right) \mid f \in I\right\}\right) \subset \mathcal{O}_{\mathbb{G}_{m}}[x, y]$. If this morphism extends to an equivariant morphism

$$
\bar{\varphi}_{I}: \mathbb{A}^{1} \rightarrow \mathbf{H}^{n}
$$

the initial ideal is exactly the ideal corresponding to the point $\bar{\varphi}_{I}(0)$.
Fact 1. There exists a generic enough ρ such that the fixed points of the \mathbb{G}_{m} action under ρ are the same as those for $T,\left(\boldsymbol{H}^{n}\right)^{\rho}=\left(\boldsymbol{H}^{n}\right)^{T}$, and such that $\bar{\varphi}_{I}$ exists for each I.

Exercise 1. Check that the co-character $\rho(t)=\left(t^{-p}, t^{-q}\right)$ for $p \gg q>0$ works.
Since $\bar{\varphi}_{I}$ has G_{m}-equivariant it sends fixed points to fixed points so $\bar{\varphi}_{I}(0) \in\left(\mathbf{H}^{n}\right)^{T}$ is a monomial ideal.

Proposition 3. H^{n} is connected.

Proof. By the above fact, every point of \mathbf{H}^{n} is connected to a monomial ideal by an initial degeneration over \mathbb{A}^{1}. Thus, it suffices to show that the monomial ideals lie in the same connected component. Let λ_{i} be partitions corresponding to ideals I_{i} for $i=1,2$. Suppose the partitions differ in exactly one box.

$$
\lambda_{2}=\left(\lambda_{1} \backslash(i, j)\right) \cup(r, s)
$$

Let $J=I_{1} \cap I_{2}$ corresponding to the partition $\mu=\lambda_{1} \cup \lambda_{2} \subset \mathbb{N}^{2}$. Then the family of ideals

$$
I_{\alpha, \beta}=J+\left(\alpha x^{i} y^{j}-\beta x^{r} y^{s}\right)
$$

gives map $\varphi: \mathbb{P}^{1} \rightarrow \mathbf{H}^{n}$ with $\varphi(0,1)=I_{1}$ and $\varphi(1,0)=I_{2}$. Now any partition can be obtained from the row partition (n) by moving one box at a time. This shows each monomial ideal is in the same connected component as the row so \mathbf{H}^{n} is connected.

Example 1. Let $\lambda_{1}=(1,1,1,1)$ and $\lambda_{2}=(2,1,1)$ so that the ideals λ_{i} differ by one box. These correspond to the ideals $I_{1}=\left(x, y^{4}\right)$ and $I_{2}=\left(x^{2}, x y, y^{3}\right)$ respectively. Consider the ideal $J=$ $I_{1} \cap I_{2}=\left(x^{2}, x y, y^{4}\right)$ corresponding to the partition $\mu=\lambda_{1} \cup \lambda_{2} \subset \mathbb{N}^{2}$. Then the one parameter family $\left(x^{2}, x y, y^{4}, \alpha y^{3}-\alpha x\right)$ of ideals connects these two points of \boldsymbol{H}^{4}.

Remark 2. Note that the curves in \boldsymbol{H}^{n} constructed above to connect two monomial ideals parametrize subschemes Z supported on the origin. That is, such that $Z_{\text {red }}=\{(0,0)\}$.

2.4 The Hilbert-Chow morphism for \mathbb{A}^{2}

[^0]: ${ }^{1}$ That is, the tangent space dimension is at most 2 at each $p \in C$.

