Lecture 3: Grassmannians (cont.) and flat morphisms

09/11/2019

1 Constructing Grassmannians

Recall we aim to prove the following:

Theorem 1. Gr(k, n) is representable by a finite type scheme over Spec \mathbb{Z} .

Proof. We will use the representability criterion from Lecture 2. It is clear Gr(k, n) is a sheaf by gluing locally free sheaves.

For each subset $i \subset \{1, ..., n\}$ of size k, we will define a subfunctor F_i of the Grassmannian functor. First, let

$$s_i: \mathcal{O}_S^k \to \mathcal{O}_S^n$$

denote the inclusion where the j^{th} direct summand is mapped by the identity to the i_j^{th} direct summand. Now let F_i be defined as the subfunctor

 $F_i(S) = \{ \alpha : \mathcal{O}_S^n \to \mathcal{V} \mid \alpha \circ s_i \text{ is surjective } \} \subset Gr(k, n)(S).$

Note this is a functor since for any $f : T \rightarrow S$, f^* is right-exact.

We need to show that each F_i is representable and that the collection $\{F_i\}$ is an open cover of the functor Gr(k, n).

For any scheme *S* and any map $S \to Gr(k, n)$ corresponding to the object $(\alpha : \mathcal{O}_S^n \to V) \in F(S)$, we have a natural morphism of finite type quasi-coherent sheaves $\alpha \circ s_i : \mathcal{O}_S^n \to \mathcal{V}$. Now let \mathcal{K} be the cokernel of $\alpha \circ s_i$. Then $\alpha \circ s_i$ is surjective at a point $x \in S$ if and only if $\mathcal{K}_x = 0$ if and only if $x \notin \text{Supp}(\mathcal{K}_x)$. Since $\text{Supp}(\mathcal{K}_x)$ is closed, the set U_i where $\alpha \circ s_i$ is surjective is open.

We need to show that for any other scheme *T* and a morphism $f : T \rightarrow S$, *f* factors through U_i if and only if

$$f^*(\alpha: \mathcal{O}^n_S \to \mathcal{V}) = (f^*\alpha: \mathcal{O}^n_T \to f^*\mathcal{V}) \in F_i(T)$$

. Suppose $t \in T$ maps to $x \in S$. By Nakayama's lemma, $x \in U_i$ if and only if

$$(\alpha \circ s_i)|_x : k(x)^k \to \mathcal{V}_x/\mathfrak{m}_x \mathcal{V}_x$$

is surjective. Now the stalk $(f^*\mathcal{V})_t$ is given by the pullback $\mathcal{V}_x \otimes_{\mathcal{O}_{S,x}} \mathcal{O}_{T,t}$ along the local ring homomorphism $f^* : \mathcal{O}_{S,x} \to \mathcal{O}_{T,t}$. Thus the map on fibers

$$(f^* \alpha \circ f^* s_i)|_t : k(t)^k \to (f^* \mathcal{V}_t) / \mathfrak{m}_t \mathcal{V}_t$$

is the pullback of $(\alpha \circ s_i)|_x$ by the residue field extension $k(x) \subset k(t)$. In particular, one is surjective if and only if the other is so $f : T \to S$ factors through U_i if and only if $(f^*\alpha \circ f^*s_i)|_t$ is surjective for all $t \in T$ if and only if $f^*(\alpha : \mathcal{O}_S^k \to \mathcal{V}) \in F_i(T)$. This proves that the F_i are open subfunctors.

Next, we need to know that the collection $\{F_i\}$ covers F. This amounts to showing that for any $S \to Gr(k, n)$ as above and any $s \in S$, there exists an i such that $s \in U_i$. As above, by Nakayama's lemma we may check surjectivity on fibers, thus we need to show that for each $s \in S$, there exists an i such that the composition

$$k(s)^k \xrightarrow{s_i} k(s)^n \xrightarrow{\alpha} \mathcal{V}_s / \mathfrak{m}_s \mathcal{V}_s$$

but this is clear from linear algebra.

Finally, we need to show that the F_i are representable. Given $(\alpha : \mathcal{O}_S^n \to \mathcal{V}) \in F_i(S)$, the composition $\alpha \circ s_i : \mathcal{O}_S^k \to \mathcal{V}$ is a surjection between finite locally free modules of the same rank. Then we apply the following lemma from commutative algebra.

Lemma 1. Let *R* be a ring and *M* be a finite *R*-module. Let $\varphi : M \to M$ be a surjective *R*-module map. Then φ is an isomorphism.

By applying the lemma to an open cover of *S* where \mathcal{V} is trivial, we get that $\alpha \circ s_i$ is actually an isomorphism. In particular, we obtain a splitting of α so that α is determined by its restriction to the complimentary n - k components of \mathcal{O}_S^n . The restriction of α to each component is a map $\mathcal{O}_S \to \mathcal{O}_S^k$ which is the same as a *k*-tuple of sections. Thus, the functor F_i is isomorphic to the functor of a (n - k) many *k*-tuples of sections, i.e. to $\mathbb{A}_{\mathbb{Z}}^{k(n-k)}$.

1.1 Some properties of the Grassmannian

Next we want to use the functorial point of view to show that Gr(k, n) is in fact a projective variety. First we review the valuative criterion of properness.

Theorem 2. Suppose $f : X \to Y$ is a locally of finite type morphism of schemes with Y locally Noetherian. Then the following are equivalent:

- (a) f is separated (resp. universally closed, resp. proper),
- (b) for any solid commutative diagram

where R is a DVR with fraction field K, any dashed arrow is unique (*resp. there exists a dashed arrow*, *resp. there exists a unique dashed arrow*).

The nice thing about this is that condition (*b*) can be phrased completely in terms of the functor of points: for any DVR Spec $R \rightarrow Y$ over Y with fraction field K, the map of sets

$$\operatorname{Hom}_{Y}(\operatorname{Spec} R, X) \to \operatorname{Hom}_{Y}(\operatorname{Spec} K, X)$$

is injective (resp. surjective, resp. bijective). This is useful to prove properness of moduli spaces directly from the moduli functor. It amounts to saying that any family over Spec *K* can be uniquely "filled in" over the the closed of point of Spec *R* to a family over Spec *R*

Proposition 1. Gr(k, n) *is proper over* Spec \mathbb{Z} .

Proof. By construction, Gr(k, n) has a finite cover by finite dimensional affine spaces over Spec \mathbb{Z} so it is of finite type of over Spec \mathbb{Z} . By the valuative criterion we need to check that we can uniquely fill in the dashed arrow in the following diagram.

The top morphism is a surjection of *K*-vector spaces

$$K^n \to V$$

where *V* has rank *k*. We have a natural inclusion of *R*-modules $R^n \to K^n$. We need to find a locally free rank *k* module *M* over *R* with a surjection $R^n \to M$ such that the following diagram commutes.

Then we can just take *M* to be the image of $\mathbb{R}^n \subset \mathbb{K}^n \to V$. Since *V* is a vector space over *K*, it is torsion free as an *R*-module so the finitely generated *M* is free. By construction $M \otimes_R K = V$ so *M* has rank *k* and *M* is clearly unique.

Next we will show that Gr(k, n) is in fact projective over Spec \mathbb{Z} !. To do this we will use the following criterion:

Proposition 2. Suppose $f : X \to Y$ is a proper monomorphism of schemes. Then f is a closed embedding.

Proposition 3. Gr(k, n) *is smooth and projective over* Spec \mathbb{Z} *.*

Proof. We will show that Gr(k, n) is a subfunctor of projective space. Then combining the previous two propositions, it follows that Gr(k, n) is a closed subscheme of projective space. For smoothness, we saw in the construction that Gr(k, n) is covered by open subsets isomorphic to $\mathbb{A}^{k(n-k)}$, so it is smooth.

We define a natural transformation of functors $Gr(k, n) \to \mathbb{P}^N_{\mathbb{Z}}$ where $N = \binom{n}{k} - 1$. For any scheme *S* and any *S*-point $(\alpha : \mathcal{O}^n_S \twoheadrightarrow \mathcal{V}) \in Gr(k, n)(S)$, we consider the induced map on the k^{th} alternating power.

$$\Lambda^k \alpha : \Lambda^k \mathcal{O}_S^n = \mathcal{O}_S^{\binom{n}{k}} \to \Lambda^k \mathcal{V}$$

Since α is surjective, so is $\Lambda^k \alpha$. Moreover, $\Lambda^k \mathcal{V}$ is a line bundle since the rank \mathcal{V} is k. Finally, Λ^k commutes with pullbacks. Thus $(\Lambda^k \alpha : \mathcal{O}_S^{\binom{n}{k}} \to \Lambda^k \mathcal{V}) \in \mathbb{P}^N_{\mathbb{Z}}(S)$ is an S point of $\mathbb{P}^N_{\mathbb{Z}}$.

We need to show that the natural transformation $Gr(k,n) \to \mathbb{P}^N_{\mathbb{Z}}$ is a subfunctor. We will do this by restricting to the open subfunctors $F_i \subset Gr(k,n)$ described in the proof that Gr(k,n) is representable. Let G_i be the corresponding open subfunctors of \mathbb{P}^N (i.e. the subfunctor where the i^{th} section is nonvanishing, or equivalently where the composition $\mathcal{O}_S \to \mathcal{O}_S^{N+1} \to L$ with the i^{th} copy is surjective).

It is clear that the natural transformation above maps F_i to G_i . Thus it suffices to show that F_i is a subfunctor of G_i . Now F_i is the functor corresponding to $k \times n$ matrices of global sections of \mathcal{O}_S where the columns indexed by the subset *i* form the identity matrix, and the natural transforation $F_i \to G_i$ is given by taking $k \times k$ minors of this matrix. Now it is an exercise in linear algebra to see that the minors of such a matrix uniquely determine the matrix. Thus $F_i \to G_i$ is a subfunctor so $Gr(k, n) \to \mathbb{P}^N$ is a monomorphism. \Box

Over the Grassmannian we have the universal quotient

$$\mathcal{O}^n_{Gr(k,n)} \to \mathcal{Q}.$$

The above proof shows in fact that $\Lambda^k Q =: \det Q$ is a very ample line bundle on Gr(k, n) which induces the closed embedding into projective space.

1.2 Relative Grassmannians

For any scheme *S*, we can basechange from Spec \mathbb{Z} to *S* to get the scheme representing the Grassmannian functor $Sch_S \rightarrow Set$. More generally, if \mathcal{E} is any rank *n* vector bundle on a scheme *S*, we can define for any k < n, the Grassmannian of \mathcal{E} as the functor $Sch_S \rightarrow Set$ given by

$$Gr_S(k, \mathcal{E})(f: T \to S) = \{ \alpha : f^*\mathcal{E} \twoheadrightarrow \mathcal{V} \mid \mathcal{V} \text{ is a rank } k \text{ locally free sheaf} \}$$

Theorem 3. $Gr_S(k, \mathcal{E})$ is representable by a smooth projective scheme over S.

Proof. We leave the details to the reader, but the idea is to cover *S* by open subsets where \mathcal{E} is locally free. Over these subsets the Grassmannian functor is representable by the argument above. Then we may glue these schemes together. The properties of being proper and being a monomorphism are both local on the base and compatible with base change. Putting this all together we get a scheme representing $Gr_S(k, \mathcal{E})$ as well as a closed embedding into $\mathbb{P}_S(\Lambda^k \mathcal{E})$.

Remark 1. (A note on projectivity) Let $f : X \to S$ be a morphism of schemes. There are several notions of projectivity for f.

- (a) there is a closed embedding of X into $\operatorname{Proj}_{S}\operatorname{Sym}^{*}_{\mathcal{O}_{S}}\mathcal{F}$ for some coherent sheaf \mathcal{F} on S;
- (b) there is a closed embedding of X into $\mathbb{P}_{S}(\mathcal{E})$ for some finite rank locally free sheaf \mathcal{E} on S;
- (c) there is a closed embedding of X into \mathbb{P}_{S}^{n} .

For each notion of projectivity we can define quasi-projective morphisms as those which factor through an open embedding into a projective one. The above theorem shows that relative Grassmannians $Gr_S(k, \mathcal{E})$ are projective over S in the sense of (b). We have implications (c) \implies (b) \implies (a) but these notions are not equivalent in general. If S is Noetherian and satisfies the resolution property¹ then (a) \implies (b) and if furthermore S admits an ample line bundle, then (b) \implies (c). For simplicity we will usually use projective to mean (c).

2 **Recollections on flaness**

We want to move on to moduli spaces of general varieties. To do this we need a good notion of continuously varying family of varieties (or schemes, or sheaves) parametrized by a base scheme *S*. It turns out the right notion is that of *flatness*.

Definition 1. Let $f : X \to S$ be a morphism of schemes and \mathcal{F} a quasi-coherent sheaf on X. We say that \mathcal{F} is flat over S at $x \in X$ if the stalk \mathcal{F}_x is a flat $\mathcal{O}_{S,f(x)}$ -module. We say that \mathcal{F} is flat over S if it is flat at every point $x \in X$. We say that the morphism f is flat if \mathcal{O}_X is flat over S.

We recall some basic facts about flatness.

Proposition 4. 1. The property of being flat is stable under base change and compositions;

- 2. localizations of flat modules are flat so in particular open embeddings are flat;
- 3. *if* R *is a* PID, *then an* R*-module* M *is flat if and only if it is torsion free;*
- 4. *if* $t \in \mathcal{O}_{S,f(x)}$ *is a non-zero divisor, then* $f^*t \in \mathcal{O}_{X,x}$ *is a non-zero divisor;*
- 5. *if S is* Noetherian and *f is* finite then \mathcal{F} *is* flat *if* and only *if* $f_*\mathcal{F}$ *is* locally free of finite rank.

Recall that an associated point of a scheme *X* is a point $x \in X$ so that the corresponding prime ideal \mathfrak{m}_x is generated by zero divisors. If *X* is reduced, then these are just the generic points of irreducible components of *X*.

Proposition 5. Let $f : X \to C$ be a morphism of schemes with C an integral regular scheme of dimension 1. Then f is flat if and only if it maps all associated points of X to the generic point of C.

References

¹That is, if every coherent sheaf admits a surjection from a finite rank locally free sheaf.