Lecture 5: Base change, the Hilbert functor

09/18/2019

1 Remarks on base change

Last time we proved the constancy of Hilbert polynomials in projective flat families:

Theorem 1. Let $f : X \to Y$ be a projective morphism over a locally Noetherian scheme Y. If \mathcal{F} is a coherent sheaf on X which is flat over Y, then the Hilbert polynomial $P_{\mathcal{F}|_{X_y}}(d)$ is locally constant for $y \in Y$. If Y is reduced, then the converse holds.

In the process we proved the lemma that when Y = Spec A is the spectrum of a Noetherian local ring, then \mathcal{F} is flat if and only if $H^0(X, \mathcal{F}(d))$ is a finite free *A*-module for $d \gg 0$. Note that this statement immediately globalizes:

Corollary 1. Let $f : X \to Y$ and \mathcal{F} be as above with Y Noetherian. Then \mathcal{F} is flat over Y if and only if $f_*\mathcal{F}(d)$ is a finite rank locally free sheaf for all $d \gg 0$.

Then we had to use two base change results. Namely we needed to show the following isomorphism (still in the local case Y = Spec A):

$$H^{0}(X, \mathcal{F}(d)) \otimes_{A} k(y) \cong H^{0}(X_{y}, \mathcal{F}(d)_{y})$$
(1)

for all $y \in Y$ and $d \gg 0$. In proving (1) we needed the following flat base change.

Lemma 1. (Flat base change) Consider the diagram

where f is qcqs¹ and u is flat and let \mathcal{F} be a quasi-coherent sheaf on X. Then the base change morphism

 $u^*R^if_*(\mathcal{F}) \to R^if'_*(u'^*\mathcal{F}).$

is an isomorphism for all $i \ge 0$.

¹quasi-compact quasi-separated, though for our use separated suffices

Proof. (Sketch) The question is local on Y and Y' so we can assume that Y = Spec A and Y' = Spec B where B is a flat A-algebra. Then the higher direct image functors are just taking cohomology so the statement becomes that the natural map

$$H^{i}(X,\mathcal{F})\otimes_{A}B\to H^{i}(X',u'^{*}\mathcal{F})$$

is an isomorphism of *B*-modules. When *f* is separated we can cover *X* by affines and compute $H^i(X, \mathcal{F})$ using Čech cohomology. Furthermore, the pullback of this open cover to *X'* is a cover of *X'* by affines from which we can compute $H^i(X', u'^*\mathcal{F})$. Now we use that tensoring by *B* preserves the cohomology of the Čech complex since *B* is flat. In the more general qcqs setting, one must use the Čech-to-derived spectral sequence.

We also noted that the proof of (1) did not actually use flatness of \mathcal{F} over Y since it dealt with only global sections. Indeed we have the following more general base change without flatness.

Proposition 1. (Base change without flatness) Suppose we have a cartesian diagram

where f is projective, Y' and Y are Noetherian, and suppose \mathcal{F} is a coherent sheaf on X. Then the base change morphism

$$u^*f_*(\mathcal{F}(d)) \to f'_*u'^*(\mathcal{F}(d))$$

is an isomorphism for $d \gg 0$.

Proof. (Sketch) The strategy is the same as in the proof of (1). First the question is local on Y so we can suppose Y = Spec A is affine. Then we reduce to the case Y' = Spec A' is affine using flat base change. Furthermore, we can suppose $X = \mathbb{P}_A^n$. Then we take a resolution $P_1 \to P_0 \to \mathcal{F} \to 0$ by direct sums of twisting sheaves $\mathcal{O}_X(a)$. Pulling back by u' gives us a resolution of $P'_1 \to P'_0 \to u'^*\mathcal{F} \to 0$ by direct sums of the corresponding twisting sheaves on X'. After twisting by $\mathcal{O}_X(d)$ (resp. $\mathcal{O}_{X'}(d)$) for $d \gg 0$, higher cohomologies vanish and so applying H^0 gives us a resolution $H^0(X, \mathcal{F}(d))$ as an A-module and a resolution of $H^0(X', u'^*\mathcal{F}(d))$ as an A' module by direct sums of $H^0(X, \mathcal{O}_X(a))$ (resp. $H^0(X', \mathcal{O}_{X'}(a))$). By identifying the spaces of sections of $\mathcal{O}_X(a)$ with degree a polynomials over A, it is clear that base change holds for this module:

$$H^0(X, \mathcal{O}_X(a)) \otimes_A A' \cong H^0(X', \mathcal{O}_{X'}(a)).$$
(4)

Applying $- \otimes_A A'$ to the resolution of $H^0(X, \mathcal{F}(d))$ yields a resolution of $H^0(X, \mathcal{F}(d)) \otimes_A A'$ and we see by 4 this is the same as the resolution of $H^0(X', u'^* \mathcal{F}(d))$. Since the base change morphisms for $\mathcal{O}_X(a)$ commute with those for $\mathcal{F}(d)$ we conclude the base change morphism for $\mathcal{F}(d)$ is an isomorphism.

Here is an example to show that in general, even flatness of \mathcal{F} is not enough to ensure that the base change morphism is an isomorphism.

Example 1. Let $X = E \times_k E$ where E is an elliptic curve over a field k with origin $e \in E(k)$. Let $\Delta \subset X$ denote the diagonal and consider the line bundle

$$L = \mathcal{O}_X(\Delta - p_2^* e)$$

where $p_i: X \to E$ are the projections. Now consider the base change diagram

where Y = E, $f = p_1$, Y' = Spec k, and u = e: $\text{Spec } k \to E$ is the origin. Then $X' = X_e \cong E$ and $f' \to \text{Spec } k$ is just the structure map. The pullback $u'^*L = L|_{E_e} \cong \mathcal{O}_E$ so

$$f'_* u'^* L = H^0(E, \mathcal{O}_X) = k.$$

On the other hand, f_*L is a torsion free sheaf on the integral regular curve Y so it is locally free. We may compute its stalk at the generic point of Y by flat base change. We get that $f_*L_\eta = H^0(E_\eta, \mathcal{O}_{E_\eta}(\Delta_\eta - e_\eta)) = 0$ since Δ_η and e_η are distinct points of the genus one curve E_η . Thus $f_*L = 0$ so $u^*f_*L = 0$ and we see that the base change map is not an isomorphism. Of course in this case, the projection f is flat and L is a line bundle so L is flat over Y.

What goes wrong here is that the cohomology of the fibers jumps at $e \in E$. This situation is completely understood by the following two theorems.

Theorem 2. (*Semi-continuity*) Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes. Let \mathcal{F} be a coherent sheaf on X flat over Y. Then the function

$$y \mapsto \dim H^1(X_y, \mathcal{F}_y)$$

is upper semi-continuous. Moreover, the function

$$y \mapsto \chi(X_y, \mathcal{F}_y) = \sum (-1)^i \dim H^i(X_y, \mathcal{F}_y)$$

is locally constant.

Theorem 3. (Cohomology and base change) Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes and let \mathcal{F} be a coherent sheaf on X flat over Y. Suppose for some $y \in Y$, the base change map

$$\varphi_y^i: (R^i f_* \mathcal{F})_y \to H^i(X_y, \mathcal{F}_y)$$

is surjective. Then

- 1. there exists an open neighborhood U of y such that for all $y' \in U$, $\varphi_{y'}^i$ is an isomorphism, and
- 2. φ_{v}^{i-1} is surjective if and only if $R^{i}f_{*}\mathcal{F}$ is locally free in a neighborhood of y.

Often times in moduli theory, one needs to show that various constructions on families are functorial so that they induce a construction on the moduli space. Functoriality usually means compatibility with base change. As such, the following generalization (and direct corollary) of the cohomology and base change theorem is very useful. **Proposition 2.** Let $f : X \to Y$ and \mathcal{F} be as above. Suppose that φ_y^i is an isomorphism and $\mathbb{R}^i f_* \mathcal{F}$ is locally free (or equivalently φ_y^{i-1} is an isomorphism) for all $y \in Y$. Then for any locally Noetherian scheme Y' and cartesian diagram

the base change map

$$\varphi_u^i: u^* R^i f_* \mathcal{F} \to R^i f'_* (u'^* \mathcal{F})$$

is an isomorphism. In particular, if $H^1(X_y, \mathcal{F}_y) = 0$ for all $y \in Y$, then $f_*\mathcal{F}$ is locally free and $u^*f_*\mathcal{F} \cong f'_*u'^*\mathcal{F}$.

When the conclusion of the proposition holds, we often say the formation of $R^i f_* \mathcal{F}$ commutes with arbitrary base change.

We won't prove semi-continuity and cohomology and base change here but let us say a few words about the proof. First, the statements are all local on Y so we may suppose Y = Spec A where A is local and Noetherian. The proofs then are based on the idea of Grothendieck to consider the functor on the category of A-modules given by

$$M \mapsto H^{i}(X, \mathcal{F} \otimes_{A} M).$$

Then one proves a sort of "representability" result for this functor. There exists a complex K^{\bullet} , the Grothendieck complex of \mathcal{F} , such that each term K^{i} is a finite free module, and such that there are isomorphisms

$$H^{i}(X, \mathcal{F} \otimes_{A} M) \cong H^{i}(K^{\bullet} \otimes_{A} M)$$

functorial in *M*. This reduces base change and semi-continuity problems to linear algebra of this complex *K*[•] and the theorems follow from a careful study of the properties of complexes of flat modules under base change using Nakayama's lemma.

2 The Hilbert and Quot functors

Now we can define Hilbert functor of a projective morphism $f : X \to S$. Note that implicit in this is a fixed embedding of X into \mathbb{P}^n_S and thus a fixed very ample line bundle $\mathcal{O}_X(1)$ that we can take the Hilbert polynomial with respect to.

Definition 1. Let $f : X \to S$ be a projective morphism. The Hilbert functor $H_{X/S} : Sch_S \to Set$ is the functor

 $T \mapsto \{ closed \ subschemes \ Z \subset X_T := X \times_S T \mid Z \to T \ is \ flat \ and \ proper \}.$

This is a functor by pulling back Z along $T' \to T$. An element $(Z \subset X_T) \in H_{X/S}(T)$ is called a flat family of subschemes of X parametrized by T. Let P be any polynomial. We define the subfunctor $H_{X/S}^P \subset H_{X/S}$ by

 $H^{P}_{X/S}(T) = \{ \text{flat families of subschemes } Z \subset X_{T} \mid P_{Z_{t}}(n) = P(n) \text{ for all } t \in T \}.$

By the local constancy of Hilbert polynomials in flat projective families, we see that

$$H_{X/S} = \bigsqcup_{P} H_{X/S}^{P}$$

Our goal for the next few classes is to prove that for each $f : X \to S$ and P as above, $H_{X/S}^p$ is representable by a projective scheme, the *Hilbert scheme* Hilb $_{X/S}^p$, over *S*.