Lecture 8: Hom schemes, CM regularity

09/30/2019

1 Hom schemes

Let *X* and *Y* be two schemes over *S*. The hom functor $Hom_S(X, Y) : Sch_S \to Set$ is given by

 $T \mapsto \{ \text{morphisms } X_T \to Y_T \text{ over } T \}.$

Theorem 1. Suppose X and Y are projective over S with $X \to S$ flat. Then $Hom_S(X, Y)$ is representable by a quasi-projective scheme $Hom_S(X, Y)$ over S.

Proof. Given $f : X_T \to Y_T$, we have the graph $\Gamma_f : X_T \to X_T \times_T Y_T = (X \times_S Y)_T$ which is a closed embedding. Now $\operatorname{im}(\Gamma_f) \cong X_T$ is flat over T by assumption so it defines a map $T \to \operatorname{Hilb}_{(X \times_S Y)/S}$. This construction is compatible with basechange so we obtain a natural transformation of functors

$$\mathcal{H}om_S(X,Y) \to H_{(X \times_S Y)/S}.$$

Since a morphism is determined by its graph, this is a subfunctor. Moreover, we can characterize the graphs of morphisms as exactly those closed subschemes $Z \subset X_T \times_T Y_T$ such that the projection $Z \to X_T$ is an isomorphism. This identifies $\mathcal{H}om_S(X, Y)$ with the subfunctor of $H_{(X \times_S Y)/S}$ given by

 $T \mapsto \{\text{closed subsets } Z \subset X_T \times_T Y_T \mid Z \to T \text{ flat and proper, } Z \to X_T \text{ is an isomorphism} \}.$

We will prove this is representable by an open subscheme of $\text{Hilb}_{(X \times_S Y)/S}$.

We can consider the universal family $\mathcal{Z} \to \text{Hilb}_{(X \times_S Y)/S}$ which is a closed subscheme of $X \times_S Y \times_S \text{Hilb}_{(X \times_S Y)/S}$. Then \mathcal{Z} comes with a projection $\pi : \mathcal{Z} \to X \times_S \text{Hilb}_{(X \times_S Y)/S}$. Now we consider the diagram

$$\begin{array}{c} \mathcal{Z} \xrightarrow{\pi} X \times_{S} \operatorname{Hilb}_{(X \times_{S} Y)/S} \\ q \\ \downarrow \\ \operatorname{Hilb}_{(X \times_{S} Y)/S} \xrightarrow{\pi} \operatorname{Hilb}_{(X \times_{S} Y)/S}. \end{array}$$

Then the required open subscheme is given by the following lemma.

Proposition 1. Let T = Spec R be the spectrum of a Noetherian local ring and let $0 \in T$ be the closed point. Let $f : X \to T$ be flat and proper and $g : Y \to T$ proper. Let $p : X \to Y$ be a morphism such that $p_0 : X_0 \to Y_0$ is an isomorphism. Then $p : X \to Y$ is an isomorphism.

Proof. Since *X* is proper and *Y* is separated over *T*, the morphism $p : X \to Y$ must be proper. Moreover, since *g* is proper, every closed point of *Y* lies in *Y*₀. Furthermore, since p_0 is an isomorphism, then *p* has finite fibers over closed points of *Y* so *p* is quasi-finite. Indeed since *p* is proper, the fiber dimension is upper-semicontinuous on *Y* and it is 0 on closed points. Therefore *r* is finite, and in particular, affine. This implies that $R^i p_* \mathcal{F} = 0$ for any coherent sheaf \mathcal{F} and $i \ge 1$. Now the result follows if we know that *f* is flat. Indeed in this case, $p_* \mathcal{O}_X$ is locally free of rank one by cohomology and base change. On the other hand, the natural map $\mathcal{O}_Y \to p_* \mathcal{O}_X$ is an isomorphism at all closed points $y \in Y_0 \subset Y$ and since both source and target are line bundles, it must be an isomorphism. Then, since *p* is affine, we have

$$X = \operatorname{Spec}_{Y} f_* \mathcal{O}_X = \operatorname{Spec}_{Y} \mathcal{O}_Y = Y.$$

Thus, it suffices to prove the following that *p* is flat. We will use the following lemma.

Lemma 1. Let $p : X \to Y$ be a morphism of locally Noetherian T-schemes over a locally Noetherian scheme T. Let $x \in X$ a point in the fiber X_t for $t \in T$ and set y = p(x) its image in the fiber Y_t . Then the following are equivalent:

- 1. *X* is flat over *T* at *x* and $p_t : X_t \to Y_t$ is flat at $x \in X_t$;
- 2. *Y* is flat over *T* at *y* and *p* is flat at $x \in X$.

Proof. Consider the sequence local ring homomorphisms

$$\mathcal{O}_{T,t} \to \mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}.$$

Let $I = \mathfrak{m}_t \mathcal{O}_{Y,y}$. Suppose (1) holds. Then $\mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{T,t}$ module and $\mathcal{O}_{X,x}/I\mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{Y,y}/I$ -module. Consider the composition

$$\mathfrak{m}_t \otimes \mathcal{O}_{X,x} \to I \otimes \mathcal{O}_{X,x} \to \mathcal{O}_{X,x}.$$

The first map is surjective by right exactness of tensor products and the composition is injective by since $\mathcal{O}_{X,x}$ is flat over $\mathcal{O}_{T,t}$ so both maps are in fact injections. Thus

$$\operatorname{Tor}_{1}^{\mathcal{O}_{Y,y}}(\mathcal{O}_{Y,y}/I,\mathcal{O}_{X,x})=0.$$
(1)

Since $I \subset \mathfrak{m}_y$, then I annihilates the residue field k(y) and one can check that Equation (1) and the assumptions imply that $\operatorname{Tor}_1^{\mathcal{O}_{Y,y}}(k(y), \mathcal{O}_{X,x}) = 0$ by the following lemma we will leave as an exercise.

Lemma 2. Suppose *R* is a Noetherian ring and $I \subset R$ is a proper ideal. Let *M* be an *R*-module such that *M*/*IM* is a flat *R*/*I*-module and such that

$$\operatorname{Tor}_{1}^{R}(R/I,M) = 0$$

Then for any I-torsion R-module N,

$$\operatorname{Tor}_1^R(N,M)=0.$$

Then $\mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{Y,y}$ -module by the local criterion for flatness.

in

Since everything is local, $\mathcal{O}_{X,x}$ is in fact faithfully flat over $\mathcal{O}_{Y,y}$. Now we want to show that $\operatorname{Tor}_{1}^{\mathcal{O}_{T,t}}(k(t), \mathcal{O}_{Y,y}) = 0$. Pulling back the sequence

$$0 \to \mathfrak{m}_t \to \mathcal{O}_{T,t} \to k(t) \to 0.$$

to $\mathcal{O}_{Y,y}$ gives us

$$0 \to \operatorname{Tor}_{1}^{\mathcal{O}_{T,t}}(k(t), \mathcal{O}_{Y,y}) \to \mathfrak{m}_{t} \otimes \mathcal{O}_{Y,y} \to I \to 0.$$

Since $\mathcal{O}_{X,x}$ is flat over $\mathcal{O}_{Y,y}$, then

$$0 \to \operatorname{Tor}_{1}^{\mathcal{O}_{T,t}}(k(t), \mathcal{O}_{Y,y}) \otimes \mathcal{O}_{X,x} \to \mathfrak{m}_{t} \otimes \mathcal{O}_{X,x} \to I \otimes \mathcal{O}_{X,x} \to 0.$$

We saw above that the second map is injective so

$$\operatorname{Tor}_{1}^{\mathcal{O}_{T,t}}(k(t),\mathcal{O}_{Y,y})\otimes\mathcal{O}_{X,x}=0$$

but $\mathcal{O}_{X,x}$ is faithfully flat over $\mathcal{O}_{Y,y}$ so $\operatorname{Tor}_{1}^{\mathcal{O}_{T,t}}(k(t), \mathcal{O}_{Y,y}) = 0$ and $\mathcal{O}_{Y,y}$ is flat over $\mathcal{O}_{T,t}$.

For the converse, suppose (2) holds. Then $Y \to T$ is flat at $y \in Y$ and $p : X \to Y$ is flat at $x \in X$ so the composition $X \to T$ is flat at $x \in X$. Moreover, p_t is the pullback p to Y_t and flatness is stable under basechange so p_t is flat at $x \in X$.

Corollary 1. Let $f : X \to T$ be flat and proper and $g : Y \to T$ proper over a Noetherian scheme T. Let $p : X \to Y$ be a morphism. Then there exists an open subscheme $U \subset T$ such that for any T' and $\varphi : T' \to T$, φ factors through U if and only if $\varphi^* p : X_{T'} \to Y_{T'}$ is an isomorphism.

Proof. The locus where $p : X \to Y$ is an isomorphism is open on the target Y so let $Z \subset Y$ be the closed subset over which p is not an isomorphism. Since g is proper, $g(Z) \subset T$ is closed. Let $U \subset T$ be its complement. By the proposition, a point $t \in T$ is contained in U if and only if the the map on the fibers $p_t : X_t \to Y_t$ is an isomorphism. Since this is a fiberwise condition on $t \in T$, it is clear that U satisfies the required universal property.

2 Castelnuovo-Mumford regularity

We will now discuss the first main ingredient in the proof of representability of Hilbert and Quot functors.

Theorem 2. (Uniform Castelnuovo-Mumford regularity) For any polynomial P and integers m, n, there exists an integer N = N(P, m, n) such that for any field k and any coherent subsheaf of $\mathcal{F} \subset \mathcal{O}_{\mathbb{P}^n_i}^{\oplus m}$ with Hilbert polynomial P we have the following. For any $d \ge N$,

1. $H^i(\mathbb{P}^n_k, \mathcal{F}(d)) = 0$ for all $i \ge 1$,

- 2. $\mathcal{F}(d)$ is generated by global sections, and
- 3. $H^0(\mathbb{P}^n_k, \mathcal{F}(d)) \otimes H^0(\mathbb{P}^n_k, \mathcal{O}(1)) \to H^0(\mathbb{P}^n_k, \mathcal{F}(d+1))$ is surjective.

To prove this we will define a more general notion of the Castelnuovo-Mumford regularity of a sheaf \mathcal{F} on projective space.

Definition 1. (CM regularity) A coherent sheaf \mathcal{F} on \mathbb{P}_k^n is said to be m-regular if

$$H^i(\mathbb{P}^n_k,\mathcal{F}(m-i))=0$$

for all i > 0.

The notion of CM regularity is well adapted to running inductive arguments by taking a hyperplane section.

Proposition 2. Let \mathcal{F} be *m*-regular. Then

- 1. $H^{i}(\mathbb{P}^{n}_{k}, \mathcal{F}(d)) = 0$ for all $d \geq m i$ and i > 0, that is, \mathcal{F} is m' regular for all $m' \geq m$,
- 2. $H^0(\mathbb{P}^n_k, \mathcal{F}(d)) \otimes H^0(\mathbb{P}^n_k, \mathcal{O}(1)) \to H^0(\mathbb{P}^n_k, \mathcal{F}(d+1))$ is surjective for all $d \ge m$.
- *3.* $\mathcal{F}(d)$ *is globally generated for all* $d \ge m$ *, and*

Proof. The definition of *m*-regularity and the conclusions of the proposition can all be checked after passing to a field extension since field extensions are faithfully flat so we may suppose the field *k* is infinite. Now we will induct on the dimension *n*.

If n = 0 the results trivially hold since all higher cohomology vanishes, all sheaves are globally generated and $\mathcal{O}(1) = \mathcal{O}$. Suppose n > 0 and let $H \subset \mathbb{P}_k^n$ be a general hyperplane.¹ Now consider the short exact sequence

$$0 \to \mathcal{F}(m-i-1) \to \mathcal{F}(m-i) \to \mathcal{F}_H(m-i) \to 0$$

where $\mathcal{F}_H = \mathcal{F}|_H$ is the restriction. Taking the long exact sequence of cohomology yields

$$\ldots \to H^{i}(\mathbb{P}^{n}_{k},\mathcal{F}(m-i)) \to H^{i}(\mathbb{P}^{n}_{k},\mathcal{F}_{H}(m-i)) \to H^{i+1}(\mathbb{P}^{n}_{k},\mathcal{F}(m-i-1)) \to \ldots,$$

The first and last terms are 0 for all i > 0 by assumption so $H^i(H, \mathcal{F}_H(m-i)) = 0$ for all i > 0. That is, \mathcal{F}_H is *m*-regular.

We will continue next time.

¹Here general means that *H* avoids all associated points of \mathcal{F} . This is where we use the infinite field assumption.