Problem set 1

Due 10/7/2019

1. If you haven't done so before, prove the Yoneda lemma. That is, if C is a category, X is an object of C and $F : C^{op} \to Set$ is a presheaf, show that there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(h_X, F) \cong F(X).$$

Conclude that the functor $\mathcal{C} \to Fun(\mathcal{C}^{op}, Set)$ given by $X \mapsto h_X$ is fully faithful.

- 2. Are the following functors representable? If so find the representing object and universal family and if not show why not.
 - The functor $GL_n : Sch_{\mathbb{Z}}^{op} \to Set$ taking a scheme *T* to $GL_n(\mathcal{O}_T(T))$;
 - The functor $Nil_n : Sch_{\mathbb{Z}}^{op} \to Set$ taking a scheme *T* to the set of elements $f \in \mathcal{O}_T(T)$ with $f^n = 0$.
 - The functor $Nil : Sch_{\mathbb{Z}}^{op} \to Set$ taking a scheme T to the set of all nilpotent elements $f \in \mathcal{O}_T(T)$.
 - The functor $F_n : Sch_{\mathbb{Z}}^{op} \to Set$ taking T to the set $(f_1, \ldots, f_n) \in \mathcal{O}_T(T)^{\oplus n}$ such that for each $t \in T$, there exists an i with $f_i(t) \neq 0$.
 - The functor $F_n/\mathbb{G}_m : Sch_{\mathbb{Z}}^{op} \to Set$ taking *T* to the set $F_n(T)/\sim$ where

$$(f_1,\ldots,f_n)\sim (f'_1,\ldots,f'_n)$$

if and only if there exists a unit $u \in \mathcal{O}_T(T)^{\times}$ with $f'_i = uf_i$ for all *i*.

- 3. In the last example above, what happens if we sheafify the functor F_n/\mathbb{G}_m ?
- 4. Prove the following statement we used in class. Let $f : X \to Y$ be a morphism locally of finite type between locally Noetherian schemes. Show that f is a closed embedding if and only if it is a proper monomorphism. Recall that a morphism is a monomomorphism if for all T, the induced map $Hom_{\mathcal{C}}(T, X) \to Hom_{\mathcal{C}}(T, Y)$ is injective. (Hint: you might need to use the famous result that a morphism is finite if and only if it is proper and has finite fibers.)
- 5. In this exercise, we will prove the generic freeness theorem.

Theorem 1. Let A be a Noetherian integral domain and B a finitely generated A-algebra. For any finite B-module M, there exists an $f \in A$ such that M_f is a free A_f -module.

To make the argument easier, let us say that an *A*-algebra *B* satisfies generic freeness if for any finite *B*-module *M*, there exists $f \in A$ such that M_f is a free A_f module. Then we want to show that any finitely generated *A*-algebra satisfies generic freeness.

- (a) Show that it suffices to prove that the polynomial algebra $A[t_1, \ldots, t_n]$ satisfies generic freeness.
- (b) Show that *A* itself satisfies generic freeness.
- (c) Let *B* be an *A*-algebra and let *M* be a finitely generated B[t]-module. Let m_1, \ldots, m_k be a finite set of B[t]-module generators. We will define a filtration of *M* by finite *B*-modules as follows. Let M_0 be the *B*-module generated by m_1, \ldots, m_k and let $M_{n+1} = M_n + tM_n$. Note that each M_n is a finite *B*-module. Show that for each $n \gg 0$, multiplication by *t* is an isomorphism $M_n/M_{n-1} \rightarrow M_{n+1}/M_n$. Hint: consider the graded B[t] module

$$\bigoplus_{n\geq 0} M_n/M_{n-1}$$

- (d) Let *M* be an *A*-module with a filtration $M_0 \subset M_1 \subset ... M_n \subset ... M$. Suppose that M_{n+1}/M_n is a free *A*-module for each *n*. Show that *M* is a free *A*-module.
- (e) Suppose that *B* is an *A*-algebra which satisfies generic freeness. Use parts (*c*) and (*d*) above to conclude that *B*[*t*] satisfies generic freeness.
- (f) Conclude that any finitely generated A-algebra B satisfies generic freeness.