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1 Introduction and overview

1.1 Basic definitions and first examples

The study of rationality is one of the most classical in algebraic geometry. Indeed given a collection
of polynomial equations with coefficients in a field k

{f1 = . . . , fn = 0}

one of the first questions one can ask is whether the set of solutions X(k) can be parametrized by
rational functions.

Definition 1.1. Let X and Y be varieties defined over a field k.

1. A rational map f : X 99K Y is an equivalence class of pairs (U, f) where U ⊂ X is a dense
open subset and f : U → Y is a k-morphism. Two pairs (U, f) and (V, g) are equivalent if
f |U∩V = g|U∩V .

2. A rational map f : X 99K Y is said to be birational if there exists a rational map g : Y 99K X
such that g ◦ f and f ◦ g are the identity where defined.

3. X and Y are said to be birational if there exists a birational map f : X 99K Y .

The natural geometric reformulation of being able to parametrize X(k) by rational functions is
to give a rational parametrization of the variety X by projective space.

Definition 1.2. We say thatX is rational if it is birational to projective space Pn where n = dimX.
We call a birational map f : Pn 99K X a rational parametrization of X.

The following example shows that the rationality of a variety X/k depends on the arithmetic
of the field k. For this reason we will often, but not always, work with algebraically closed fields
k = k̄. However, many interesting examples come from non-closed fields.

Example 1.3. Consider the plane curve C = {x2 + y2 = pz2} ⊂ P2 defined over Q where p is a
prime number.

1. When p = 1, we can write down an explicit rational parametrization f : P1 99K C

f(t) =
[
t2 − 1: 2t : t2 + 1

]
.

This parametrization is given by the inverse of stereographic projection from the point [0 : 1 : 0].

2. When p ≡ 1 mod 4, we can write p = a2 + b2 and so we have a Q-point given by [a : b : 1]
and again using projection from this point gives a birational map C 99K P1.

3. When p ≡ −1 mod 4, then in fact C(Q) = ∅ so is not rational over Q but it becomes rational
over the field extension k = Q(

√
p). For the latter claim, just note that there is a k-point

[0 :
√
p : 1] and projection from this point gives us a birational map C 99K P1. For the former

claim, suppose we have a Q-point of C. By clearing denominators and common factors we
may suppose that x, y and z are coprime integers. If x and y are not divisible by p, then
x2 = −y2 mod p so u2 = −1 mod p has a solution which contradicts that p ≡ −1 mod 4.
Otherwise x and y must both be divisible by p but then pz2 is divisble by p2, contradicting
that x, y and z are coprime.
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Remark 1.4. Note that if f : X 99K Y is a birational map of k-varieties, then for any field extension
K/k, there is a natural birational map fK : XK 99K YK defined by taking the basechange of a
representative U → Y of f . Here we have used that if U ⊂ X is dense then so is UK ⊂ XK by
flatness of K/k. Therefore rationality is preserved under extending the base field. In particular,
rational varieties are always geometrically integral.

Example 1.5. We will see that the cubic surface {x3 + y3 + z3 +w3 = 0} ⊂ P3 is rational over Q.
An explicit rational parametrization over Q was written down by Elkies [21]. More generally, we
will see that any smooth cubic surface is rational over an algebraically closed field of characteristic
zero. However, it is very challenging to exhibit an explicit rational parametrization in general, even
over C, so we need to develop more geometric methods to prove this. For a general cubic surface
X over Q, the situation becomes more interesting as now again the rationality of a cubic surface
will depend on subtle arithmetic invariants, namely the Galois cohomology H1(GQ,Pic(XQ̄)).

1.2 Nearly rational varieties

There are several natural generalizations of the notion of rationality which are each interesting in
their own rights and in relation to each other. The most natural one answers the question “what if
we don’t require our rational parametrizations to be one-to-one?”

Definition 1.6. A variety X/k is unirational if there is a dominant rational map f : PN 99K X.
In this case, we call f a unirational parametrization.

Proposition 1.7. If X/k is unirational, then there exists a unirational parametrization f : Pn 99K
X where n = dimX.

Proof. We give a proof when k is an infinite field. The general case can be handled by an elementary
but nontrivial algebraic argument (see for example [41, Proposition 1.1]. Suppose f : PN 99K X
is a unirational parametrization defined on an open set U , where necessarily N ≥ n. If N = n
we are done so suppose that N > n. Let x ∈ X be a general point in the image of f with
dim f−1(x) = N − n. Since k is infinite, there exists a hyperplane H intersecting U such that
dimH ∩ f−1(x) < dim f−1(x). Then f |H : H 99K X is a well defined rational map. Moreover, we
claim that f |H is dominant. If not, by semi-continuity of fiber dimension, every nonempty fiber of
f |H would have dimension ≥ (N − 1) − (n − 1) = N − n, contradicting that dimH ∩ f−1(x) <
N − n.

An intermediate notion between rationality and unirationality that is often easier to work with
is stable rationality.

Definition 1.8. We say that X is stably rational if X×Pm is rational for some m. More generally,
we say that X and Y are stably birational if X × Pm is birational to Y × Pn for some n,m.

Remark 1.9. Note that two varietiesX and Y are birational if and only if the function fields k(X) and
k(Y ) are isomorphic as extensions of k. Moreover, a dominant rational map Y 99K X is equivalent to
a field extension k ⊂ k(X) ⊂ k(Y ). Thus rationality (resp. stable rationality, resp. unirationality)
is equivalent to the purely field theoretic statement that k(X) is purely transcendental over k (resp.
k(X)(t1, . . . , tm) is purely transcendental over k, resp. k(X) is a subfield of a purely transcendental
extension k(t1, . . . , tN)). In particular, rationality (resp. stable rationality, resp. unirationality)
depends only on the birational equivalence class of X. For many arguments, it is necessary to pick
a projective model for X. Moreover, when char(k) = 0, we can (and often will) assume X is also
smooth thanks to Hironaka’s theorem.
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The following result due to Lang and Nishimura guarantees that X(k) ̸= ∅ for proper unirational
varieties.

Lemma 1.10. Suppose f : X 99K Y is a rational map with Y proper and X smooth. If X has a
k-rational point then so does Y .

Proof. We will induct on the dimension n of X. If n = 0, then f is a morphism so the image of
the rational point on X gives a rational point on Y . In general, let x ∈ X(k) be a raitonal point
and consider the blowup X ′ = BlxX. By the valuative criterion for properness, the composition
X ′ → X 99K Y extends across codimension 1 points of X ′. In particular, the restriction to the
exceptional divisor E ∼= Pn−1 is a well defined rational map Pn−1 99K Y so by induction, Y has a
rational point.

Remark 1.11. Neither assumptions in the above lemma can be dropped. Indeed Y = Ȳ \ Ȳ (k) for
a variety Ȳ with finitely many k-points gives a counterexample when Y is not proper. When X is
not smooth, then the exceptional divisor of X ′ → X need not be isomorphic to projective space
over k, consider for example the affine cone x2 + y2 + z2 = 0 in A3 over Q with unique rational
point (0, 0, 0).

Finally, we introduce the notion of rationally connected which we will see is especially well-
behaved over an algebraically closed field of characteristic 0.

Definition 1.12. Let k = k̄ be an algebraically closed field of characteristic 0 and let X/k be
a smooth projective variety. We say that X is rationally connected if for any two general points
x, y ∈ X, there exists a map f : P1 → X such that f(0) = x and f(∞) = y.

We have the following simple but important implications.

rational =⇒ stably rational =⇒ unirational =⇒ rationally connected (1)

The first two are by definition. For the third, let f : PN 99K X be a unirational parametrization.
Then a general point of X is in the image of f and for any two points x, y in the image of f , we
can pick preimages x′, y′ ∈ PN and let L ⊂ PN be the line through x′ and y′. Then f |L gives the
required rational curve connecting x and y.

One of the major motivating questions in the field is to what extent are any of these implications
reversible? For the remainder of this section we will give an overview of the history of this problem
and some of the topics we plan to cover over the semester.

1.3 The Lüroth problem

One of the first theorems in the subject concerns the reversibility of the implication rational =⇒
unirational in the case of dimension 1.

Theorem 1.13 (Lüroth [36]). Suppose X is a 1-dimensional unirational variety over k. Then X
is rational over k.

Proof. We give a geometric argument which works when char(k) = 0. The general case can be
proved by an elementary but involved field theoretic argument (see [41, Theorem 1.3]).
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By taking a projective closure and normalizing, we may assume that X is smooth and projec-
tive. Then our rational parametrization extends to a surjective morphism f : P1 → X. Since f is
separable, we have the Riemann–Hurwitz formula which in this case reads

−2 = deg(f)(2g − 2) + deg(R)

where g is the genus of X and R, the ramification divisor, is effective. Then g < 1 so g = 0. By
Lang–Nishimura 1.10, X has a rational point. Now we conclude by the following lemma.

Lemma 1.14. If X/k is a smooth projective curve of genus 0 with a rational point, then X ∼= P1.

Proof. Let p ∈ X(k) be a k-point. The line bundle OX(p) has degree 1 and by Serre duality,
H1(X,OX(p)) = 0 since X has genus 0. Then by Riemann–Roch, we have

h0(X,OX(p)) = 2.

Thus, the complete linear series H0(X,OX(p)) induces a morphism X → P1 with degree 1 fibers.
Such a morphism is necessarily an isomorphism so X is rational.

So in dimension one, rational and unirational are equivalent. Thus it is natural to wonder what
happens in higher dimensions.

Question 1.15 (Lüroth Problem). Under what circumstances is a unirational variety rational?
Equivalently, when is a subfield k ⊂ K ⊂ k(t1, . . . , tn) purely transcendental over k?

More generally, we sometimes refer to the question of invertibility of any of the implications in
Equation (1) as the Lüroth Problem.

In dimension 2 over an algebraically closed field of characteristic 0, the Lüroth problem is solved
by the following famous Theorem of Castelnuovo which we will prove later in the course.

Theorem 1.16 (Castelnuovo’s Theorem). Suppose that k = k̄ and char(k) = 0. If X/k is a smooth
projective surface with

h1(X,OX) = h0(X,ω⊗2
X ) = 0,

then X is rational.

Remark 1.17. Here ωX = detΩ1
X is the canonical bundle of the smooth projective variety X.

Thus in dimension ≤ 2 and over an algebraically closed field of characteristic 0, rationality is
completely captured by numerical invariants, namely the genus in dimension 1 and the invariants
h1(X,OX) = h0(X,ω⊗2

X ) in dimension 2. We will see that Castelnuovo’s Theorem implies the
following generalization of Lüroth’s Theorem.

Corollary 1.18. Suppose that k = k̄ and char(k) = 0. If X/k is a smooth projective unirational
surface, then X is rational.

Remark 1.19. We will see that there are interesting arithmetic examples of unirational but not
rational surfaces over a non-closed field of characteristic 0. Moreover, Castelnuovo’s Theorem is
false in characteristic p.

In dimension ≥ 3, the Lüroth Problem has a negative answer and and there is a long history of
interesting examples and counterexamples to the reverse of the implications in Equation (1) which
we will discuss later in the course.
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1.3.1 Clemens–Griffiths

Let X be a smooth projective threefold over the complex numbers and suppose that h1,0(X) =
h3,0(X) = 0. Clemens and Griffiths [13] associated to X a principally polarized Abelian variety
(ppav)

IJ(X) :=
H2,1(X,C)∨

H3(X,Z)
,

the intermediate Jacobian of X. They show that if X is rational, then

IJ(X) ∼= Jac(C)

as ppavs where C is a possibly disconnected smooth projective curve.
Specializing to the case of a smooth cubic threefold X ⊂ P4, they show that for such X, IJ(X) is

never isomorphic to Jac(C). On the other hand, a geometric construction via conic bundles shows
that such X is unirational. Thus we obtain examples of unirational but not rational varieties.

Theorem 1.20 (Clemens–Griffiths [13]). Smooth cubic threefolds over C are unirational but not
rational.

Question 1.21. Is a smooth cubic threefold stably rational?

1.3.2 Artin–Mumford

Artin and Mumford [1] introduced an invariant which can be used to detect stable rationality. This
invariant is the torsion subgroup of the 3rd integral homology group,

H3(X,Z)tors

which is closely related to the Brauer group Br(X). Artin and Mumford showed that H3(X,Z)tors
is a stable birational invariant so that in particular, H3(X,Z)tors = 0 if X is stably rational. Using
this invariant, they constructed examples of unirational but not stably rational varieties.

Theorem 1.22 (Artin–Mumford [1]). There exists a variety X/C which is unirational but not
stably rational.

1.3.3 Iskovskikh–Manin

The approach of Iskovskikh and Manin [27] is based on the following observation.

Definition 1.23. A birational automorphism of X is a birational map X 99K X. The group of all
birational automorphisms will be denoted Bir(X).

Observation 1.24. If X and Y are birational then

Bir(X) ∼= Bir(Y ).

In particular, rational varieties must have very large automorphism group since Bir(Pn) =: Crn
also known as the Cremona group, is very large and in particular infinite.
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Example 1.25. If k is an infinite field, then PGLn+1(k) ⊂ Crn shows that Crn is infinite. For
n ≥ 2, Crn is still infinite even over finite fields. For example there exist infinitely automorphisms
of An of the form

(x1, . . . , xn) 7→ (x1 + P (x2, . . . , xn), x2, . . . , xn)

where P ∈ k[x2, . . . , xn] is any polynomial. In fact Crn is not finitely generated [10, Proposition
3.6]

Theorem 1.26. (Iskovskikh–Manin [27]) Let X ⊂ P4 be a smooth quartic threefold. Then Bir(X)
is finite. In particular, X is not rational.

On the other hand, B. Segre gave the following example of a quartic threefold which is unira-
tional, yielding another counterexample to the Lüroth Problem.

x40 + x0x
3
4 + x41 − 6x21x

2
2 + x42 + x43 + x33x4 = 0

1.3.4 Beauville–Colliot-Thélène–Sansuc–Swinnerton-Dyer

Using arithmetic techniques, Beauville–Colliot-Thélène–Sansuc–Swinnerton-Dyer [4] constructed
examples of stably rational but not rational surfaces over a non-closed function field K/C. By
spreading out they then obtain higher dimensional examples over C.

Theorem 1.27 (Beauville–Colliot-Thélène–Sansuc–Swinnerton-Dyer [4]). There exists an irra-
tional threefold X/C such that X × P3 is rational.

1.3.5 Unirational versus rationally connected

The above examples which we will cover in detail in this course show that the first two arrows in
Equation (1) are strict. The last one is also expected to be strict but this is still an open problem.

rational
strict
===⇒ stably rational

strict
===⇒ unirational

strict?
====⇒ rationally connected (2)

Question 1.28. Do there exist smooth rationally connected varieties over C which are not unira-
tional?

1.4 Rationality in families

In the latter part of the course we will discuss the behavior of rationality in families. Given a family
f : X → S of varieties over k, it is natural to study the loci of points s ∈ S such that Xs is rational
(resp. stably rational, resp. unirational). When is rationality deformation invariant in families?
Do there exist families with both rational and irrational fibers? Can we use specialization methods
to study the rationality of general members of our family?

We begin with the following basic observations.

Observation 1.29. When k = C, rationality is both an open and closed condition in a smooth projec-
tive family f : X → S of relative dimension ≤ 2. This follows from the numerical characterization
of rationality in small dimensions.

Observation 1.30. Rationality does not behave well when we degenerate to singular varieties.

Example 1.31. 1. Suppose f : X → SpecR is a family of elliptic curves over a DVR degen-
erating to a nodal cubic curve. Then the generic fiber is not rational but the special fiber is
rational.
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2. Suppose f : X → SpecR is a family of smooth cubic hypersurfaces over a DVR degenerating
to the cone over an elliptic curve. Then the general fiber of f is rational but the special fiber
is not rational.

Remark 1.32. We will see that the property of being rationally connected is both open and closed
in smooth projective families of complex varieties.

1.4.1 The specialization method for stable irrationlity

Much of the recent progress on (stable) rationality has been spurred on by a specialization method,
first introduced by Voisin and generalized by Colliot-Thélène–Pirutka, for proving that very general
members of a family are not stably rational. The obstruction to stable rationality used in this
method comes from studying algebraic cycles on X. Given a projective family f : X → S, the
upshot of this method is that the existence of a singular fiber with mild singularities and nonzero
obstruction implies that the very general fiber of f is not stably rational. We will state the precise
theorem here but postpone the definitions until later.

Theorem 1.33 (Voisin, Colliot-Thélène–Pirutka [46, 14]). Let k = k̄ be an uncountable field.
Suppose f : X → S is a flat projective family over an integral variety S. Suppose that there exists
a point 0 ∈ S such that the fiber X0 satisfies

1. X0 admits a universally CH0-trivial resolution of singularities µ : Y → X0, and

2. Y is not universally CH0-trivial.

Then the very general fiber of f is not stably rational.

Applications of this method have led to many examples due to Hassett, Kresch, Tschinkel,
Pirutka, Schreieder and others of the following surprising behavior of rationality in families.

Theorem 1.34. There exist smooth projective families f : X → S of complex varieties over an
integral base S such that

1. the very general fiber of f is not stably rational, and

2. the locus {s ∈ S(C) | Xs is rational} is dense in the complex topology on S(C).

1.4.2 Specialization of (stable) rationality

In the examples alluded to in Theorem 1.34, the generic fiber of the family is not rational but there
are many rational fibers. We can also ask what happens when the generic fiber of the family is
(stably) rational.

Theorem 1.35 (Nicaise–Shinder, Kontsevich–Tschinkel, Nicaise–Ottem [40, 34, 39]). Suppose
char(k) = 0 and let f : X → S be a smooth projective family over a smooth connected curve
S. Suppose the generic fiber of f is (stably) rational over the function field k(S). Then Xs is
(stably) rational for all s ∈ S.

The proofs of this theorem involve constructing an appropriate specialization map of variants
of the Grothendieck ring of varieties of the function field k(S) to that of the residue field k(s) and
envoking the Weak Factorization theorem for birational morphisms. The analagous question for
unirationality is still open.

Question 1.36. Does unirationality specialize in one parameter families?
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2 Plurigenera and Castelnuovo’s Theorem

A fundamental goal in the study of rationality is to produce numerical invariants which can be
used to distinguish between rational and irrational varieties. We saw that for smooth projective
curves over an algebraically closed field, the genus g fulfills this role. The plurigenera are the higher
dimensional generalizations of the genus of a curve.

Definition 2.1. Let X/k be a smooth projective variety. The mth plurigenus Pm is

Pm(X) := h0(X,ω⊗m
X )

where ωX := ΛdimXΩX is the canonical bundle of X.

Remark 2.2. The first plurigenus P1 = h0(X,ωX), sometimes denoted pg, is the geometric genus
which agrees with the genus of a curve in dimension 1.

In this section we will see that the plurigenera, and more generally the invariants

Pm,n(X) := h0(X, (Ωn
X)

⊗m)

are birational invariants. Note here that Ωn
X := ΛnΩX and that Pm,d(X) = Pm where d = dimX.1

Moreover, these invariants vanish for projective space so that in particular, they give an obstruction
to rationality. We will also sketch a proof of Castelnuovo’s Theorem which shows that these are
complete invariants for rationality of surfaces over an algebraically closed field.

Theorem 2.3 (Castelnuovo’s Theorem). Suppose that k = k̄ and char(k) = 0. If X/k is a smooth
projective surface with

h1(X,OX) = h0(X,ω⊗2
X ) = 0,

then X is rational.

Remark 2.4. Under the assumptions of the theorem, classical Hodge theory shows that

h1(X,OX) = h0(X,ΩX) = P1,1(X)

2.1 Birational invariance of plurigenera

In this section we show that Pm,n(X) is a birational invariant for all m,n and X smooth and proper.

Proposition 2.5. Let X and Y be smooth and proper k-variaties. If f : X 99K Y is a separable,
dominant rational map, then

h0(X, (Ωn
X)

⊗m) ≥ h0(Y, (Ωn
Y )

⊗m) for all n,m ≥ 0.

Proof. Since X is normal and Y is proper, there exists a dense open subset U ⊂ X such with
codimX(X ⊂ U) ≥ 2 such that f restricts to a morphism f : U → Y .

Since X is normal, (Ωn
X)

⊗m is locally free, and the complement of U has high codimension, we
have that

h0(X, (Ωn
X)

⊗m) = h0(U, (Ωn
X)
∣∣⊗m

U
) = h0(U, (Ωn

U)
⊗m).

Thus it suffices to show that
h0(U, (Ωn

U)
⊗m) ≥ h0(Y, (Ωn

Y )
⊗m).

1This notation Pm,n is not standard.

10



We claim in fact that the pullback map

H0(Y, (Ωn
Y )

⊗m) → H0(U, (Ωn
U)

⊗m)

via f : U → Y is injective. Indeed it factors as

H0(Y, (Ωn
Y )

⊗m) → H0(U, (f ∗Ωn
Y )

⊗m) → H0(U, (Ωn
U)

⊗m) (3)

where the first map is the usual pullback of sections and the second map is induced by the natural
map df : f ∗ΩY → ΩU . The first map is injective since f is dominant and (Ωn

Y )
⊗m is locally free. For

the second map, note that f is generically smooth by the seperability assumption so df : f ∗ΩY → ΩU

is generically injective, but f ∗ΩY is torsion free so df is injective. Since both sheaves are vector
bundles, (Λndf)⊗m is also injective and thus the second map in (3) is also injective by taking global
sections.

Corollary 2.6 (Plurigenera are birationally invariant). If X and Y as above are birational, then

Pm,n(X) = Pm,n(Y ) for all m,n ≥ 0.

Proof. since X and Y are birational, there exist rational maps f : X 99K Y and g : Y 99K X which
are inverses on a dense open subset. In particular, f and g are dominant and separable so applying
Proposition 2.5 to both maps gives the required equality.

In characteristic 0, every map is separable so we obtain the following.

Corollary 2.7. If char(k) = 0 and f : X 99K Y is a dominant map with X and Y as above, then

h0(X, (Ωn
X)

⊗m) ≥ h0(Y, (Ωn
Y )

⊗m) for all n,m ≥ 0.

Corollary 2.8. If char(k) = 0 then for all n ≥ 0, hn(X,OX) is a birational invariant for smooth
and proper X.

Proof. By general reductions, we may assume that k = C. Then the Hodge decomposition and
Hodge symmetries tell us that

hn(X,OX) = h0(X,Ωn
X) = P1,n

which is a birational invariant.

Remark 2.9. Corollary 2.8 also holds over fields of characteristic p but the proof is much harder
and more recent due to Chatzistamatiou–Rülling [11].

Example 2.10. Here we compute that Pm,n(PN) = 0 for m,n ≥ 1. The Euler sequence tells us
that

0 → ΩPN → OPN (−1)⊕N+1 → OPN → 0. (4)

Taking exterior powers, we obtain an injection

0 → Ωn
PN → OPN (−1)⊕(

N+1
n ). (5)

Since h0(PN ,OPN (−1)) = 0, we conclude that P1,n(PN) = 0. Now we induct on m. Tensoring the
sequence (5) with (Ωn

PN )
⊗m−1 and taking global sections gives us an injection

H0(PN , (Ωn
PN )

⊗m) ↪→ H0(PN , (Ωn
PN )

⊗m−1(−1)⊕(
N+1
n )).

Now h0(PN , (Ωn
PN )

⊗m−1(−1))) ≤ h0(PN , (Ωn
PN )

⊗m−1) = Pm−1,n = 0 by induction so we conclude that
Pm,n = 0.
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By Example 2.10 and the birational invariance of plurigenera, obtain that Pm,n(X) gives an
obstruction to rationality.

Proposition 2.11. Let X/k be a smooth and proper variety. If X is rational, then Pm,n(X) = 0
for all m,n ≥ 1. If char(k) = 0 and X is unirational, then we have the same conclusion.

Proof. The first claim follows from Example 2.10 and Proposition 2.5. The second claim follows
from the same example and Corollary 2.7.

We are now ready to see our first examples of irrational varieties in higher dimensions.

Example 2.12. 1. Let Xd ⊂ Pn be a smooth degree d hypersurface. Then by the adjunction
formula,

ωXd
= ωPN (d)|Xd

= OXd
(d− n− 1).

In particular, if d ≥ n + 1, Pm(Xd) = h0(Xd,OXd
(m(d − n − 1))) > 0 so Xd is not rational,

and not even unirational in characteristic 0.

2. More generally, the adjunction formula can be extended to show that a complete intersection
X ⊂ Pn of degree (d1, . . . , dk) has canonical bundle given by

ωX = OX(d1 + . . .+ dk − n− 1)

and thus X is not rational (or even unirational when char(k) = 0) for d1 + . . .+ dk ≥ n+ 1.

Remark 2.13. The assertion in Proposition 2.11 about unirationality is false in characteristic p. For
example, there exist unirational K3 surfaces X in positive characteristic. These are unirational
smooth projective surfaces X with ωX = OX so in particular P1(X) = 1.

By Example 2.12, rational hypersurfaces in Pn can only exist for low degree d ≤ n. We will see
later by constructing more sophisticated invariants that there exist hypersurfaces of degree d ≤ n
which are not rational. Thus the plurigenera are not a complete invariant for rationality.

Remark 2.14. We will see later that if X is a rationally connected variety then Pm,n(X) = 0 for all
m,n ≥ 1. It is famously conjectured that the vanishing Pm,n(X) = 0 implies that X is rationally
connected. This is implied by the deep conjectures of the minimal model program but is still open.

2.2 Castelnuovo’s Theorem

In this section we will sketch the proof of Castelnuovo’s Theorem using ideas from the minimal
model program for surfaces. For the rest of this subsection we assume that k = k̄ and char(k) = 0.

Theorem 2.15 (Castelnuovo’s Theorem). If X/k is a smooth projective surface with

h1(X,OX) = h0(X,ω⊗2
X ) = 0,

then X is rational.

Proof. (Sketch) Recall that a (−1)-curve E ⊂ X is a rational curve E with E2 = −1. By Casteln-
uovo’s Criterion for contractibility, if E ⊂ X is a (−1)-curve, then there exists a projective birational
morphism f : X → X1 such that

• X is smooth,

12



• f contracts E to a point, and

• f maps X \ E isomorphically onto X1 \ p.

Then we have 0 < ρ(X1) < ρ(X) where ρ(X) := dimNS(X)R is the Picard number. If X1 has a
(−1)-curve, we can further contract this curve. Eventually this process must terminate so we see
that X is birational to a smooth projective surface X0 with no (−1)-curves. Since the plurigenera
and rationality are invariant under birational maps, we may replace X with X0 and assume that
X has no (−1)-curves.

Next, suppose that there exists a curve C withKX .C < 0. Recall thatKX , the canonical divisor,
is characterized by OX(KX) = ωX . Then by results from the minimal model program, there exists
a surjective morphism2

φ : X → Z

such that dimZ < 2, φ has integral fibers, Z is normal and −KX |F ample for a general fiber F .
Suppose dimZ = 1, then φ is a flat projective morphism to a smooth curve with integral genus

0 fibers, that is, it is a P1 bundle. By Tsen’s theorem, φ : X → Z is birational to Z×P1. If Z = P1,
then X is rational. Otherwise, Z is higher genus and we derive a contradiction:

h1(X,OX) = h1(Z × P1,OZ×P1) = h1(Z,OZ) > 0.

If dimZ = 0, then −KX is ample and ρ(X) = 1. This is the hardest part of the proof, but the
idea is to show that there exists an ample divisor H such that −KX = 3H and then show that the
linear series φ|H| maps X isomorphically onto P2, which in particular is rational.

Thus, it suffices to show that there exists a curve C with KX .C < 0. Suppose that KX .C ≥ 0
for all curves C ⊂ X and fix an ample divisor A.

Lemma 2.16. We have K2
X ≥ 0 and A.KX ≥ 0.

Proof. Since KX .C ≥ 0 for all curves, KX + ϵA is ample for all ϵ > 0 so (KX + ϵA)2 > 0. Taking
the limit ϵ → 0 gives K2

X ≥ 0. On the other hand, an ample divisor is linearly equivalent to an
effective one so A.KX ≥ 0 by assumption.

Now
χ(OX) = h0(X,OX)− h1(X,OX) + h2(X,OX) = 1− 0 + 0 = 1

where the second term is 0 by assumption and the third term is zero by Serre duality and the fact
that P2 = 0 =⇒ P1 = 0. Then

h2(X,OX(−KX)) = h0(X,OX(2KX)) = 0

so by Riemann–Roch,

h0(X,OX(−KX)) ≥
1

2
(−KX)(−KX −KX) + χ(OX) = K2

X + 1 ≥ 1.

Thus, there exists an effective divisor D ∈ | −KX | so

0 < D.A = −KX .A ≤ 0

which is a contradiction.

2called an extremal contraction
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By Corollary 2.7 and the Hodge decomposition, we obtain that the Lüroth problem has a positive
solution for surfaces over an algebraically closed field of characteristic zero.

Corollary 2.17. Let X/k be a smooth projective unirational surface. Then X is rational.

We also have a complete understanding of the behavior of rationality in families.

Corollary 2.18. Suppose f : X → S is a smooth projective family of surfaces over an integral base
scheme S. If X0 is rational then for some 0 ∈ S, then Xs is rational for all s ∈ S.

Proof. By Castelnuovo’s Theorem, we need to show that h1(Xs,OXs) = h0(Xs, ω
⊗2
Xs
) = 0 for all s ∈ S

assuming the vanishing holds for s = 0. The first vanishing follows from deformation invariance of
Hodge numbers and the second from deformation invariance of plurigenera.

Proposition 2.19. Let f : X → S be a smooth projective family of varieties over an integral base.
Then the Hodge numbers

hp,q(Xs) := hq(Xs,Ω
p
Xs
)

are constant for s ∈ S.

Proof. By the Hodge decomposition, we have

bk(Xs) =
∑

p+q=k

hp,q(Xs).

By Ehresmann’s Theorem, every fiber of f is diffeomorphic so bk(Xs) = bk is constant. By upper-
semicontinuity, for any s0 ∈ S, there exists a Zariski open neighborhood s ∈ U ⊂ X such that
hp,q(Xs) ≤ hp,q(Xs0) for all s ∈ U so

bk =
∑

p+q=k

hp,q(Xs) ≤
∑

p+q=k

hp,q(Xs0) = bk.

It follows that hp,q(Xs) is constant for all s ∈ U . Since S is quasi-compact and integral, we conclude
that hp,q(Xs) is constant for all s ∈ S.

Theorem 2.20 (Siu’s Deformation Invariance of Plurigenera). Let f : X → S be a smooth projective
family over an integral base. Then the plurigenera

Pm(Xs) = h0(Xs, ω
⊗m
Xs

)

are constant for s ∈ S.

The proof of this theorem is beyond the scope of this class. Instead we will give a direct proof
of the case needed for the corollary due to Iitaka. First we note that

q(Xs) = h1(X,OXs) = 0 P1(Xs) = h0(Xs, ωXs) = h2(Xs,OXs) = 0

are constant by Proposition 2.19 and in particular, χ(OX) = 1. Here we have used Serre duality
and the fact that P2(X0) = 0 =⇒ P1(X0) = 0. Moreover, we can contract (−1)-curves in families
and suppose without loss of generality that X0 is minimal. Then K2

X0
≥ 0 by the classification of

minimal rational surfaces and K2
Xs

≥ 0 for all s ∈ S by constancy of intersection numbers.
By upper semi-continuity, there exists a dense open subset U ⊂ S where P2(Xs) = 0. Suppose

the complement Z := S\U is non-empty. Then there exists a point 1 ∈ Z ⊂ S such that P2(X1) ̸= 0.
If

P−2(X1) = h0(X1, ω
⊗−2
X1

) ̸= 0

then ω⊗2
X

∼= OX but ωX ̸∼= OX .
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Lemma 2.21. Let L be a nontrivial line bundle on X and suppose we have a trivialization L⊗2 ∼=
OX . Then there exists a finite étale cover π : Y → X with π∗L ∼= OY .

Proof. Let µ : L⊗2 → OX denote the trivialization of L⊗2. Them A = OX ⊕ L is a coherent sheaf
of algebras with multiplication given by m(a + t, a′ + t′) = aa′ + µ(t, t′) + at′ + a′t for a, a′ local
sections of OX and t, t′ local sections of L. Then we let Y = SpecXA be the relative Spec. Then
π∗L ∼= OY by construction and π is finite étale since locally it can be written as y2 = g(x) where
g(x) ̸= 0.

Thus Xs is not simply connected. On the other hand, π1(X0) = 0 for rational varieties (we will
see later this is true more generally for any rationally connected variety) and π1(Xs) ∼= π1(X0) for
all s ∈ S which is a contradiction.

Thus P−2(X1) = 0 so by semi-continuity, there exists an open neighborhood 1 ∈ V ⊂ S such
that P−2(Xs) = 0 for all s ∈ V . On the other hand, P3(Xs) = h0(Xs, ω

⊗3
Xs
) = h2(Xs, ω

⊗−2
Xs

) = 0
for all s ∈ U . Since U ∩ V ̸= ∅, we can find an s ∈ S with P−2(Xs) = P3(Xs) = 0 but then by
Riemann–Roch,

P−2(Xs) + P3(Xs) ≥ χ(OX) +
1

2
(−2KXs)(−2KXs −KXs) = 1 + 3K2

Xs
≥ 1

which is a contradiction.
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3 Hypersurfaces of low degree

In the last section we saw that smooth projective hypersurfaces X ⊂ Pn of degree d ≥ n + 1 are
never rational. In this section we will discuss rationality of some low degree hypersurfaces.

3.1 Quadric hypersurfaces

The study of quadric hypersurfaces, i.e. quadratic forms, is quite rich for non-closed fields. In this
section we will prove that rationality of quadrics is completely determined by the existence of a
rational point.

Proposition 3.1. Let X ⊂ Pn be a smooth quadric. Then X is rational if and only if X(k) ̸= ∅.
In particular, unirational quadrics are rational.

Remark 3.2. Smoothness of X is essential here. For example, the quadric x2 + y2 + z2 = 0 in P4

has a rational point [0 : 0 : 0 : 1] but is not rational over Q. However, as the proof will indicate, it
suffces for X to have a smooth k-point.

Proof. By Lemma 1.10, if X is rational it has a rational point so conversely, suppose p ∈ X(k) is
a smooth rational point. Then consider the projection πp : X 99K Pn−1 away from p. Every line
through p intersects X in exactly one other point so πp is birational. Now if X is unirational, then
X has a rational point by Lemma 1.10 so X is rational.

Next we prove a theorem of Springer [45] (see also [15, Proposition 2.1]) which allows us to find
rational points on quadrics.

Theorem 3.3. Let X/k be a quadric hypersurface and K/k a finite extension of odd degree. If
X(K) ̸= ∅ then X has a k-point.

Proof. We will induct on the degree d = [K : k]. When d = 1 the result is vacuous. Suppose we
know the claim for all fields of odd degree d′ < d. We may assume that K = k(α) for some α. This
is always the case if K/k is separable. In general, if K = k(α1, . . . , αr) then we apply the inductive
hypothesis to the intermediate extensions k(α1, . . . , αi+1)/k(α1, . . . , αi) which have odd degree < d
to produce a rational point.

Now write the K-point of X as p = [g0(α) : . . . : gn(α)] where gi are polynomials over k of degree
≤ d− 1. Then p lies on the rational curve C of degree m ≤ d− 1 given by the image of the map

P1 → Pn z 7→ [g0(z) : . . . : gn(z)].

If C ⊂ X, then X contains a rational point by Lemma 1.10. Otherwise, the intersection C ∩X is a
zero dimensional degree 2m k-scheme which contains p as a K-point. The Galois orbit of p gives a
degree d k-subscheme of C ∩X and the residual intersection if a degree 2m− d subscheme. Since
2m− d ≤ d− 2 < d is odd, then X has an odd degree point for some d′ < d so X has a k-point by
induction.
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3.2 Quadric bundles

The following relative situation will come up often.

Definition 3.4. A quadric bundle is a flat projective morphism f : X → S of integral k-varieties
such that the generic fiber of f is a smooth quadric hypersurface over k(S).

Remark 3.5. A quadric bundle of relative dimension 1 is often called a conic bundle.

First, we need the following Lemma.

Lemma 3.6. Suppose f : X → S is a dominant morphism of varieties with integral generic fiber
Xk(S). If Xk(S)/k(S) is rational and S/k is rational then X/k is rational.

Proof. By spreading out the birational parametrization Pn
k(S) 99K Xk(S), we get a birational map

Pn×U → f−1(U) where U ⊂ S is a dense open. Since S is rational, U is birational to Pm so f−1(U)
is birational to Pn × Pn as required.

Proposition 3.7. Let f : X → S be a quadric bundle over a rational base S. If f has an odd-degree
rational multisection, then X is rational.

Remark 3.8. A rational multisection is a Y ⊂ X such that Y → S is generically finite.

Proof. Without loss of generality, we may suppose that the generic fiber of Y → S is irreducible.
Then by pulling back to k(S), we obtain an odd degree point Yk(S) of Xk(S). By Springer’s Theorem
3.3, the conic Xk(S) has a rational point and we conclude that Xk(S) is rational. Then by Lemma
3.6, X/k is rational.

Corollary 3.9. Let f : X → S be a quadric bundle. Suppose there exists a unirational variety Y
and map g : Y → X such that f ◦ g : Y → S is dominant. Then X is unirational.

Proof. Consider the pullback diagram

Z ⊂ Y ×S X //

��

X

f
��

Y // S

(6)

where Z is the reduced component of Y ×S X dominating X and Y . Now Z → Y is a quadric
bundle with section and Z → X is dominant so it suffices to prove that Z is unirational. Thus
without loss of generality we may assume that S is unirational and f has a section.

In that case, we consider again the same Diagram 6 where Y → S is a unirational parametrization
of S. Then Z → Y is a quadric bundle with section over a rational variety so Z is rational by
Proposition 3.7 so Z → X induces a unirational parametrization of X.

Remark 3.10. A theorem of Lang [35, Corollary to Theorem 6] says that a quadric bundle f : X → S
of relative dimension r over an n-dimensional base S has a section if r > 2n − 2.
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3.3 Cubic hypersurfaces

Next we move on to discuss some rationality constructions for cubic hypersurfaces X ⊂ Pn, that is,
those defined by a degree 3 equation.

Proposition 3.11. Let X ⊂ Pn+1 be a smooth cubic hypersurface over a field with char(k) = 0 and
suppose that X contains a line L. Then X is unirational.

Proof. Consider the projection πL : Pn+1 99K Pn−1 away from L. We can resolve this rational map
by blowing up to get a morphism ρ : BlLPn+1 → Pn−1 with exceptional divisor E → L a Pn−1 bundle
over L. Then Pn−1 can be identified with the space of planes containing L and ρ is the universal
family of planes.

Let X̃ denote the strict transform of X and let Z = X̃ ∩ E so that

X̃ = BlLX → X

with exceptional divisor Z → L. Since Z → L is a Pn−2 bundle over the line L, Z is rational.
We claim that the restriction π := ρ|X̃ : X̃ → Pn−1 is a conic bundle. To prove this, it suffices

to base-change to the algebraic closure k̄. Now the fiber π−1([P ]) for [P ] ∈ Pn−1 is the residual to
L part of the intersection X ∩ P . Since X is a cubic then P ∩X ⊂ P is a cubic plane curve which
contains the line L so for generic P , the residual intersection is a smooth conic. Thus π is a conic
bundle over Pn−1. Moreover, the restriction Z → Pn−1 is dominant and Z is rational so the conic
bundle X̃ is unirational by Corollary 3.9.

Next we show that every cubic hypersurface over an algebraically closed field contains a line.

Theorem 3.12. Suppose k = k̄ and char(k) = 0 and let X ⊂ Pn+1 be a generic smooth cubic
hypersurface of dimension n.

1. For n = 2, X contains 27 lines.

2. For n ≥ 2, the Fano variety of lines F (X, 1) is smooth and 2n− 4 dimensional.

Proof. First we consider the correspondence L ⊂ P(H0(Pn+1,OPn+1(3))) × Gr(1, n + 1) consisting
of pairs (X,L) where L ⊂ Pn+1 is a line, X ⊂ Pn+1 is a cubic hypersurface, not necessarily smooth
or irreducible, such that L ⊂ X. The projection

π2 : L → Gr(1, n+ 1)

has fiber over a line L given by

π−1
2 (L) = P(H0(Pn+1,OPn+1(3)⊗ IL))

where IL is the ideal sheaf of L. Using the ideal sequence

0 → IL → OPn+1 → OL → 0

and the vanishing H1(Pn+1,OPn+1(3)⊗ IL) = 0, we see that π−1
2 (L) has dimension(

n+ 3

3

)
− 5
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for every line L. We conclude that L is irreducible since π2 is a proper morphism with non-empty
irreducible fibers of the same dimension. Moreover, π2 is flat since the Hilbert polynomial of the
fibers is constant. Since π2 is a flat morphism with smooth fibers, it is a smooth morphism and
thus L is smooth.

Moreover, dimGr(1, n+ 1) = 2n so

dimL =

(
n+ 3

3

)
+ 2n− 5

If we can show that the first projection π1 : L → P(H0(Pn+1,OPn+1(3))) is surjective, then we can
conclude that for generic X = {f = 0}, the the fiber

π−1
1 (f) = F (X, 1)

is irreducible of dimension

dimL− dimP(H0(Pn+1,OPn+1(3))) =

(
n+ 3

3

)
+ 2n− 5−

(
n+ 3

3

)
− 1 = 2n− 4.

First we consider the case n = 2 so X is a cubic surface. In that case, 2n − 4 = 0 so dimL =
dimP(H0(Pn+1,OPn+1(3))). Since L is irreducible, its dimension is dimF + dimZ where F is a
general fiber of π1 and Z is the image of π1. Now we can check by hand that Fermat cubic

X = {x30 + x31 + x32 + x33}

has finitely many lines, in fact 27, so by upper-semicontinuity of fiber dimension, dimF = 0 so
dimZ = dimL = dimP(H0(Pn+1,OPn+1(3))) and π1 is surjective and we conclude that every cubic
surface contains a line, and the generic one contains at most 27 lines.

For n > 2, we can intersect X with a generic 3-plane P . By Bertini’s theorem X ∩ P ⊂ P is a
smooth cubic surface which contains a line. Thus X contains a line and π1 is surjective for all n.
By generic smoothness, we conclude that F (X, 1) is smooth for a general X.

Note this only shows that a smooth cubic surface contains at most 27 lines. In fact one can
show using deformation theory that π1 is a smooth morphism over the locus where X is a smooth
cubic hypersurface. This boils down to the computation

H1(X,NL/X) = 0

where NL/X is the normal bundle of the line L ⊂ X. To compute this we consider the normal
bundle sequences for L ⊂ X, X ⊂ Pn+1 and L ⊂ Pn+1. Putting them together we get an induced
exact sequence

0 → NL/X → NL/Pn+1 → NX/Pn+1

∣∣
L
→ 0.

We have isomorphisms NL/Pn+1
∼= OL(1)

⊕n and NX/Pn+1

∣∣
L
= OL(3). Then NL/X is a line bundle

on L of rank n− 1 and degree n− 3. Moreover, if we write

NL/X
∼= OL(a1)⊕ . . .⊕ OL(an−1)

with a1 ≤ a2 ≤ . . . ≤ an−1, we must have ai ≤ 1 for all i since they each have a nonzero map OL(1).
When n = 2, the only possibility is NL/X

∼= OL(−1). In this case, H0(NL/X) = H1(NL/X) = 0
so we conclude that π1 is finite étale over the locus where X is smooth and every smooth X contains
the same number of lines, namely 27. In general, we have two options:

NL/X
∼= OL(−1)⊕ O(1)⊕n−2

NL/X
∼= OL ⊕ OL ⊕ O(1)⊕n−3.
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In each case, H1(NL/X) = 0 so π1 is smooth whenever X is smooth and we conclude that F (X, 1)
is smooth of the expected dimension.

Kollár has proved the following vast generalization.

Theorem 3.13 ([31]). Let X ⊂ Pn+1 be a smooth cubic hypersurface over a field k. Suppose either
k is perfect with char(k) = 2, or char(k) ̸= 2. Then X is unirational if and only if X(k) ̸= ∅.

Proof. If X is unirational then X(k) ̸= ∅ by Lemma 1.10.
Conversely, let p ∈ X(k) be a rational point and let Tp ⊂ Pn+1 be the tangent hyperplane TpX

to p. The intersection Tp ∩X = Cp is a cubic in Tp with multiplicity 2 at p. In particular, Cp is not
a cone. Therefore, the projection

πp : Cp 99K Pn−1

away from p is birational so Cp is a rational singular cubic. Let τp denote the rational inverse of πp.
If X contains two rational points p and q, then we have a rational map

Φp,q := f ◦ (τp × τq) : Pn−1 × Pn−1 99K X

where f : Cp × Cq 99K X is given by the “third point” construction. That is, for general points
x ∈ Cp and y ∈ Cq, we consider the line lx,y through x and y. Then the intersection

lx,y ∩X = {x, y, z}

for some third point z as long as lx,y ̸⊂ X. The map f is given by f(x, y) = z. Thus if X has two
general enough rational points, Φp,q is a unirational parametrization.

If X does not have two rational points, we need to use Weil restriction of scalars to extend the
construction.

Definition 3.14. Let S ′ → S be a morphism of schemes. For any X ′/S ′, the restriction of scalars
RS′/S(X

′) is the functor SchS → Set given by

RS′/S(X
′)(T ) = HomS′(T ×S S

′, X ′)

We need to envoke the following fact about Weil restriction.

Theorem 3.15. If S ′ → S is a finite flat morphism and X ′/S ′ is quasi-projective, then RS′/S(X
′)

is representable by a scheme RS′/S(X
′). If S ′ → S is a finite Galois extension k′/k, then RS′/S(X

′)
is the S-scheme obtained via descent from

∏
X ′

σ where the product runs over all σ ∈ Gal(k′/k) and
X ′

σ is the pullback of X ′ along σ : k′ → k′.

Note in particular that Rk′/k(X
′) ×k k

′ ∼=
∏
X ′

σ and by descent for morphisms, to produce a
morphism Rk′/k(X

′) → X, it suffices to produce a Galois equivariant morphism∏
Gal(k′/k)

X ′
σ → X ×k k

′.

Now if p is a k′ point of X where k′/k is separable of degree 2, let p̄ denote the Galois conjugate
of p. Then we have a k′ map

Φp,p̄ : Pn−1
k′ × Pn−1

k′ 99K Xk′

20



via the third point construction and this map is Galois equivariant where the Galois actions swaps
the copies of Pn−1 and conjugates points. Thus it descends to a morphism of k-schemes

φp : Rk′/k(Pn−1
k′ ) 99K X.

If Φp,p̄ is dominant then so is φp. Moreover Rk′/k(Pn−1
k′ ) is birational to Pn−1

k × Pn−1
k so if p can be

chosen to make Φ dominant, we have a unirational parametrization.
Now, given a rational point p ∈ X(k) and a line p ∈ L ⊂ Pn+1 defined over k containing p,

suppose that L is transverse to X. Then L ∩X = {p, q, q̄} where either q and q̄ are k-points or a
pair of conjugate k′ points. In the first case, we have a rational map

Φq,q̄ : Pn−1
k × Pn−1

k 99K X

and in the second case we have
φq : Rk′/k(Pn−1

k′ ) 99K X.

In either case, we have a rational map depending on L with source birational to Pn−1
k ×Pn−1

k which
we denote ΦL.

We want to pick L general enough so that ΦL is dominant. For infinite k, we can do this but
for finite k it could happen that ΦL fails to be dominant for all k-lines L. Thus we consider the
universal case over the variety of lines through p ∈ Pn+1. The space of lines through p is Pn and we
have a double cover Z → Pn given by the incidence correspodence

Z = {(x, L) | p ̸= x ∈ L} ⊂ X × Pn.

Then over Z we have a universal third point map

ΦZ : Pn−1
Z ×Z Pn−1

Z 99K XZ

which is equivariant for the Galois group of k(Z)/k(Pn) and thus descends to a rational map out
of the Weil restriction

RZ/Pn(Pn−1) 99K X.

Since RZ/Pn(Pn−1) is birational to Pn
k × Pn−1

k × Pn−1
k , we obtain a rational map

Φ : Pn
k × Pn−1

k × Pn−1
k 99K X

given by Φ(L, u, v) = ΦL(u, v) on k̄ points.
To check this map is dominant, we may pass to the algebraic closure k̄ and check that

Φ×k k̄ : Pn
k̄ × Pn−1

k̄
× Pn−1

k̄
99K X ×k k̄

is dominant. Over k̄, the map is given by Φ(L, u, v) = Φq,r(u, v) where L ∩ X = {p, q, r}. In
particular, q and r are not general, they are colinear with p so we need a criteria for the third-point
map to be dominant. This follows from the following proposition.

Proposition 3.16. [31, Proposition 14 & Lemma 15] Let X be a smooth cubic over k = k̄.

(a) Cx is irreducible with a double point singularity at x for x general, and

(b) if Cx and Cy are as in (a) with x /∈ Cy and y /∈ Cx, then the third point map Φx,y is dominant.
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Proof. (a) The only way the assertion can fail is if Cx is either reducible, or a cone. If Cx is reducible
then it must contain an n− 1-plane and if Cx is a cone then the fibers of the projection from x
exhibit an an n− 2-dimensional family of lines in Cx through p. In either case Cx contains an
n−2 dimensional family of lines. Thus it suffices to show that there is not an n−2 dimensional
family of lines through each point of X.

Now we induct on dimension. If n = 2, then X contains finitely many lines. Indeed NL/X =
OL(−1) so every line on X is rigid. Thus X contains no lines through a general point so Cx

is irreducible with a double point singularity at x. Now we induct on dimension and suppose
for every smooth cubic in Pn, Cx is irreducible with a double point singularity at x for general
x. By Bertini’s Theorem, a general hyperplane section of X is a smooth cubic in Pn, but if X
has an n− 2 dimensional family of lines through each point, then X ∩H would have an n− 3
dimensional family of lines through each point, contradicting the inductive hypothesis.

(b) First note that Φx,y is well defined. Indeed Cy is not contained in the tangent plane Tx and Cx

is not contained in Ty for degree reasons. Thus, there exists a point v ∈ Cy such that the line
lx,v is not contained in X and not tangent to X at x. Similarly, there is a u ∈ Cx such that lu,y
is not contained in X and not tangent to y at Y . Since the join variety is irreducible and being
transverse is an open condition, we conclude that for a generic choice of u ∈ Cx and v ∈ Cy,
the line lu,v is transverse to X and so the third-point map is well defined at (u, v).

By a dimension count, the expected dimension of the fibers of Φx,y is n−2 so the only way Φx,y

can fail to be dominant is if all nonempty fibers have strictly larger dimension. Thus it suffices
to exhibit a nonempty fiber with dimension n− 2. We can describe the fiber Φ−1

x,y(z) using the
projection

πz : Pn+1 99K Ty.

We have πz(u) = v if and only if {u, v, z} lie on a line. Therefore Φ−1
x,y(z) is birational to the

locus of (u, v) ∈ Cx × Cy such that πz(u) = v. For a general choice of z, πz|X is generically
finite so the dimension of this locus is equal to

dimCy ∩ πz(Cx).

Now let v ∈ Cy be a general smooth point of Cy and pick a z such that the projection πz(x) = v.
Then for this z, Cy and πz(Cx) have different multiplicities at v = πz(x). Since they are also
irreducible, this means that Cy and πz(Cx) do not share any irreducible components and so

dimΦ−1
x,y(z) = dimCy ∩ πz(Cx) = n− 2

as required.

This completes the proof as long as the third-point map Φ is well defined. The only issue is if
every line L through p meets X in another point with multiplicity 2. This happens if and only if
the projection πp : X 99K Pn is not separable which can happen only in characteristic 2. In this
case, we have the following. We omit the proof.

Proposition 3.17. [31, Corollary 20] Let k be a perfect field of characteristic 2 and X ⊂ Pn+1

a smooth cubic with rational point x ∈ X(k). Then there exists a point p ∈ X(k) such that the
projection πp is separable.
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On the other hand, certain cubic hypersurfaces are rational.

Proposition 3.18. Suppose X ⊂ P2m+1 is a cubic hypersurface containing two disjoint m-planes
P and P ′. Then X is rational.

Proof. Generalizing the argument of Proposition 3.11, we can project away from P to obtain a
quadric bundle

π : X̃ = BlPX → Pm.

The base Pm is the space of m+1-planes containing P and the fiber above the point corresponding
to an m+ 1-plane Λ is the residual quadric of the intersection Λ ∩X. Since P ′ is disjoint from P ,
then Λ ∩ P ′ is a single point for generic Λ. Thus, P ′ is a section of π and we conclude that X is
rational by Proposition 3.7.

In particular, this gives a proof that smooth cubic surfaces over an algebraically closed field of
characteristic 0 are rational since they contain two disjoint lines. Of course, its easy to check that
a smooth cubic surface is rational using Castelnuovo’s Theorem. Indeed h1(X,OX) = 0 for any
hypersurface in Pn+1 for n ≥ 2. By the adjunction formula,

ωX = ωPn+1(X)|X = OX(−n+ 1).

When n = 2, we have OX(−1) = ωX and OX(−2) = ω⊗2
X which has no sections so P2(X) = 0.

3.4 Hypersurfaces of low degree compared to the dimension

The ideas of the previous section can be pushed to prove the following theorem of Harris–Mazur–
Pandharipande [25], building off of work of Paranjape–Srinivas [42] and others which dealt with the
case of a general hypersurface or complete intersection.

Theorem 3.19. Let k = k̄ and char(k) = 0 and suppose X ⊂ Pn+1 is a smooth hypersurface of
degree d. If n≫ d, then X is unirational.

As in Proposition 3.11, the idea of the proof is to produce an linear subspace contained in X
and consider the projection π : X 99K Pm. Then π is a fibration by degree d − 1 hypersurfaces
in a smaller projective space. If n ≫ d, then we can hope to induct on dimension and apply the
result to the generic fiber of π. One major difficulty is that the generic fiber is defined over the
non-algebraically closed function field K of the base.

In order to actually produce the appropriate linear subspace contained in X, one needs to
generalize the argument of Theorem 3.12 to show that the Fano variety F (X, k) of k-planes of X
is of the expected dimension in a certain range for k, n and d. This quite a subtle problem on its
own. The state of the art in [5] yields an explicit bound of n ≥ 2d! − 1 in Theorem 3.19.
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4 Rational curves on varieties

In this section we will study deformation spaces of rational curves on varieties. Our motivation is
to develop the tools we need to study rationally connected (Section 5) and show that Fano varieties
are rationally connected (Section 6). As a warm-up, we will first use the tools of deformation theory
to study uniruled varieties.

Definition 4.1. A smooth projective variety X/k is uniruled if there exists a rational curve through
a general point. That is, for a general point x ∈ X, there exists a map f : P1 → X such that
f(∞) = x.

4.1 The Hom scheme

In this section we collect some results on the Hom scheme.

Definition 4.2. Let X, Y → S be schemes over S. The Hom functor H omS(X, Y ) : SchS → Set
is defined by

H omS(X, Y )(T ) = HomT (XT , YT ).

For B ⊂ X a closed subscheme and g : B → Y an S-morphism, we can define the closed
subfunctor H omS(X, Y, g) defined as the fiber product

H omS(X, Y, g) //

��

S

[g]
��

H omS(X, Y ) //H omS(B, Y )

where the vertical map classifies the S-map g : B → Y and the bottom map is induced by compo-
sition B → X → Y . Concretely, we have

H omS(X, Y, g)(T ) = {f : XT → YT | f |BT
= gT}.

Using the theory of Hilbert schemes (see e.g. [30, Chapter I]), we can prove the following.

Theorem 4.3. Let S be locally Noetherian, X, Y → S flat and quasi-projective S-schemes, and
B ⊂ X a closed subvariety flat over S. Then there exists a quasi-projective S-scheme

HomS(X, Y )

representing the functor H omS(X, Y ). Moreover, for any S-map g : B → Y , there exists a closed
subscheme HomS(X, Y, g) ⊂ HomS(X, Y ) representing H omS(X, Y, g).

Over HomS(X, Y ) we have the universal morphism

X ×S HomS(X, Y ) → Y ×S HomS(X, Y )

which we can compose with the projection to Y to obtain the evaluation map

ev : X ×S HomS(X, Y ) → Y.

On k-points, we can write ev(x, f) = f(x).
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Moreover, the formation of the Hom-scheme is compatible with base change. In particular, given
any point s : Spec k → S, the fiber HomS(X, Y )s of the Hom-scheme over s is the Hom-scheme of
the fibers:

HomS(X, Y )s ∼= Homk(Xs, Ys).

Fix a k-point s : Spec k → S and suppose that Xs is reduced and Ys is smooth. Then the
infinitessimal structure of HomS(X, Y ) at a k-point f : Xs → Ys is controlled by a deformation-
obstruction theory given by

H i(Xs, f
∗TYs) i = 0, 1.

More generally, the deformation-obstruction theory for HomS(X, Y, g) at such an f with f |Bs = gs
is given by

H i(Xs, f
∗TYs ⊗ IBs) i = 0, 1

where IBs is the ideal sheaf of Bs ⊂ Xs.

Theorem 4.4. [30, Theorems I.2.17 and II.1.7] Let X, Y → SpecS and g : B → X as in Theorem
4.3. Fix s : Spec k → S such that S is equidimensional at s and Xs has no embedded points. Let
f : Xs → Ys be a morphism such that Ys is smooth in a neighborhood of the image of f .

(a) (i) The tangent space to Homk(Xs, Ys) at [f ] is given by

T[f ]Homk(Xs, Ys) = H1(Xs, f
∗TXs).

(ii) Every irreducible component of HomS(X, Y ) at [f ] : Spec k → HomS(X, Y ) has dimension

dim[f ] HomS(X, Y ) ≥ h0(Xs, f
∗TYs)− h1(Xs, f

∗TYs) + dims S.

(iii) If
dim[f ] Homk(Xs, Ys) = h0(Xs, f

∗TYs)− h1(Xs, f
∗TYs),

then HomS(X, Y ) → S is an lci morphism at [f ]. In particular, HomS(X, Y ) is flat over
S at [f ].

(iv) If H1(Xs, f
∗TXs) = 0, then HomS(X, Y ) is smooth over S of relative dimension h0(Xs, f

∗TXs)
at [f ].

(b) (i) The tangent space to Homk(Xs, Ys, gs) at [f ] is given by

T[f ]Homk(Xs, Ys) = H1(Xs, f
∗TXs ⊗ IBs).

(ii) Every irreducible component of HomS(X, Y, g) at [f ] : Spec k → HomS(X, Y, g) has di-
mension

dim[f ] HomS(X, Y, g) ≥ h0(Xs, f
∗TYs ⊗ IBS

)− h1(Xs, f
∗TYs ⊗ IBs) + dims S.

(iii) If
dim[f ] Homk(Xs, Ys, gs) = h0(Xs, f

∗TYs ⊗ IBs)− h1(Xs, f
∗TYs ⊗ IBs),

then HomS(X, Y, g) → S is an lci morphism at [f ]. In particular, HomS(X, Y, g) is flat
over S at [f ].

(iv) If H1(Xs, f
∗TXs ⊗ IBs) = 0, then HomS(X, Y, g) is smooth over S of relative dimension

h0(Xs, f
∗TXs ⊗ IBs) at [f ].
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Our main case of interest will be whenX = C is a smooth (or more generally reduced Gorenstein)
curve and B ⊂ C is a collection of distinct smooth points. In this case we can use Riemann–Roch
to compute the dimension bounds.

Proposition 4.5. Let C/k be a smooth projective curve, B ⊂ C a collection of smooth points, and
f : C → Y a morphism to some quasi-projective variety Y/k. Then

dim[f ] Homk(C, Y ) ≥ −KY .C + d(1− g)

dim[f ] Homk(C, Y, f |B) ≥ −KY .C + d(1− g − n)

where g = g(C) is the genus, n = #B is the cardinality of B and d = dimY .

Proof. By Theorem 4.4, the lower bound on dimension is given by χ(f ∗TY ) (resp. χ(f
∗TY (−B))).

Now f ∗TY is a rank d vector bundle and detTY = OY (−KY ) so deg f ∗TY = −KY .C (resp.
deg f ∗TY (−B) = −KY .C − n. The result then follows by Riemann–Roch for vector bundles.

Remark 4.6. The above proposition holds as is for C an integral Gorenstein curve if we take g to be
the arithmetic genus of C and B to be a collection of smooth points. We can try to drop irreducibility
but then we have to be a bit careful about Riemann–Roch and computations of degrees.

4.2 Free rational curves

When C = P1 and f : P1 → X is a morphism, the local structure of Homk(P1, X) at [f ] is controlled
by the splitting type a1 ≥ a2 ≥ . . . ≥ ad of f ∗TX :

f ∗TX ∼= OP1(a1)⊕ . . .⊕ OP1(ad).

In particular, Homk(P1, X) is smooth at [f ] if and only if ad ≥ −1. More generally, if B ⊂ P1 is a
collection of n smooth points and g : B → X, then we need ad ≥ n − 1 to guarantee smoothness
of Homk(P1, X, g) at a point f . Note that ad ≥ r if and only if f ∗TX(−r) is generated by global
sections.

Definition 4.7. A rational curve f : P1 → X is r-free for some integer r ≥ 0 if f ∗TX(−r) is
generated by global sections. Similarly, f is r-free relative to B if f ∗TX(−B − r) is generated by
global sections.

When r = 0, f is said to be a free rational curve and when r = 1, f is said to be very free.

Lemma 4.8. Suppose X has a very free rational curve. Then X has an r-free rational curve for
all r ≥ 1.

Proof. By assumption, we have f : P1 → X such that f ∗TX(−1) is globally generated. If we compose
f with a ramified r-fold cover h : P1 → P1, we conclude that (f ◦ h)∗TX(−r) = h∗(f ∗TX(−1)) is
globally generated so f ◦ h is r-free.

Our main interest in free rational curves is that they can easily be deformed to pass through
points of X.

Proposition 4.9. Fix an integer s ≥ 0, a length n subscheme B ⊂ P1, and f : P1 → X an r-free
rational curve. If n+ s ≤ r + 1 then the evaluation map

evs : (P1)s × Homk(P1, X, f |B) → Xs

(t1, . . . , ts, h) 7→ (h(t1), . . . , h(ts))

is smooth at (t1, . . . , ts, f) for ti ̸⊂ B.
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Proof. Since f is r-free and n ≤ r, H1(P1, f ∗TX(−B)) = 0 so (P1)s × Homk(P1, X, f |B) is smooth
at (t1, . . . , ts, f). Thus it suffices to show that the differential of ev is surjective. The differential is
given by

devs :
s⊕

i=1

TP1,ti

⊕
H0(P1, f ∗TX(−B)) →

s⊕
i=1

TX,f(ti) (7)

(v1, . . . , vs, ∂) 7→ (dft1(u1) + ∂(t1), . . . , dfts(us) + ∂(ts)). (8)

To show surjectivity, it suffices to show that for each j and u ∈ TX,f(tj) = (f ∗TX)tj , there exists
a section of f ∗TX which vanishes at B and at ti for i ̸= j and takes on value u at tj. Now f ∗TX is
r-free and n+ s ≤ r + 1 so

f ∗TX(−B −
∑
i ̸=j

ti)

is globally generated which exactly means it admits a section taking on any value u at tj. Twisting
back up gives us the required section taking value u at tj and vanishing along B and ti for i ̸= j.

Remark 4.10. The above argument can be run in reverse using a Nakayama’s lemma and a bit of the
classification of bundles on P1 to see that if [f ] is a point of Hom(X, Y, f |B) where evs is surjective
at (t1, . . . , ts, f) with ti /∈ B, then f is min{2, n+ s− 1}-free (see [26, Proposition 4.3]).

Finally, we show that the

Proposition 4.11. Let X → S be a smooth projective family of varieties over a locally Notherian
k-scheme S. Suppose that X0 admits an r-free rational curve for some 0 ∈ S and r ≥ 0. Then
there exists an open set 0 ∈ U ⊂ S such that Xu admits an r-free rational curve for all u ∈ U .

Proof. On P1, a vector bundle E is globally generated if and only if H1(P1,E (−1)) = 0. In
particular, if f : P1 → X0 is an r-free rational curve, then H1(f ∗TX0(−r − 1)) = 0.

Now we consider
π : H := HomS(P1

S, X) → S.

By Theorem 4.4, π is smooth at [f ] over 0 ∈ S. Over H, we have the universal morphism

ρ : P1
H → XH .

The bundle ρ∗TXH
(−r − 1) is flat over H and restricts to h∗TX(−r − 1) for any point [h] ∈ H. In

particular,
H1(ρ∗TXH

(−r − 1)|[f ]) = H1(f ∗TX(−r − 1)) = 0.

By the Semi-Continuity Theorem, there exists an open neighborhood [f ] ∈ V ⊂ H such that
H1(h∗TX(−r − 1)) = 0 for all [h] ∈ V , that is, h : P1 → Xπ([h]) is an r-free rational curve for
each [h] ∈ V . Up to shrinking U and using the fact that π is smooth at [f ], we may assume that
π|V : V → S is smooth. In particular, π(V ) = U ⊂ S is open and for all u ∈ U , there exists an
[h] ∈ V such that h : P1 → Xu is an r-free rational curve.

4.3 Uniruled varieties

We are now ready to prove the main result on uniruled varieties.

Proposition 4.12. Let X/k be a smooth projective variety. Then the following are equivalent.
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(1) X is uniruled.

(2) There exists Y and a dominant map P1 × Y 99K X that is not constant on P1.

(3) There exists a free rational curve f : P1 → X.

(4) For a general point x ∈ X, there exists a free rational curve f : P1 → X with f(∞) = x.

Proof. (4) =⇒ (3), (2) =⇒ (1) and (4) =⇒ (1) are clear.
For (1) =⇒ (2), we use that the Hom-scheme is a countable union of quasi-projective schemes.

Indeed, if we fix the degree d, the scheme Hd := Homk(P1, X, d) of degree d maps is finite type.
Since X is uniruled, the evaluation map

ev :
⊔
d

P1 ×Hd → X

is dominant. Since k is uncountable, we must have that P1 ×Hd is dominant for some d. Since Hd

is of finite type, it must contain some irreducible component Y such that P1×Y → X is dominant.
For (3) =⇒ (4), suppose f : P1 → X is a free rational curve. Then by Proposition 4.9, the

evaluation map
ev : P1 × Homk(P1, X) → X

is smooth at (t, [f ]), but X is irreducible so ev is dominant. By the proof of Proposition 4.11,
there exists a dense open set [f ] ∈ V ⊂ Homk(P1, X) such that h is free for any [h] ∈ V . Now
the restriction ev : P1 × V → X is still dominant so for a general point x ∈ X, there exists
(t, [h]) ∈ P1 × V such that h : P1 → X is free and h(t) = x.

The only thing left to prove is (1) =⇒ (3). Since evred : P1 × (Hd)red → X is dominant for
some d and we are in characteristic 0, then evred is smooth at a general point (t, [f ]). Then

ev : TP1,t ⊕H0(f ∗TX) → TX,f(t)

is surjective for general (t, [f ]). Thus H0(f ∗TX) → TX,f(t)/dft is surjective. Now f ∗TX contains TP1

which is generated by global sections so we have a commutative diagram

H0(P1, TP1)

��

// TP1,t

dft

��
H0(f ∗TX) // TX,f(t)

where the top map is surjective and the bottom map is surjective modulo dft. We can conclude that
the bottom map is surjective and thus f ∗TX is globally generated at t by Nakayama’s lemma. Since
t is generic this implies that f ∗TX is generically globally generated, but on P1 this is equivalent to
globally generated. This is a special case of the argument alluded to in Remark 4.10.

As a consequence, we obtain that the property of being uniruled is deformation invariant.

Theorem 4.13. Let f : X → S be a smooth projective morphism over a connected base S. Suppose
for some 0 ∈ S, X0 is uniruled. Then for all s ∈ S, Xs is uniruled.
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Proof. By Propositions 4.12 and 4.11, the property of being uniruled is open in S. Thus, it suffices
to show that being uniruled is a closed in 1-parameter families.

Let (C, 0) → S be a smooth pointed curve mapping to S with U = C \ U . Suppose that Xu is
uniruled for each u ∈ U and let x0 ∈ X0 be a general point. Up to replacing (C, 0) by a ramified
cover, we may assume that there exists a section x : C → XC with x(0) = x0 and x(u) = xu ∈ Xu

general. Since Xu is uniruled for u ∈ U , there exists a map f : P1 × U → XU with f(∞, u) = xu
for some t ∈ P1. We can extend f to a rational map

P1 × C 99K XC .

After blowing up P1×C, we can resolve indeterminacies to obtain a smooth surface Y and a diagram

Y
g //

��

XC

C

and a section ∞ : C → Y given by the closure of ∞×U . Now Y → P1×C is an iterated blowup at
smooth points so the fiber Y0 is a connected tree of rational curves with a marked point ∞(0) ∈ Y0.
Thus we have a map g0 := g|Y0 : Y0 → X0 with g(∞(0)) = x0. It suffices to show that g0 is
nonconstant. Then there exists some component of E ⊂ Y0 which is necessarily a smooth rational
curve such that g|E : E → X0 contains x0. To deduce that g0 is non-constant, we use the following
Rigidity Lemma.

Lemma 4.14 (Rigidity Lemma). [33, Lemma 1.6] Let f : Y → Z be a proper surjective equidi-
mensional morphism. Suppose that Y is irreducible and f has connected fibers. If g : Y → X is a
morphism with g|Y0 constant for some 0 ∈ Z. Then g is constant on every fiber of f .

FInally, we have the vanishing of plurigenera for uniruled varieties.

Proposition 4.15. Suppose X is a smooth projective uniruled variety. The Pm := h0(X,ω⊗m
X ) = 0

for all m ≥ 1.

Proof. Let ω ∈ h0(X,ω⊗m
X ) be a section. We wish to show ω is 0. For a general x ∈ X, there

exists a free rational curve f : P1 → X through x. But then f ∗TX contains only summands of
non-negative degree but it also contains a summand of degree at least 2 given by the existence of
the differential df : TP1 → f ∗TX . Thus, deg f

∗TX = −KX .f(P1) > 0 and so mKX .f(P1) < 0 for all
m ≥ 1. This implies that ω⊗m

X |P1 is not effective so ω|P1 = 0. But x ∈ f(P1) was a general point so
ω(x) = 0 for a general point x ∈ X from which we can conclude that ω = 0.

One of the biggest conjectures in birational geometry states that the converse also holds.

Conjecture 4.16 (Mori). Suppose Pm = 0 for all m ≥ 1. Then X is uniruled.

We end this section with the statement of the theorem of Boucksom–Demailly–Păun–Peternell.

Theorem 4.17. [7] Let X/C be smooth projective. Then X is uniruled if and only if KX is not
pseudoeffective.

Recall that a divisor is said to be pseudoeffective if it lies in the closure of the cone of effective
divisors in NS(X)R. Note that Pm = 0 for all m ≥ 1 if and only if KX is not in the effective
cone. It is expected that KX is pseudoeffective if and only if it is effective. This is the so-called
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Non-Vanishing Conjecture from the MMP. Thus Mori’s conjecture is implied by the Non-Vanishing
Conjecture.

The idea of the proof of Theorem 4.17 is the following. A pseudoeffective divisor D is by
definition the limit limn→∞Dn of effective divisors Dn. Now if Dn is effective and

C //

��

X

S

is a family of curves parametrized by S which cover X, then Dn.Cs ≥ 0 for all n and s ∈ S. Taking
limits, we see that D.Cs ≥ 0 for all s ∈ S. The curves Cs appearing in such a covering family are
called movable.

In [7], it is shown that the converse also holds, that is, there is a duality between the cone of
pseudoeffective divisors and the closure of the cone of movable curves. Namely, if D.Cs ≥ 0 for
every covering family C → S curves on X, then D is pseudoeffective. In the special case that
D = KX , we see that KX is not pseudoeffective if and only if there exists a covering family with
KX .Cs < 0. By the adjunction formula, KX |Cs = KCs has negative degree so Cs is a rational curve
for all s ∈ S. Thus X is covered by rational curves, and in particular, it is uniruled.
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5 Rationally connected varieties

Rationally connected varieties were introduced by Campana [8] and Kollár–Miyaoka–Mori [32] as
a class of varieties between uniruled and unirational with very good properties. In this section we
will use the results of the previous section to study rationally connected varieties. For the rest of
this section, we work over k = C and assume X/k is smooth projective unless otherwise indicated.
Let us recall the definition.

Definition 5.1. Let X/k be a smooth projective variety. We say that X is rationally connected
if for any two general points x, y ∈ X, there exists a map f : P1 → X such that f(0) = x and
f(∞) = y.

5.1 Characterizations of rationally connected varieties

We begin with the analogue of Proposition 4.12.

Proposition 5.2. Let X/k be a smooth projective variety. The following are equivalent.

(1) X is rationally connected.

(2) There exists an irreducible variety Y and a map P1 × Y 99K X that is non-constant on P1 such
that

P1 × P1 × Y 99K X ×X

is dominant.

(3) There exists a very free rational curve f : P1 → X.

(4) For a general collection of r + 1 points, there exists an r-free rational curve passing through
those points.

Proof. The proof is almost identical to the proof of Proposition 4.12 with small modifications. For
(1) =⇒ (2), we consider the evaluation map

ev2 :
⊔
d

P1 × P1 ×Hd → X.

For (1) =⇒ (3) we have that ev2 : (P1)2 ×Hd → X2 is smooth at some point (t1, t2, [f ]) so we get
a surjection

H0(f ∗TX) → TX,f(t1)/dft1 ⊕ TX,f(t2)/dft2 .

Now for each i we consider sections vanishing at ti to get a diagram

H0(P1, TP1(−ti))

��

// TP1,tj

dftj

��
H0(f ∗TX(−ti)) // TX,f(tj)

and conclude as before that f ∗TX(−ti) is generically globally generated, and thus globally generated.
For (3) =⇒ (4), by Lemma 4.8 there is an r-free curve f : P1 → X. By Proposition 4.9, the

map
evr+1 : (P1)r+1 × Hom(P1, X) → Xr+1

is smooth at (t1, . . . , tr+1, [f ]) but X
r+1 is irreducible to evr+1 is dominant.

Finally (4) =⇒ (1) is clear.
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Proposition 5.3. Suppose X is rationally connected. Then we have

Pm,n(X) := h0(X, (Ωn
X)

⊗m) = 0

for all m,n ≥ 1.

Proof. We proceed as in Proposition 4.15. Let ω ∈ H0(X, (Ωn
X)

⊗m). If f : P1 → X is a very free
rational curve, then f ∗ΩX is a direct sum of negative line bundles so the restriction f ∗(Ωn

X)
⊗m has

no sections for any m,n ≥ 1. Thus f ∗ω = 0 but very free curves cover X so ω = 0.

Corollary 5.4. A rationally connected variety is simply connected.

Proof. We will prove that the profinite completion π1(X) is 0 by showing that any finite étale cover
of X is trivial. A topological argument shows that in fact pi1(X) is finite which would complete
the proof, but we omit that here.

Now let π : Y → X be a finite étale cover of degree n from a connected variety Y . Since P1

is simply connected, for any rational curve f : P1 → X, the pullback P1 ×X Y is a disjoint union
of rational curves mapping isomorphically to P1. Picking a component of P1 ×X Y , we have a
commutative diagram

P1 g //

��

Y

π
��

P1 f // X

where the left vertical map is an isomorphism. Suppose f is very free. Then f ∗TX(−1) is globally
generated but by commutativity of the diagram, this is the same as g∗π∗TX(−1). Since π is étale,
π∗TX = TY so we conclude that g∗TY (−1) is globally generated and g is a very free rational curve.
By Proposition 5.2(3), Y is rationally connected.

next note that if X is rationally connected, then χ(OX) = 1 since hi(X,OX) = h0(X,Ωi
X) = 0

by Proposition 5.3. Thus χ(OY ) = χ(OX) = 1. On the other hand, χ(OY ) = nχ(OX) for a finite
étale cover of degree n, so n = 1 and Y → X is an isomorphism.

5.2 Rationally chain connected varieties

We need to consider the following generalization of rational connectivity.

Definition 5.5. A smooth projective variety is rationally chain connected (RCC) if for any two
general points x, y, there exists a pointed curve (C, 0,∞) and a map f : C → X such that f(0) = x
and f(∞) = y, C is a nodal tree of rational curves, and 0,∞ are in the smooth locus of C.

Theorem 5.6. A smooth projective variety X is rationally connected if and only if it is rationally
chain connected.

Proof. The only direction requiring proof is (RCC) =⇒ (RC) so suppose X is rationally chain
connected. In particular this means X is uniruled.

Lemma 5.7. Let X be a smooth projective uniruled variety. Then for a very general point x ∈ X,
any rational curve through x is free. There exists a nonempty locus Xfree ⊂ X which is a countable
intersection of open subvarieties such that any rational curve through x ∈ Xfree is free.
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Proof. Consider the map ev : P1 ×Hom(P1, X) → X. Enumerate the countably many components
Zi of Hom(P1, X). If P1 × Zi → X is not dominant, we let Ui be the complement of its scheme
theoretic image in X. If P1 × Zi → X is dominant, we consider the normalization Z̃ → Z and
induced map πi : P1 × Z̃i → X. By generic smoothness, there exists an open set Ui ⊂ X such that
π−1
i (Ui) → Ui is smooth. In particular, the map on tangent spaces is surjective. This implies that

the map on tangent spaces induced by P1 × Zi → X is surjective for any point lying over Ui. By
Remark 4.10, every f : P1 → X parametrized by a point of Zi lying over Ui is free. Now we let

Xfree =
⋂
i

Ui.

Note that the argument applies even when X is not uniruled but the result is vacuous since Xfree

will simply be the locus of points through which there does not exist a rational curve.

Let x ∈ Xfree and y ∈ X arbitrary. Then there exists a chain of rational curves connecting x
and y. Let us denote this chain by a collection of maps fi : P1 → X for i = 1, . . . s with fi(0) = x,
fs(∞) = y and f0(∞) = fi+1(s) for i < s.

Claim 5.8. We may suppose that fi meets Xfree for each i. In particular, fi is free.

We prove the claim inductively. For i = 1, this is true by assumption, so suppose that f1, . . . , fi−1

meet Xfree. Then we want to show that there exists a curve gi meeting Xfree with gi(0) = fi(0)
and gi(∞) = fi(∞). In that case, we can replace fi with gi and by induction we obtain a chain
connecting x and y with all curves free as claimed.

Since fi−1 is free, the evaluation morphism

ev∞ : Hom(P1, X) → X

given by [g] 7→ g(∞) is smooth at [fi−1]. Let

T ⊂ ev−1
∞ (fi(P1))

be the irreducible component containing fi−1. Note that T parametrizes maps g : P1 → X with
g(∞) contained in the image of fi. Since ev∞ is smooth at [fi−1], T dominates fi(P1). Now we
consider the universal morphism over T

P1 × T
g //

π
��

X

T

By Lemma 5.7, Xfree is a nonempty countable intersection of open sets. Since T contains gi−1

which meets Xfree, then g
−1(Xfree) is nonempty. Since π is flat and thus open, π(g−1(Xfree)) is a

nonempty countable intersection of open sets in T . Thus, the very general member of T is a rational
curve meeting Xfree and passing through fi(P1).

Now we build a map f : C → X from a comb C with handle C0
∼= P1 and teeth E1, . . . , Ek

∼= P1

such that f |C0 = fi and [f |Ei
] ∈ T and free. Since T dominates fi(P1), we can choose f |Ei

to pass
through a very general point of fi(P1) and we can choose k arbitrarily large.

Proposition 5.9. Let f : C → X be a comb with handle D and teeth E1, . . . , Ek and let p1, . . . , pr ∈
D ∩ Csm. Suppose that f |Ek

is free for each k and that

k > KX .f∗D + (r − 1) dimX + dimf |D Hom(P1, X, f |{p1,...,pr}). (9)
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Then there exists a smoothing of the restriction of f to a sub-comb of C that contains at least one
tooth and that fixes f(pi).

Proof. Let π : C → S be a versal family of smoothings of C over a k-dimensional base scheme
S ∋ 0 with C0 = C. Up to replacing S by a cover, we can choose sections σi : S → C such that
σi(0) = pi ∈ C. Let g :

⊔
i σi(S) → X be the map which is constant equal to f(pi) on the section

σi(S). Consider the relative Hom-scheme

π : HomS(C , XS, g) → S

with universal map
F : C ×S HomS(C , XS, g) → X.

We show that π is not constant in a neighborhood of [f ]. By Theorem 4.4 and Proposition 4.5,

dim[f ] HomS(C , XS, g) ≥ −KX .(f∗D +
∑

f∗Ei) + (1− r) dimX + k.

Using inequality 9, we see that

dim[f ] HomS(C , XS, g) > −
∑

KX .f∗Ei + dimf |D Hom(P1, X, f |{p1,...,pr}). (10)

Now, f |Ei
: Ei → X is a free rational curve so

H1(f |∗Ei
TX(−qi)) = 0

where qi = Ei∩D is the point where Ei meets D. Thus, dimf |Ei
Hom(Ei, X, f |qi) = −KX .f∗Ei. On

the other hand, every morphism g : C → X is obtained by choosing a morphism g0 : D → X and
a collection of morphisms gi : Ei → X with g(qi) = g0(q

′
i) where q

′
i ∈ D is identified with qi ∈ Ei.

That is, there is a forgetful map

Hom(C,X, f |{p1,...,pr}) → Hom(D,X, f |{p1,...,pr})

with fiber over [g0] ∈ Hom(D,X, f |{p1,...,pr})

k∏
i=1

Hom(Ei, X, qi 7→ g0(q
′
i)).

In particular, these fibers have constant dimension

−
∑

KX .f∗Ei

so dim[f ] Hom(C,X, f |{p1,...,pr}) = −
∑
KX .f∗Ei + dimf |D Hom(D,X, f |{p1,...,pr}). Putting this to-

gether with inequality 10, we have that

dim[f ] HomS(C , XS, g) > dim[f ] Hom(C,X, f |{p1,...,pr}) = dim[f ] π
−1(0)

and thus π is not constant in a neighborhood of [f ].
Therefore we can pick a nontrivial 1-parameter family T → S over a smooth curve T passing

through 0 which lies in the image of π. Up to shrinking and taking a cover of T , we can lift this to
a 1-parameter family

T → HomS(C , XS, g)
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passing through [f ] and with generic fiber a nontrivial partial smoothing of C. More precisely, we
have a family of maps

C ⊂ CT
h //

��

X

0 ∈ T

and sections σi : T → CT with σi(0) = pi, h|C0 = f , h(σi(T )) = f(pi), and CT → T a nontrivial
partial smoothing of C. In particular, CT smooths at least one of the nodes of C. Let C ′ ⊂ C be
a maximal connected subcurve of C containing D and smoothed to a P1 by CT → T . Then there
exists a unique irreducible component C ′

T ⊂ CT with generic fiber P1 and special fiber C ′. Then
h|C ′

T
yields the desired smoothing of f |C′ .

The above proposition is completely general, but in our setting, we also have the non-empty
open set Xfree and as before, we can argue that a very general smoothing of f |C′ meets Xfree. Thus,
we have constructed a smoothing gi of f |C′ which meets Xfree and fixes fi(0) and fi(∞) completing
the inductive proof of the claim.

To summarize, we have seen that for x ∈ Xfree and y ∈ X, there exists a chain of free rational
curves fi : P1 → X with f1(0) = x, fi(∞) = fi+1(0) for i < s, and fs(∞) = y. Now we use the
following proposition which is similar to Proposition 5.9.

Proposition 5.10. Let f : C → X be a chain of rational curves with C = ∪iCi and f |Ci
= fi :

Ci → X for i = 1, . . . , s. Let {p1, . . . , pr} ⊂ Csm be a set of smooth marked points. Suppose that Ci

contains ri marked points, fs : Cs → X is rs − 1 free, and fi : Ci → X is ri free for i < s. Then f
can be smoothed to an r − 1 free rational curve fixing f(p1), . . . , f(pr).

Proof. We suppose that the points p1, . . . , pr are ordered so that the first r1 are contained in C1,
the next r2 are contained in C2, etc.

Let
C ⊂ C

��
0 ∈ T

be a 1-parameter smoothing of C over (T, 0) a pointed smooth curve. Up to shrinking and taking
a cover of (T, 0) we can assume there exist disjoint sections σi : T → C with σi(0) = pi. Then we
consider the relative Hom scheme

π : HomT (C , XT , {σi(T ) 7→ f(pi)}i=1,...,r}) → T.

We wish to show that π is smooth in a neighborhood of [f ].
It suffices to show that H1(C, f ∗TX(−

∑
pi)) = 0. We proceed by induction on s. If s = 1, then

C ∼= P1 and f is r−1 free so H1(C, f ∗TX(−r)) = 0. Now let C ′ = C2∪ . . .∪Cs so that C = C1∪C ′

glued by identifying q′ ∈ C ′ and q ∈ C1. Then for any vector bundle E on C, we have an exact
sequence

0 → E |C1(−q) → E → E |C′ → 0.

In particular, taking E = f ∗TX(−
∑
pi) we get

0 → f ∗TX |C1(−p1 − . . .− pr1 − q) → f ∗TX(−
∑

pi) → f ∗TX |C′(−pr1+1 − . . .− pr) → 0.
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Then H1(C1, f
∗TX(−q −

∑r1
i=1 pi) = 0 since f1 is r1-free and H1(C ′, f ∗TX |C′(−

∑r
i=r1+1 pi) = 0 by

inductive hypothesis since f |C′ satisfies the conditions of the proposition.
By the long exact sequence of cohomology, H1(C, f ∗TX(−

∑
pi)) = 0 so [f ] is a smooth point

of π. Thus up to further shrinking and taking a base change of T , we obtain a section of π passing
through [f ] by the lifting criterion of smoothness. Such a section is exactly a family of maps
F : C → X with F (σi(T )) = f(pi) and F0 = f , that is, a smoothing of f which fixes f(pi).
Moreover, for t ̸= 0 small enough, H1(Ct, F

∗
t TX(−r)) = 0 by semicontinuity of cohomology so Ft is

an r − 1 free rational curve.

Applying Proposition 5.10 to the chain of free curves f : C → X connecting x ∈ Xfree with
y ∈ X, we see that we can smooth f into a free rational curve while fixing y. In particular, x ∈ Xfree

is in the closure of the image of the evaluation map

ev : P1 × Hom(P1, X, f(∞) = y) → X

but Xfree is dense in X so ev must be dominant. In particular, through a generic x ∈ X, there
exists a rational curve f : P1 → X with f(0) = x and f(∞) = y. Moreover, by generic smoothness,
we can assume that dev(t,f) is surjective for generic t ∈ P1, that is,

TP1,t ⊕H0(f ∗TX(−1)) → TX,f(t)

is surjective. As before, this implies that f ∗TX(−1) is generically globally generated since it contains
a copy of f ∗TP1(−1) which surjects onto TP1,t and thus the second component of the differential is
already surjective. So f ∗TX(−1) is globally generated on P1 and we conclude that f is very free.

We conclude that for any y ∈ X and general x ∈ X, there exists a very free rational curve f :
P1 → X with f(0) = x and f(∞) = y. This concludes the proof that X is rationally connected.

The proof of the above theorem actually gives us something stronger.

Corollary 5.11. If X is rationally connected, then through any collection of r+1 points x0, . . . , xr ∈
X, there exists an r-free rational curve f : P1 → X and points pi ∈ P1 with f(pi) = xi.

Proof. When r = 1, we wish to show that any two points x0, x1 can be connected by a very free
curve. The proof above shows that for a general point y ∈ X, there exists a very free rational curve
fi : Ci → X with f(0) = xi and f(∞) = y. Gluing these together into a nodal curve C = C0 ∪ C1,
we get a chain f : C → X with two marked points p0, p1 ∈ C such that f(pi) = xi and each
component is 1-free. By Proposition 5.10, f can be smoothed into a 1-free rational curve while
fixing f(p0) and f(p1).

In general, we let f : C → X be a chain of r very free rational curves with marked points
pi ∈ C such that f(pi) = xi. We can construct such a chain by first passing a very free rational
curve through x0 and x1, then inductively on r, passing a very free rational curve through xr and
a general point of an r − 1 chain containing x0, . . . , xr−1. Then by Proposition 5.10, f can be
smoothed into an r-free rational curve while fixing f(pi).

Corollary 5.12. Let f : X → S be a smooth projective family over a connected base and suppose
that X0 is rationally connected for some 0 ∈ S. Then Xs is rationally connected for all s ∈ S.

Proof. First, X0 contains a very free rational curve and so does a small deformation of Xs. Thus
the locus of s ∈ S where Xs is rationally connected is open. We wish to show it is also closed. In
order to do that, we may suppose that X → T is a 1 parameter family with Xt rationally connected
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for all t ̸= 0. Taking the limit limt→0 of a family of rational curves connecting xt, yt ∈ Xt gives
us a chain of rational curves connecting x0, y0 ∈ X0. Up to shrinking and base extending T , any
point x ∈ X is the limit of a family of points xt ∈ Xt. Thus, any two points of X0 are connected
by a chain of rational curves so X0 is rationally chain connected and we conclude it is rationally
connected by Theorem 5.6.

5.3 MRC fibrations

Theorem 5.13. Let X be a smooth projective variety. There exists a smooth projective variety
Z, dense open subsets X0 ⊂ X and and Z0 ⊂ Z, and a rational map µ : X 99K Z such that the
following hold.

1. µ|X0 : X0 → Z0 is a proper morphism.

2. the fibers of µ over Z0 are rationally connected.

3. For a very general point z ∈ Z, a rational curve in X meets the fiber Xz if and only if it is
contained in Xz.

Moreover, µ is unique up to birational equivalence.

Definition 5.14. The variety Z is called the maximally rationally connected (MRC) quotient of
X, denoted by R(X), and the map µ : X 99K R(X) is the MRC fibration.

We won’t give the full proof here but we will sketch the idea. Suppose

C
f //

π
��

X

B

is a family of maps to X parametrized by B. For us π will be the universal family over some
component of the space of rational curves. For any point x ∈ X, we can consider V1(x) the closure
of f(π−1(π(f−1(x)))). This is the closure of the locus of points x′ ∈ X which are connected to x by
a curve fb : Cb → X for some b. Then for k ≥ 1 we let

Vk(x) = closure(f(π−1(π(f−1(Vk−1(x)))))).

This is the closure of the locus of x′ ∈ X which are connected to x ∈ X by a chain of k rational
curves in the family π. By dimension considerations the sequence Vk(x) ⊂ Vk+1(x) ⊂ . . . must
stabilize for some k large enough. Let V∞(x) be this limit as k → ∞. Then we have a rational map

X 99K Hilb(X)

given by x 7→ [V∞(x)]. We let Z(π) be some smooth birational model of the image of this map.
The rational map

X 99K Z(π)

is birationally the quotient of X by the equivalence relation x ∼ x′ if x and x′ can be connected by
a chain of rational curves parametrized by π.
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Now we apply this construction to the family

Cm
fm //

πm

��

X

Bm

of rational curves of degree at most m to obtain a quotient µm : X 99K Zm of X by the equivalence
relation generated by chains of rational curves of degree at most m. Again the sequence of rational
maps µm mus stabilize for dimension reasons to some µ∞ : X 99K Z∞ and this is the MRC
quotient. In particular, for very general x ∈ X, the fiber µ−1(µ(x)) of the MRC quotient is exactly
the rationally connected component of x:

µ−1(µ(x)) = {x′ ∈ X | x′ is connected to x by a chain of rational curves}.

Corollary 5.15. X is rationally chain connected if and only of R(X) is a point.

Theorem 5.16 (Graber–Harris–Starr [24]). Let f : X → B be a surjective morphism from a smooth
projective variety X to a smooth projective curve C. If the general fiber of f is rationally connected,
then f has a section.

Corollary 5.17. If f : X → B is a surjective morphism with rationally connected general fiber
over a rationally connected base B, then X is rationally connected.

Proof. Let x1, x2 be general points with f(xi) = bi Since B is rationally connected, any two points
b1, b2 ∈ B can be connected by a rational curve h : C → B with f(pi) = bi. By GHS, C ×B X → C
has a section at least if we pick f general enough. Let g : C → X denote the composition of this
section with C ×B X → X. Then g is a rational curve connecting g(p1) and g(p2) but since xi are
general, the fibers f−1(bi) are rationally connected so g(pi) can be connected to xi by a rational
curve. Thus x1 and x2 are connected by a chain of rational curves so X is rationally connected by
Theorem 5.6.

Corollary 5.18. For any X, the MRC quotient R(X) is not uniruled.

Proof. Suppose R(X) is uniruled (and in particular dimR(X) > 0). Then there exists a rational
curve through any point z ∈ R(X) but by Theorem 5.16, this rational curve can be lifted to a
rational curve in X not contained in a fiber. This contradicts property (3) in the definition of the
MRC fibration.

Conjecture 5.19 (Mumford). X is rationally connected if and only if Pm,n(X) = h0(X, (Ωn
X)

⊗m) =
0 for all m,n ≥ 1.

Corollary 5.20. Mori’s conjecture 4.16 implies Mumford’s conjecture 5.19.

Proof. Suppose X is not rationally connected. We will show that Pm,n(X) ̸= 0 for some m,n ≥ 1.
Let µ : X 99K R(X) be the MRC fibration. After resolving the rational map we may assume that
we have a morphism µ′ : X ′ → Z between smooth projective varieties with X ′ → X birational.
Moreover, since Pm,n is a birational invariant, it suffices to prove the result for X ′ so we may assume
that µ is a morphism. By Corollary 5.17, Z is not uniruled and by Corollary 5.18 dimZ > 0. By
Mori’s conjecture, h0(Z, ω⊗m

Z ) ̸= 0 for some m ≥ 1. Pulling back using generic smoothness and the
birational invariance of Pm,n, we have an injection

H0(ω⊗m
Z ) ↪→ H0((ΩdimZ

X )⊗m)

so Pm,n(X) ̸= 0 for some m,n ≥ 1.
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The following result of Campana–Demailly–Peternell [43, 9] gives a characterization of rationally
connected varieties analagous to the characterization of uniruled varieties in Theorem 4.17.

Theorem 5.21. [9, 43] X is rationally connected if and only if for some (resp. any) ample line
bundle A on X, there exist a constant CA > 0 such that

H0(X, (Ω1
X)

⊗m ⊗ A⊗k) = 0

for all m ≥ CAk.
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6 Fano varieties

In this section we study Fano varieties. Our main goal will be to show that Fano varieties are
rationally connected.

Definition 6.1. A smooth projective variety is Fano if the anti-canonical divisor −KX is ample.

Example 6.2. By Example 2.12, a degree d hypersurface X ⊂ Pn is Fano if and only if d ≤ n.
More generally, a complete intersection of type (d1, . . . , dk) is Fano if and only if

∑
dk ≤ n.

Theorem 6.3. For k = C, Fano varieties X/k are rationally connected. For an algebraically closed
field k of any characteristic, Fano varieties X/k are rationally chain connected, and in particular
uniruled.

In particular, hypersurfaces of degree d ≤ n are rationally connected. On the other hand, by
Theorem 3.19 and the work of Beheshti–Riedl [5], we only know unirationality for much smaller
degrees 2d! − 1 ≤ n. In fact, it is expected that most Fano varieties are not unirational.

Conjecture 6.4. There exist Fano hypersurfaces which are not unirational. In particular, a smooth
hypersurface of degree n in Pn is not unirational for n ≥ 5.

However, no examples of non-unirational degree d ≤ n smooth hypersurfaces are known.

6.1 Bend-and-break

In this section we prove the bend-and-break results of Mori [38] and its generalizations which allow
us to produce rational curves by degenerating curves of very high anti-canonical degree. The proofs
here are based on [20, Chapter 3].

Proposition 6.5 (Bend-and-break I). Let f : C → X be a map from a smooth curve and fix a
point c ∈ C. Suppose

−KX .f∗[C]− g dimX > 0.

Then there exists a rational curve on X through f(c).

Proof. If g(C) = 0 we are done so suppose g(C) ≥ 1. By the dimension bounds from Proposition
4.5, we know that

dimHom(C,X, f |c) ≥ 1.

Let T be a non-constant smooth curve on Hom(C,X, f |c) passing through f and let T̄ be the
compactification of T . The universal map of the Hom scheme gives us a rational map

F : C × T̄ 99K X

with F |Ct = f for some t0 ∈ T and F (c, t) = f(c) for all t ∈ T .
Suppose that F is a morphism in a neighborhood of c× T̄ . Then F contracts c× T̄ to a point

so by the Rigidity Lemma 4.14, F factors through the projection C × T̄ → C. Thus every map
parametrized by T has the same image in X. Since g(C) > 0, Aut(C, c) = 0 so there are only finitely
many maps with the same image. This contradicts that T → Hom(C,X, f |c) is non-constant. Thus
F has at least one base point of the form (c, t1).

Let µ : S → C × T̄ be a blowup of C × T̄ that resolves F to a morphism G : S → X and let E
be the exceptional divisor over (c, t1). Then E is a union of rational curves which is not contracted
by G to a point. Moreover, G(E) meets f(c) since E meets the strict transform of c × T̄ . Thus a
component of E which is not contracted by G gives us a rational curve through f(c).
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Proposition 6.6 (Bend-and-break II). Suppose f : P1 → X is a rational curve with

−KX .f∗P1 − dimX ≥ 2.

Then the cycle f∗P1 is algebraically equivalent to a connected reducible cycle of rational curves
passing through f(0) and f(∞).

Proof. By assumption, the dimension of the space of maps

dim[f ] Hom(P1, X, f |{0,∞}) ≥ 2.

Since Aut(P1, 0,∞) = Gm is 1-dimensional, we can find a 1-parameter family

P1 × T

��

F // X

T

of maps with Ft0 = Ft for some t0 and such that T → Hom(P1, X, f |{0,∞}) is not contained a Gm

orbit. This implies that the image of Ft is varying as t ∈ T varies and so F × idT : P1×T → X ×T
is finite.

Let T̄ be the smooth compactification of T and let S be the normalization of the closure of the
image of F × idT in K(P1 × T ). Then S is finite over X × T̄ and we have a commutative diagram

P1 × T //

F %%

S

��
X × T̄

.

and a diagram

P1 × T

��

// S

π
��

T // T̄

.

Then S is a normal surface fibered over T̄ with a family of maps F̄ : S → X parametrized by T̄
extending our family of maps F . Moreover, if E ⊂ S → T̄ is a component of a fiber of π, then F̄
maps E finitely into X. This follows since S → X × T̄ is finite and E is contracted by π so it must
not be contracted by the first projection. Moreover, π : S → T̄ is flat with generic fiber P1 so the
fibers of π are Cohen-Macaulay curves of arithmetic genus 0. It follows that each component of a
reduced fiber of π−1(t)red is a smooth rational curve. Moreover F̄ |π−1(t0) = f . Thus, it suffices to
show that there exists a reducible fiber of S, say over t∞. Then F̄ (π−1(t∞)) gives us a reducible
rational curve through f(0) and f(∞) algebraically equivalent to f∗P1.

Suppose every fiber of π is irreducible. Then every fiber is a P1. It follows that π : S → T̄ is a
ruled surface over T̄ . Moreover, π has two sections, the closures of 0×T and ∞×T . Let us denote
these S0 and S∞. By construction, F̄ (S0) = f(0) and F̄ (S∞) = f(∞). Now F is finite and thus
F̄ is generically finite. Therefore, by the Hodge Index Theorem, S2

i < 0 for i = 0, 1. On the other
hand, if S is a ruled surface with sections S0, S∞, then S0 − S∞ ∼ f where f is a fiber class of π.
Thus

0 = (S0 − S∞) = S2
0 − 2S0S∞ + S2

∞ < 0.

This is a contradiction, so π must have a reducible fiber.
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Next we have the following relative versions. To state it we need some notation. Let π : X → Y
be a morphism of projective varieties and let f : C → X a curve on X. Let B ⊂ C be a collection
of n marked points and let g = π ◦ f : C → Y be the composition. Then π induces a map

ρ : Hom(C,X, f |B) → Hom(C, Y, g|B).

We let HomY (C,X, g, f |B) denote the fiber

ρ−1([g : C → Y ]).

This is the deformation space of maps f ′ : C → X with f ′|B = f |B and π ◦ f ′ = π ◦ f = g.

Proposition 6.7 (Relative bend-and-break I). Let π : X → Y and f : C → X be as above. Suppose
g(C) > 0 and fix c ∈ C. If

dim[f ] HomY (C,X, g, f |c) ≥ 1,

then there exists f ′ : C → X and a connected effective rational 1-cycle Z passing through f(c) such
that

f∗C ∼alg f
′
∗C + Z

with π ◦ f ′ = π ◦ f and π(Z) = π(f(c)).

Proof. The proof proceeds as in the proof of Proposition 6.5. We have a 1-dimensional family of
maps F : C × T → X. After compactifying T ⊂ T̄ and resolving basepoints (which necessarily
must exist along c × T̄ ), we have a surface µ : S → C × T̄ a morphism G : S → X which sends
the connected component of the exceptional locus of c× T̄ to a connected effective rational 1-cycle
Z passing through f(c). Moreover, we let f ′ : C → X be the restriction of S → X to the strict
transform of C on S meeting Z.

The only thing to check is that Z is contracted by π. To check this, note that the composition
C × T → X → Y factors through the projection C × T → C since by assumption all our maps lie
over the fixed map g : C → X. Thus the composition extends to a morphism C × T̄ → X. By
commutativity, the composition S → X → Y must be equal to S → C × T̄ → Y and so every
exceptional curve of S → C × T̄ is contracted on Y . Since Z is the image of such curves, Z is also
contracted.

Proposition 6.8 (Relative bend-and-break II). Let π : X → Y be a morphism of projective
varieties and f : (C, c) → X a smooth pointed curve mapping to X. If the map

ρ : Hom(C,X, f |c) → Hom(C, Y, (π ◦ f)|c).

does not contract every component of Hom(C,X, f |B) containing [f ], then there exists a connected
effective rational 1-cycle Z passing through f(c) such that π|Z is not constant.

Proof. If C is rational we are done so assume without loss of generality that g(C) > 0. Let
T → Hom(C,X, f |c) be a curve through [f ] such that ρ(T ) is not a point. This is a family of maps
C × T → X fixing c× T such that the composition C × T → Y is a non-isotrivial family of maps.
In particular, as in the proof of Proposition 6.5, if T̄ is a compactification of T , then the rational
map C × T̄ 99K Y must have a basepoint along c × T̄ . Let S → C × T̄ be a blowup resolving the
indeterminacies of C× T̄ 99K Y and S ′ → S a possibly further blowup resolving the indeterminacies
of C × T̄ 99K X. Then we have a commutative diagram

S ′

��

// X

��
S // Y

.
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Let Z be the image under S ′ → Y of a connected component of the exceptional locus of S ′ → C× T̄
which dominates an exceptional locus of S → C× T̄ meeting c× T̄ . Then Z is an effective connected
rational 1-cycle meeting f(c) which is not contracted by π by commutativity of the diagram.

6.2 Transverse rational curves on Fano varieties

Now we will use bend-and-break to produce rational curves on Fano varieties which are transverse
to the fibers of a morphism. The basic idea, due to Mori, is to reduce to characteristic p where
we have the Frobenius morphism F : C → C. The key point is that composing with F raises the
anticanonical degree of a map f : C → X without changing the genus of C, thus allowing us to end
up in a situation where the bound

−KX .f∗[C]− g dimX > 0

is satisfied. This produces rational curves of arbitrary degree which then can be broken by bend-
and-break II (Proposition 6.6) into rational curves of bounded degree. The boundedness of degrees
is then crucial to allow us to lift back to characteristic 0. Finally, we need to carry out this argument
in the relative setting to produce rational curves of bounded degree which are transverse to the fibers
of a given morphism.

Theorem 6.9. Let X/k be a Fano variety with k = k̄, Y0 a quasi-projective variety with dimY0 ≥ 1,
and X0 ⊂ X a dense open subset. Let π : X0 → Y0 be a proper surjection. Then for any point
y ∈ Y0, there exists a rational curve f : P1 → X which meets π−1(y) but is not contained in π−1(y).
Moreover, f : P1 → X can be chosen so that −KX .f∗P1 ≤ dimX + 1.

Let X0 = X = Y0 and π to be the identity, we immediately get that Fano varieties are uniruled in
any characteristic. Our goal is to prove that in fact they are rationally chain connected by applying
the theorem to the MRC fibration X 99K R(X). For simplicity, we will only prove the theorem
when X0 = X so that f is a morphism. The general case is similar but where we have to resolve the
morphism by blowing up X and carefully keeping track of what happens (see [20, Theorem 3.22]).

Proof. Suppose first that char(k) = p > 0. Since π is projective, we can find a pointed curve
f : (C, c) → X with f(c) ∈ π−1(y) but f(C) ̸⊂ π−1(y). If C is rational we are done so suppose that
g(C) > 0.

Let H be an ample divisor on Y and pick 0 < α ≪ 1 small enough so that −KX − απ∗H is
ample. Let Fm : Cm → C be the m-fold Frobenius map. Then g(Cm) = g(C) = g but Fm has
degree pm so

αH.(π ◦ f ◦ Fm)∗Cm − g dimX = αpmH.(π ◦ f)∗C − g dimX ≥ 0

for m large. Replacing f with f ◦ Fm, we may suppose without loss of generality that

αH.(π ◦ f)∗C = απ∗H.f∗C ≥ g dimX. (11)

It follows that
−KX .f∗C > απ∗H.f∗C ≥ g dimX. (12)

At this point, already by bend-and-break I (Proposition 6.5), we have a rational curve through
f(c) ∈ π−1(y) (and in particular we see that X is uniruled). The issue is this rational curve might
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be contained in a fiber. However, relative bend-and-break II (Proposition 6.8) tells us that we may
produce a rational curve not contained in the fiber as long as the composition map

ρ : Hom(C,X, f |c) → Hom(C, Y, (π ◦ f)|c)

does not contract every component of the source containing [f ].
Suppose for contradiction that ρ does contract every component of Hom(C,X, f |c). Then the

image of ρ on these components must be the point [π ◦ f ]. Therefore, in a neighborhood of [f ],
Hom(C,X, f |c) = HomY (C,X, (π ◦ f), f |c). Moreover, by equation (12),

dim[f ] HomY (C,X, (π ◦ f), f |c) = dim[f ] Hom(C,X, f |c) ≥ 1

By relative bend-and-break II (Proposition 6.7), there exists f ′ : C → X and a connected effective
rational 1-cycle Z through f(c) with

f∗C ∼alg f
′
∗C + Z

such that π(Z) = y and π ◦ f = π ◦ f ′. In particular, αH.(π ◦ f ′)∗C = αH.(π ◦ f)∗C so equation
(11) still holds for f ′ : C → X. On the other, the anticanonical degree satisfies

0 < −KX .f
′
∗C < −KX .f∗C

since −KX .Z > 0. Thus, f ′ : C → X is a curve with strictly smaller anticanonical degree that
satisfies (11). Thus we may repeat the argument to produce f ′′ : C → X with 0 < −KX .f

′′
∗C <

−KX .f
′
∗C still satisfying (11). In this way, we get an infinite decreasing sequence of positive integers

which is impossible. Therefore, ρ does not contract every component containing [f ] to a point so by
relative bend-and-break II (Proposition 6.8), there exists a rational curve Z passing through f(c)
such that π|Z is not constant.

Now let f : (C, c) → X be such a transverse rational curve with f(c) ∈ π−1(y) by f(C) ̸⊂ π−1(Y ).
If

−KX .f∗C > dimX + 1,

then
−KX .f∗C − dimX ≥ 2.

Let c′ ∈ C be any point such that f(c′) ̸∈ π−1(y). By bend-and-break II (Proposition 6.6), f∗C
is equivalent to an effective connected reducible rational 1-cycle Z which passes through f(c) and
f(c′). Thus, the irreducible components of Z have −KX-degree strictly smaller than −KX .f∗C and
some component of Z must meet π−1(y) but is not contained in π−1(y). Replace f : C → X with
this component. Then we may repeat in this way until we arrive at a transverse rational curve with
−KX .f∗C ≤ dimX + 1.

This completes the proof in positive characteristic. Now we must lift to characteristic 0. Suppose
X is a Fano variety over an algebraically closed field k of characteristic 0 and π : X → Y . SinceX, Y
and π are of finite type, there exists some finitely generated Z-algebra R ⊂ k, schemes X → SpecR
and Y → SpecR, a section yR : SpecR → Y , and a morphism πR : X → Y of R-schemes such
that

• X = X ⊗R k,

• Y = Y ⊗R k,
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• yR ⊗R k = y, and

• π = πR ⊗R k.

Since X/k and Y/k are smooth and ω−1
X/k is an ample line bundle, there exists a dense open subset

U ⊂ SpecR such that XU → U and YU → U are smooth and ω−1
XU/U is relatively ample.

Let Hom≤dimX+1
U (P1

U ,XU) be the relative Hom scheme of families of rational curves on XU of
ω−1

XU/U -degree bounded by dimX + 1. This is a quasi-projective scheme. There is the natural map

ρU : Hom≤dimX+1
U (P1

U ,XU) → HomU(P1
U ,YU)

given by composing a family of rational curves with the map πU : XU → YU . The scheme
P1
U comes equipped with two sections 0U ,∞U . We consider the locally closed subscheme H ⊂

Hom≤dimX+1
U (P1

U ,XU) given by the conditions

ρU(f)(0U) = π−1
U (yU) ρU(f)(∞U) ∩ yU = ∅.

Then H is a quasi-projective U -scheme parametrizing rational curves of ω−1
XU/U -degree bounded by

dimX+1 which meet the fiber π−1
U (yU) but are not contained in it. For every closed point q ∈ U , the

residue field k(q) has positive characteristic. Thus, by the desired theorem in positive characteristic,
the fiber Hq is not empty. It follows that

H → U

is surjective onto closed points. Since H is quasi-projective, at least one component of H must
dominate U . Therefore, the fiber over the generic point k(U) is not empty but k(U) ⊂ k so the
base-change H⊗U k is also not empty. Since the Hom scheme commutes with base-change, H⊗U k
is simply the scheme parametrizing rational curves on X of −KX-degree bounded by dimX + 1
which meet π−1(y) but are not contained in π−1(y). Since k is algebraically closed, this scheme has
a k-point, and thus there exists such a rational curve on X.

6.3 Fano varieties are rationally chain connected

We are finally ready to put together all the ingredients to prove that Fano varieties in characteristic
0 are rationally connected.

Theorem 6.10. Let k be an algebraically closed field and X/k a smooth projective Fano variety.
Then X is rationally chain connected. If char(k) = 0, then X is rationally connected.

Proof. If char(k) = 0, then RCC implies RC by Theorem 5.6 which proves the latter claim assuming
the former.

Let µ : X 99K R(X) be the MRC fibration. If dimR(X) = 0, then X is rationally chain
connected and we are done. Suppose towards a contradiction that dimR(X) > 0. Then by Theorem
6.9, for any z ∈ R(X) over which µ is well-defined and proper, there exists a rational curve f :
P1 → X such f(0) ∈ µ−1(z) but f(∞) /∈ µ−1(z). On the other hand, by Theorem 5.13(3), for very
general z ∈ R(X), any rational curve which meets µ−1(z) must be contained in µ−1(z). This is a
contradiction.
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7 Birational superrigidity of the quartic threefold

In this section we will prove Theorem 1.26 of Iskovskikh and Manin – that a smooth quartic threefold
X4 ⊂ P4 is not rational. Combined with the construction of B. Segre exhibiting a unirationl quartic
threefold, this gives a counerexample to the Lüroth Problem.

The idea of Iskovskikh and Manin is to to show that the birational automorphism group Bir(X4)
is very small. In fact, something much stronger holds.

Definition 7.1. Let X be a smooth Fano variety with Picard number ρ(X) = 1. We say X is
birationally superrigid if any birational map ϕ : X 99K Y to another Fano variety with ρ(Y ) = 1 is
an isomorphism.

Note that a smooth hypersurface of dimension ≥ 3 has Picard number 1 by the Lefschetz
Hyperplane Theorem. Moreover, X4 ⊂ P4, or more generally any Xd ⊂ Pn+1 for d ≤ n+ 1 is Fano.

Theorem 7.2. (Iskovskikh-Manin [27]) A smooth quartic fourfold is birationally superrigid.

The study of birational automorphism groups of Fano varieties was initiated by Noether and
Fano and studied by many other people over the last century (e.g. [44, 12, 19] and many others)
culminating in the following theorem [17, 18].

Theorem 7.3. A smooth hypersurface X ⊂ Pn+1 of dimension n ≥ 3 and degree n+1 is birationally
superrigid.

The full proof and history of Theorem 7.3 is outlined in [29]. In this section we will sketch only
the proof of Theorem 7.2, following ideas of [16] as presented in [29].

Remark 7.4. Theorem 7.3 implies that Aut(X) = Bir(X) for a hypersurface of degree n+1 in Pn+1

with n ≥ 3. To conclude Theorem 7.2, we need to know that Aut(X) is finite. To see this we first
note that Aut(X) is a linear algebraic group. Indeed any automorphism preserves −KX but but
−KX is very ample and thus every automorphism of X extends to an automorphism of the ambient
projective space in its anti-canonical embedding. Therefore, it suffices to show that the connected
component of the identity Aut0(X) is trivial. This follows from the computation

TIdAut(X) = H0(X,TX) = 0

which holds for any smooth hypersurface of degree d ≥ 3 and dimension n except for (n, d) = (1, 3)
(see e.g. [28, 11.5.2]).

7.1 Singularities of pairs

In this section we review some basic definition of singularities of pairs. For the proof of Theorem
7.2, it is convenient to work with a pair (X, |M |) of a smooth projective variety X equipped with a
linear series |M | ⊂ PH0(X,OX(M)). We do not assume the linear series |M | is complete. Moreover,
we will denote a general member of |M | by M ∈ |M |.

Definition 7.5. The base locus Bs|M | is defined as the intersection⋂
D∈|M |

D.

We say |M | is movable if Bs|M | has codimension ≥ 2. The fixed part of |M | is the maximal effective
divisor F such that D − F ≥ 0 for all D ∈ |M |.
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Note that SuppF ⊂ Bs|M | consists of exactly the codimension 1 components of Bs|M | so |M |
is movable if and only if the fixed part F = 0. Thus we see that any linear series can be written
uniquely as

|M | = |M ′|+ F

where |M ′| is a movable linear series and F is the fixed part of |M |.

Definition 7.6. Let (X, |M |) be a pair. A log resolution of this tuple is a proper birational
morphism µ : Y → X such that

1. Y is smooth,

2. µ∗|M | = |M ′|+ F where |M ′| is basepoint free and F is the fixed part of µ∗|M |, and

3. F + Exc(µ) is a simple normal crossings divisor.

Given a log resolution µ : Y → X of a pair (X, |M |), if X is smooth, we can write

KY = µ∗KX + E

where E is effective and µ-exceptional. Then for any rational number c > 0, we can write

KY + c|M ′| = µ∗(KX + c|M |) + E − cF.

Let us denote
E − cF =

∑
aiEi

where Ei are prime divisors.

Definition 7.7. The pair (X, c|M |) is canonical (resp. log canonical) if ai ≥ 0 (resp. ai ≥ −1). A
divisor Ei with ai < 0 (resp ai < −1) is called a non-canonical (resp. non-log canonical) place and
the image µ(Ei) ⊂ X is a non-canonical (resp. non-log canonical) center.

One should think of a log resolution of a pair (X, |M |) as resolving the base locus of the linear
series |M |. Then the numbers ai are a measure of the singularities of the base locus and the
conditions of being canonical or log canonical are conditions on the singularities of the base locus
being mild. In particular if |M | is basepoint free, then (X, c|M |) is canonical for any c. In general,
if X is smooth, there exists a maximal c such that (X, c|M |) is canonical (resp. log canonical) called
the canonical (resp. log canonical) threshold.

Remark 7.8. If |M | is movable, then F is necessarily µ-exceptional so the non-canonical (resp.
non-log canonical) centers must have codimension ≥ 2.

Remark 7.9. It is not hard to see that (X, c|M |) is (log) canonical if and only if (X, cM) is (log)
canonical where M is a general member of |M |. Thus we see that the study if the singularities
of the base locus of a linear series is essentially equivalent to the study of the singularities of the
general member. This is consistent with the previous remark as the general member of a basepoint
free linear series is smooth by Bertini’s Theorem.

47



7.2 The Noether-Fano method

In this section, we will discuss the so-called Noether-Fano method for proving superrigidity (see
[29, Section 2]. The basic idea is that the existence of a nontrivial birational map between Picard
number 1 Fano varieties forces the existence of a movable linear series |M | with bad singularities.
Then a careful analysis of the singularities of such linear series on quartic threefolds will lead to
Theorem 7.2.

Theorem 7.10. Let ϕ : X 99K Y be a birational map between smooth Fano varieties of Picard
number 1. Then either

1. ϕ is an isomorphism, or

2. there is some m > 0 and a movable linear series |M | ⊂ | −mKX | such that (X, 1
m
|M |) is not

canonical.

We will need the following lemma of Matsusaka and Mumford [37].

Lemma 7.11. Let ϕ : X 99K Y be a birational map between smooth projective varieties and let H
be an ample divisor on X. Suppose that ϕ∗H is ample and that there exist closed subsets P ⊂ X
and Q ⊂ Y with complement of codimension 2 such that ϕ|X\P : X \P → Y \Q is an isomorphism.
Then ϕ is an isomorphism.

Proof. Without loss of generality we may assume that H and ϕ∗H are very ample on X and Y
respectively. By the codimension condition, ϕ induces isomorphism

H0(X,mH) = H0(X \ P,mH|X\P ) = H0(Y \Q,mϕ∗H|Y \Q) = H0(Y,mϕ∗H)

for all m ≥ 0 so ϕ is an isomorphism.

Proof of Theorem 7.10. Let Z → X × Y be a log resolution of the closure of the graph of ϕ and
consider the natural maps

Z
q

��

p

~~
X

ϕ // Y

.

Let |N | ⊂ | − nKY | be a basepoint free linear series with strict transform |M | = ϕ−1
∗ |N |. Since

ρ(X) = 1, d|M | ⊂ | −mKX | for some m > 0 and without loss of generality we may take d = 1.
We have an effective p-exceptional divisor Ep (resp. q-exceptional divisor Eq) defined by

KZ = p∗KX + Ep (resp. KZ = q∗KX + Eq) (13)

where Supp(Ep) = Exc(p) (resp. Supp(Eq) = Exc(q)).
Moreover, if we let |MZ | = q∗|N |, then p∗|M | = |MZ | + Fp where Fp is also effective and p-

exceptional by the negativity lemma [33, Lemma 3.39]. Note that p∗|MZ | = ϕ−1
∗ |N | = |M | by

definition. Then

KZ +
1

n
|MZ | = q∗

(
KY +

1

n
|N |
)
+ Eq ∼Q Eq ≥ 0 =⇒ (14)

KX +
1

n
|M | = p∗

(
KZ +

1

n
|MZ |

)
∼Q p∗Eq ≥ 0. (15)
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On the other hand,

KX +
1

n
|M | ∼Q

(
1− m

n

)
KX =

m− n

n
(−KX) ≥ 0 (16)

so we conclude that m ≥ n.
Similarly,

KZ +
1

m
|MZ | = p∗

(
KX +

1

m
|M |

)
+ Ep −

1

m
Fp ∼Q Ep −

1

m
Fp =⇒ (17)

KY +
1

m
|N | = q∗

(
KZ +

1

m∗
|MZ |

)
∼Q q∗

(
Ep −

1

m
Fp

)
. (18)

Then as before we obtain that

n−m

m
(−KY ) ∼Q q∗

(
Ep −

1

m
Fp

)
. (19)

If n < m, then the divisor 19 is not effective so by Equation 17,
(
X, 1

m
|M |

)
is not canonical and

we are in case (2) of the theorem. Otherwise, by Equation 16, we must have n = m. By Equations
14+3, p∗Eq = 0 so Eq is p-exceptional but Eq contains every q-exceptional divisor so every q-
exceptional divisor if also p-exceptional. On the other hand, suppose D ⊂ Z is not q-exceptional.
Then q∗D ∼Q r|N | for some r > 0 since ρ(Y ) = 1. Pulling back, we see that

r|MZ | ∼Q D +G

where G is q-exceptional. But by the previous conclusion, this implies G is also p-exceptional. Since
p∗|MZ | = |M | is not 0, then p∗D ̸= 0 so D is not p-exceptional.

Putting this together, we have a rational map ϕ : X 99K Y between Fano varieties such that

• ϕ∗(−KX) = −KY , and

• Exc(p) = Exc(q).

Then ϕ is an isomorphism by Lemma 7.11 where we take P = p(Exc(p)) and Q = q(Exc(q)) and
we are in case (1) of the theorem.

Corollary 7.12. Suppose X is a smooth Fano variety with ρ(X) = 1. If (X, 1
m
|M |) is canonical

for every m > 0 and every movable linear series |M | ⊂ |−mKX |, then X is birationally superrigid.

7.3 Multiplicity bounds

In this section we discuss multiplicity bounds that are used to show that a smooth quartic threefold
satisfies the hypothesis of Corollary 7.12. On the one hand, Proposition 7.13 gives an upper bound
on the multiplicity of D ∈ |mH| where H is the hyperplane class. On the other hand, Proposition
7.15 gives lower bounds on the multiplicity of a general member M ∈ |M | for a non-canonical pair
(X, 1

m
|M |). The key point is that for the quartic, −KX = H so that the inear series |M | ⊂ |−mKX |

produced by Theorem 7.10 are also degreem-hypersurface sections. Thus we can play off both types
of multiplcity bounds to derive a contradiction.

We begin with the upper bound on the multiplicity of a hypersurface section D ⊂ |mH|.

Proposition 7.13. Let X ⊂ Pn+1 be a smooth hypersurface with n ≥ 3. Let D ∈ |mH| where H is
a hyperplane section. Let C ⊂ D ⊂ X be an integral curve. Then

multCD ≤ m.
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Proof. The proof uses results from intersection theory (see e.g. [22] for an introduction). First we
compute the intersection number

D · C = m degC

by Bezout’s theorem. On the other hand, let Σ ⊂ Pn+1 be the cone over C with vertex v. The
key point is that deg Σ = degC. However, X ∩ Σ is not necessarily equal to C, instead we have a
residual curve Z with

X · Σ = C + Z

Claim 7.14. For v general,
#Z ∩ C = degC(degX − 1).

Proof. Let π : Pn+1 99K Pn be the projection away from v. For general v, π|X : X 99K Pn is finite
and π|C : C → Pn is an isomorphism onto its image. Moreover, we can pick v so that Z ∩ C are
smooth points of C. For any smooth point x ∈ C, denote by lx,v ⊂ Σ the line containing x and v.
Then x ∈ Z ∩ C if and only if lx,v meets Z ∪ C in multiplicity ≥ 2. But Z ∪ C = Σ ∩X and lx,v is
contained in Σ, this is equivalent to saying that lx,v is tangent to X at x. The points x ∈ X where
lx,v is tangent to X is exactly the ramification divisor of π|X . Thus

Z ∩W = R ∩W

where R is the ramification divisor of π. For v generic, R and W meet transversely and one can
compute explicitly that degR = degX − 1 so we conclude by Bezout.

Now we compute

D · C = D ·X · Σ−D · Z = m degX degC −D · Z.

Finally we need the following fact about intersection multiplicity.

(D · Z)p ≥ (multpD)(multpZ) ≥ multpD.

For p ∈ C, multpD ≥ multCD and we have

D · Z ≥ multCW (#Z ∩ C) = multCD degC(degX − 1)

Putting this together we get

m degC = D · C = m degX degC −D · Z ≤ m degX degC −multCD degC(degX − 1)

which, after rearranging, becomes m(1− degX) ≤ multCD(degX − 1) or multCD ≤ m.

Next we consider the lower bounds on multiplicity which are implied by the fact that the pair
(X, 1

m
|M |) is not (log) canonical.

Proposition 7.15. Consider a pair (X, c|M |) with |M | movable and let p ∈ X.

1. If (X, c|M |) is not canonical at p, then

multpM > 1/c.
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2. If (X, c|M |) is not log canonical at p, then

(M ·M)p > 4/c2

To prove Proposition 7.15, we need an important tool from the minimal model program which
lets us compare the singularities of a pair (X,S+∆) with the singularities of the pair (S,∆|S) where
S is a general hyperplane section and ∆ is some Q-divisor. The basic idea is that the Poincaré
residue map, which is given in local coordinates around S = {x1 = 0} by

res : ΩX(S) → ωS

f(x1, . . . , xn)
dx1
x1

∧ dx2 ∧ . . . ∧ dxn 7→ f(0, x2, . . . , xn)dx2 ∧ . . . ∧ dxn

gives us the equality (KX + S)|S = KS. By working on a log resolution of the pair (X,S + ∆)
and restricting to the strict transform, its not hard to see that (X,S + ∆) log canonical in a
neighborhood of S implies that (S,∆S) is log canonical. The converse is an extremely powerful and
nontrvial result that is useful for many inductive arguments in the minimal model program [33,
Theorem 5.50].

Theorem 7.16 (Inversion of adjunction). Let X be a smooth projective variety, ∆ an effective
Q-divisor and S a smooth hypersurface. Then (X,S +∆) is log canonical in a neighborhood of S if
and only if (S,∆|S) is log canonical.

Remark 7.17. Note that for adjunction, S must necessarily be a Cartier divisor, and in particular,
must have coefficient 1. Thus the pair (X,S + ∆) is never canonical. Thus even if (X,∆) is
a canonical pair, to apply inductive arguments using inversion of adjunction we need to pick an
appropriate S such that (X,S + ∆) is log canonical and then relate this to the log canonical pair
(S,∆|S).
Remark 7.18. Even though Theorem 7.16 is stated for a log pair (X,S+∆), we can apply it to the
setting of a linear series c|M | by taking ∆ to be a general member of c|M | (Remark 7.9).

Corollary 7.19. Let (X, c|M |) be a pair and S ⊂ X a smooth hypersurface. If either

1. S contains a non-canonical center Zc of (X, c|M |), or

2. S intersects a non-log canonical Z lc center of (X, c|M |),

then (S, c|M |S) is not log canonical at p ∈ Zc (resp. p ∈ Z lc ∩ S).

Proof. For case (1), note that if S contains a non-canonical center Zc, then there exists some non-
canonical place E ⊂ Y lying over Zc on some resolution µ : Y → X. Then by assumption we
have that the discrepancy a(E) < 0 where a(E) is the coefficient of E in the divisor KY + c|M ′| −
µ∗(KX + c|M |). Since S contains Zc = µ(E), then µ∗S = S ′ + bE where b > 0 and S ′ does not
contain Supp(E). Since S is Cartier, b is an integer so b ≥ 1. Thus the discrepancy of E for the
log pair (X,S + c|M |) is a− b ≤ a− 1 < −1 so (X,S + c|M |) is not log canonical. By inversion of
adjunction, this implies that (S, c|M |S) is not log canonical.

For case (2), (X, c|M |) is already not log canonical so neither is (X,S + c|M |) and we conclude
again by inversion of adjunction.
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Proof of Proposition 7.15. For the first part, we consider a smooth complete intersection curve
p ∈ B ⊂ X through p, say B = S1 ∩ . . . ∩ Sk where Si are smooth hypersurfaces through p.
Suppose that multpM ≤ 1/c. Then cM.B ≤ 1 thus (B, cM |B) is a log canonical curve. By applying
Corollary 7.19 inductively to each Si, we conclude that Si does not contain a non-canonical center
in a neighborhood of p. In particular, (X, c|M |) must be canonical at p.

For (2), the idea is to reduce to the case that dimX = 2. Indeed if S is a generic smooth
hypersurface passing through p, then (X,S+c|M |) is not log canonical at p if and only if (S, c|M |S)
is not log canonical at p by inversion of adjunction. On the other hand, for generic S, the multiplicity
of intersection is preserved,

(M ·M)p = (M |S ·M |S)p.

Thus it suffices to prove the statement for S and so by induction we can slice down until dimX = 2.
For surfaces the statement can be proven directly by a delicate local computation in local coordinates
x and y around p (see [29, Corollary 31] for details).

7.4 Finishing the proof

We are now ready to prove that the smooth quartic threefold is birationally superrigid.

Proposition 7.20. Let X be a quartic threefold and let |M | ⊂ |−mKX | be a movable linear series.
Then

(
X, 1

m
|M |

)
is canonical.

Proof. First note that for a quartic threefold, we have −KX = H where H is the hyperplane class.
Thus, |M | ⊂ |mH|.

Suppose that
(
X, 1

m
|M |

)
is not canonical. Since |M | is movable, its base locus has codim ≥ 2

so
(
X, 1

m
|M |

)
does not have any two dimensional non-canonical centers. By Proposition 7.15(1),

multpM > m for all p in a non-canonical center. On the other hand, for any curve C ⊂ X,
multCM ≤ m since |M | ⊂ |mH| (Proposition 7.13). Thus,

(
X, 1

m
|M |

)
does not contain any one

dimensional non-canonical centers. Therefore, all the non-canonical centers of
(
X, 1

m
|M |

)
are points.

Let p ∈ X be a non-canonical center of
(
X, 1

m
|M |

)
and let S be a generic smooth hyperplane

section passing through p. By Corollary 7.19,
(
S, 1

m
|M |S

)
is not log canonical at p.

By Proposition 7.15(2), (MS ·MS)p > 4m2. Since S is generic,

(M ·M · S)p = (MS ·MS)p > 4m2.

On the other hand, M ∼ mH and S ∼ H and so

4m2 = m2H3 =M ·M · S ≥ (M ·M · S)p > 4m2

which is a contradiction.

Corollary 7.21. Let X be a smooth quartic threefold. Then X is birationally superrigid.

7.5 Unirationality constructions and a counterexample to the Lüroth
problem

In this section we will sketch the construction of B. Segre (see also [27, Section 9]) of a particular
unirational quartic threefold. Combined with Theorem 7.2 we get the following.
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Corollary 7.22. There exists a unirational but irrational quartic threefold.

Before we give the construction, let us state the following open problem.

Question 7.23. Is a general quartic threefold over an algebraically closed field unirational?

Remark 7.24. Note that by Theorem [25], we know that a smooth quartic in Pn+1 is unirational for
n≫ 0. In fact by work of Morin, the general smooth quartic is unirational for n ≥ 5.

Let p ∈ X and let Tp ⊂ P4 denote the projective tangent hyperplane to X at p. The intersection
Tp ∩X is a quartic surface Sp with a multiplicity ≥ 2 singularity at p. For generic p ∈ X, we can
assume that Sp has a unique singular point of multiplicity exactly 2 at p. Let Cp denote the tangent
cone of Sp at p. Then Cp is a degree 2 cone since p is a multiplicity 2 point of Sp. For generic p, we
have that Cp is integral. Thus Cp is the cone over conic curve. The lines through the cone Cp are
exactly the lines which are tangent to X at p in multiplicity at least 3.

Let W ⊂ PTX → X be the subvariety of the projectivized tangent bundle consisting of those
tangent directions which are tangent to X at multiplicity at least (3). Then by the previous
discussion, for generic p ∈ X, the fiber Wp is the conic so that Cp = cone(Wp). Thus π : W → X
is a conic bundle. On the other hand, there is a map

f : W 99K X

given by the fourth point construction. Each tangent direction at w ∈ W corresponds to a tritangent
line at x. Since degX = 4, then this line intersects X in a unique second point which we call f(w).

We want to use f to produce a unirational parametrization. The issue here is that W need not
be rational, it is merely a conic bundle over X. However, if S contains a (possibly singular) rational
surface S ⊂ X, then we could hope that the pullback πS : WS → S has a section. If this is the case,
then WS is rational by Proposition 3.7. We could also hope that in this case the fourth point map
fS : WS 99K X is still dominant. In this case, fS : WS 99K X is a rational parametrization of X.

By beginning with a rational surface S such that fS has a section and then finding a smooth
quartic that contains in, B. Segre was able to find an explicit example of a quartic threefold where
this strategy succeeds in finding a unirational parametrization. The quartic is given by the equation
below.

x40 + x0x
3
4 + x41 − 6x21x

2
2 + x42 + x43 + x33x4 = 0
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8 The intermediate Jacobian of a cubic threefold

In this section we will survey the work of Clemens-Griffiths [13] on the intermediate Jacobian IJ(X)
of a cubic threefold. Our goal will be to sketch the proof of the following theorem.

Theorem 8.1. Let X be a smooth projective threefold with h1,0(X) = h3,0(X) = 0. If X is rational,
then IJ(X) is isomorphic to a product of Jacobians. As a result we have the following.

Via a careful analysis of the singularities of the theta divisor of IJ(X), Clemens and Griffiths
conclude that when X ⊂ P4 is a smooth cubic threefold, then IJ(X) is not isomorphic to a product
of Jacobians.

Theorem 8.2. Smooth cubic threefolds over C are not rational.

Remark 8.3. In this section, we work over C. Benoist-Wittenberg extended the Clemens-Griffiths
method to non-closed fields in [6].

8.1 Background on abelian varieties

Let V be a complex vector space.

Definition 8.4. A lattice Γ ⊂ V is a free abelian subgroup of V such that SpanRΓ = V . The
associated complex torus is the complex manifold A = V/Γ. We say that A is an abelian variety if
A is the complex manifold of C-points of a projective variety.

In particular, if Γ ⊂ V is a lattice, then rankZΓ = 2dimC V and A is homeomorphic to the torus
(S1)2 dimC V . The lattice Γ ⊂ V can be recovered as the integral homology group H1(A,Z) where
V = H0(A,Ω1

A)
∨. The inclusion

H1(A,Z) ↪→ H0(A,Ω1
A)

∨

is given by

γ 7→
(
ω 7→

∫
γ

ω

)
. (20)

Definition 8.5. A polarization is a non-degenerate skew-symmetric bilinear form

Q : Γ× Γ → Z

such that

1. the extension QR : V × V → R satisfies QR(iv, iw) = QR(v, w), and

2. the Hermitian form
H(v, w) = QR(iv, w) + iQR(v, w)

is positive definite.

The polarization is principal if Q is unimodular.

Remark 8.6. Condition (1) on QR gurantees that H is indeed Hermitian. Note that H(v, v) ∈ R
for a Hermitian form so it makes sense to ask for H to be positive definite.
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The bilinear form Q induces a homomorphism Γ → HomZ(Γ,Z) = Γ∨ which then induces a map

ϕ : A→ A∨ := V ∨/Γ∨.

In particular, Q is principal if and only if ϕ is an isomorphism. On the other hand, we can identify

Hom(Λ2H1(A,Z),Z) = H2(A,Z)

by Poincaré duality. Under this identification, Q corresponds to a divisor class θ well defined up
to numerical equivalence. The fact that H is positive definite corresponds to the property that θ is
ample. Finally, if L is a choice of ample line bundle with c1(L) = θ inducing the morphism ϕ, then
the degree deg ϕ is given by χ(L)2. In particular, ϕ is an isomorphism (i.e. Q is principal) if and
only if H0(A,L) = 1.3 This implies that for a principal polarization, the divisor class θ gives a well
defined divisor, also denoted by θ, up to translation by A.

Definition 8.7. A principally polarized abelian variety (ppav) is a pair (A, θ) of a complex torus
A equipped with a principal polarization θ.

Remark 8.8. Note that a complex torus A is projective, that is, A is an abelian variety, if and only
if it admits a polarization.

Let X be a smooth projective variety.

Definition 8.9. The Picard variety Pic0(X) is the space of line bundles on X algebraically equiv-
alent to OX . It is the connected component of the identity in the Picard scheme Pic(X).

In terms of linear algebra, Pic0(X) is given by V = H1(X,OX) and Γ = H1(X,Z) as can be
seen by taking cohomology of the exponential sequence4

0 → Z → OX → O∗
X → 0.

Given an ample line bundle L on X, we obtain a polarization on Jac(X) by

H1(X,Z)×H1(X,Z) → Z (γ1, γ2) 7→
∫
X

γ1 ∪ γ2 ∪ c1(L)dimX−1.

Note that this polarization is not necessarily principal.

Proposition 8.10. Let A be an abelian variety. Then the the picard variety Pic0(A) is isomorphic
to the dual abelian variety A∨.

Proof. Granted the existence of Pic0(A) and the claim that it is described by the lattice H1(A,Z),
then this boils down to the duality between H1(A,Z) and H1(A,Z).

The power of the above proposition is that we can use it to define many maps between A and
A∨. Indeed, for an element a ∈ A, let us denote the translation by

ta : A→ A ta(x) = x+ a.

Then given any divisor D on A, the difference t∗aD − D is algebraically equivalent to 0. Thus we
can define the map

φD : A→ A∨ φD(a) = OA(t
∗
aD −D) (21)

For a general X, the Picard variety is dual to the Albanese variety. Let V = H0(X,Ω1
X)

∨ and
Γ = H1(X,Z)/tors where the map Γ → V is as in Equation 20.

3Here we are using that Hi(A,L) = 0 for i > 0 by e.g. Kodaira Vanishing so χ(L) = H0(A,L).
4Note that H(X,Z) is always torsion free
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Definition 8.11. The Albanese variety of X is an abelian variety Alb(X) associated to the data
H1(X,Z)/tors ⊂ H0(X,Ω1

X)
∨.

Alb(X) is characterized by the following universal property. For any x0 ∈ X, there exists a map

AJx0 : X → Alb(X) x0 7→ 0

where 0 is the identity element. Moreover, AJx0 is universal for maps X → A with x0 7→ 0A.
We can see the duality between Pic0(X) and Alb(X) as follows. Given any map X → A, we

have a pullback Pic0(A) → Pic0(X), dualizing and using the fact that Pic0(A) = A∨, we obtain a
map Pic0(X)∨ → A. Unraveling the definitions shows that this is the map Alb(X) → A guaranteed
by the universal property.

The category of principally polarized abelian varieties (ppavs) is particularly well behaved. In
particular, it has unique decomposition into irreducibles.

Definition 8.12. A ppav (A, θ) is reducible if there exist nontrivial ppavs (A1, θ1) and (A2, θ2) such
that (A, θ) ∼= (A1 × A2, p

∗
1θ1 + p∗2θ2). A ppav is irreducible if it is not reducible.

It is clear from the linear algebraic point of view that the product (A1 × A2, p
∗
1θ1 + p∗2θ2) is

principally polarized. Indeed, a direct sum of unimodular lattices is unimodular. On the other
hand, the theta divisor of a ppav is unique up to translation, and thus any divisor in the numerical
class of p∗1θ1 + p∗2θ2 splits as a sum of pullbacks of theta divisors on A1 and A2 so the notion of
reducibility is well defined. Moreover, if (A, θ) is reducible, then θ is a reducible divisor.

Lemma 8.13. A ppav (A, θ) is irreducible if and only if the θ is irreducible. Moreover, each ppav
admits a unique decomposition into a product of irreducible ppavs.

Proof. We proved one direction above. On the other hand, suppose that θ = θ1+θ2+ . . .+θn. Each
component θi defines a degenerate pairing Qi : Γ×Γ → Z and thus a homomorphism φi : A→ A∨.
Equivalently, this is the homomorphism φθi as in Equation 21. Then the image of A∨

i = im(φi) is
an abelian subvariety of A∨ and its preimage Ai = φ−1(im(φi)) under the map φ : A→ A∨ induced
by θ. Then we take θi := θi|Ai

and check that

(A, θ) ∼= (A1, θ1)× . . .× (An, θn).

Uniqueness follows from the fact that H0(A,OA(θ)) = 1.

8.2 Jacobians of curves

Let C be a smooth projective curve of genus g. Then the intersection product induces a unimodular
pairing

H1(C)×H1(C) → Z

induces a principal polarization on Alb(C). Thus we have map

σ : Alb(C) → Pic0(C).
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Fixing a basepoint x0 ∈ C, then we have a commutative diagram

Alb(C)

σ

��

C

AJx0
;;

ϕ ##
Pic0(C)

where ϕ(x) = OC(x− x0).

Theorem 8.14 (Abel-Jacobi). The map σ is an isomorphism and the diagram commutes.

Since σ is indepdent of choice of line bundle, it gives a canonical identification between Alb(C)
and Pic0(C) for curves. We call this ppav the Jacobian Jac(C) and denote the theta divisor by θC .

There are also higher Abel-Jacobi maps

AJk
x0

: Symk(C) → Jac(C)
k∑

i=1

xi 7→ OC

(
k∑

i=1

xi − kx0

)
.

If we don’t twist down by kx0, we obtain an unnormalized Abel-Jacobi map

AJk : Symk(C) → Pick(C)
∑

xi 7→ OC

(∑
xi

)
to the component of Pic(C) of degree k line bundles.

Definition 8.15. Let W r
k ⊂ Pick(C) denote the subvariety

{L ∈ Pick(C) | h0(C,L) ≥ r + 1}.

The image of the unnormalized Abel-Jacobi map AJk is W 0
k . Since translating by kx0 is an iso-

morphism, we can identify W 0
k ⊂ Pick(C) with the image of the normalized Abel-Jacobi map AJk

x0

inside Jac(C).

Theorem 8.16. The homology class of the image of AJk
x0

is given by

[AJk
x0
(Symk(C))] =

θg−k

(g − k)!
∈ H2k(Jac(C),Z)

In particular, the class θg−k

(g−k)!
is the class of an algebraic subvariety. This motivates the following

definition.

Definition 8.17. Given a ppav (A, θ) with dimA = g, we define the minimal class

θg−k

(g − k)!
∈ H2k(A,Z).

It is not obvious, but true, that the minimal class is indeed an inegral class. While θg−k is always
algebraic, and in fact the class of a subvariety, the minimal class need not be.
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Definition 8.18. We say (A, θ) has level k if

θg−k

(g − k)!

is an effective algebraic class.

By Theorem 8.16, the minimal class of a Jacobian of a curve is effective algebraic for any k so
(Jac(C), θC) has level k for all k ≥ 1. Note that every ppav of dimension g has level g − 1 since θ
is the class of a divisor.

Definition 8.19. Let (A, θ) be a ppav, we denote by (A, θ)1 the product of irreducible components
of (A, θ) which are not level 1.

The significance of this definition is made clear by the following theorem of Matsusaka.

Theorem 8.20 (Matsusaka). Let (A, θ) be an irreducible ppav. Then (A, θ) is a Jacobian if and
only if it has level 1.

Thus (A, θ)1 is the product of components of (A, θ) which are not isomorphic to Jacobians.

Remark 8.21. Note that (Jac(C), θC) is irreducible since θC ∼= AJg−1(Symg−1(C)) is irreducible.

Theorem 8.22 (Riemann Singularity theorem). Let (Jac(C), θC) be the Jacobian of a curve C.
Under the isomorphism θC ∼= Wg−1, the singularities of θC are determined by the equality

mult[L]W
0
g−1 = H0(C,L).

In particular, the singular locus of θC can be identified with the Brill-Noether variety

W 1
g−1 = {L | h0(C,L) ≥ 2} ⊂ W 0

g−1 ⊂ Picg−1(C).

Using some Brill-Noether theory, one can compute the dimension of W 1
g−1 for any smooth curve

C.

Theorem 8.23. Let C be a smooth projective curve. Then the dimension of the singular locus of
θC is g − 4 if C is not hyperelliptic and g − 3 if C is hyperelliptic.

These results can be used to prove the Torelli theorem and form the basis of the Andreotti-Mayer
approach to the Schottky problem of distinguishing Jacobians among all ppavs. For us, the point
is that this gives us an easy criterion to check that an irreducible ppav is not a Jacobian, namely,
if the singular locus of θ is too small. Note that a generic ppav should have smooth theta divisor
which shows that a generic ppav is not a Jacobian for g ≥ 4.

8.3 The intermediate Jacobian

Let X be a smooth projective 3-fold with h3,0(X) = h1,0(X) = 0. Note in particular, rationally
connected X satisfy this by Proposition 5.3. Since our goal is to obstruct rationality of X, we may
as well assume that X is rationally connected.

By Hodge theory, H3(X,C) = H3(X,Z) ⊗Z C = H2,1 ⊕ H1,2 with H2,1 ∼= H1,2 the complex
conjugate. This implies that the composition

H3(X,Z)/tors → H3(X,C) → H1,2(X)

embeds H3(X,Z)/tors as a lattice Γ ⊂ V = H1,2(X).
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Definition 8.24. The intermediate Jacobian IJ(X) of a rationally connected threefold X is the
complex torus V/Γ where

V = H1,2(X) = H2(X,Ω1
X) Γ = H3(X,Z)/tors.

In fact we can equip IJ(X) with a polarization as follows. Let

Q : Γ× Γ → Z (γ1, γ2) 7→
∫
X

γ1 ∪ γ2

denote the intersection pairing on H3(X,Z). This is a unimodular pairing by Poincaré duality. To
produce a polarization, we need to modify this pairing a bit. We consider the pairing

H : V × V → C (α, β) 7→ 2i

∫
X

α ∧ β̄.

In general, the Hodge-Riemann bilinear relations guarantee that H is a positive definite Hermi-
tian pairing on the primitive cohomology

H3
prim(X) := ker

(
·c1(L) : H3(X,Z) → H5(X,Z)

)
where L is a fixed ample line bundle on X and c1(L) ∈ H1,1(X) is its first Chern class viewed as a
(1, 1)-form. Under the assumption that h1,0 = h2,3 = 05, the map

·c1(L) : H1,2(X) → H2,3(X) = 0

is the zero map. Thus all of H1,2(X) is primitive and H is positive definite. Moreover, the imaginary
part of H is the intersection pairing Q by definition. Since Q is unimodular, this equips IJ(X) with
a principal polarization θX .

Remark 8.25. The intermediate Jacobian can be defined more generally in higher dimension and
without any vanishing conditions using the Hodge filtration on odd dimensional cohomology. How-
ever, it generally will not admit a polarization.

In order to use the Hodge theoretic invariant (IJ(X), θX) to study the birational geometry of
X, we need to understand how H3(X) behaves under birational transformations. More generally,
we have the following.

Lemma 8.26. Let X be a smooth projective variety and Z ⊂ X a smooth closed subvariety of
codimension c. Let p : Y → X be the blowup of X along Z. Then there is an isomorphism

Hp(Y,Z) ∼= Hp(X,Z)
⊕ c−1∑

k=1

Hp−2k(Z,Z)

which is compatible with Hodge structures.

Proof. Let π : E → Z denote the exceptional divisor. For a blowup, E ∼= P(NZ/X) and thus comes
equipped with a relative OE(1). Let h = c1(OE(1)).

We can construct the map from the right to the left by constructing a map on each summand.
The map Hp(X,Z) → Hp(Y,Z) is simply pullback. For Hp−2k(Z,Z) → Hp(Y,Z) we consider the
composition

Hp−2k(Z,Z) π∗
// Hp−2k(E,Z) ·hk−1

// Hp−2(E,Z) j∗ // Hp(Y,Z)

5That h1,0 = h2,3 follows from Serre duality.
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where ·hl denotes intersecting with the relatively ample class l times and j : E ↪→ Y is the
inclusion. Each of these maps is a map of Hodge structures so we just need to show that the sum
is an isomorphism of vector spaces. Let U = X \ Z = Y \ E. Then we can consider the long
exact sequence of pairs for (X,U) and (Y, U) respectively. Then p is a map of pairs so pullback p∗

gives a map of long exact sequences of pairs. The key point now is that by excision and the Thom
isomorphism, Hk−1(X,U) = Hk−2c(Z) and Hk−1(Y, U) = Hk−2(E) for any k. On the other hand,
the cohomology of E is described by the projective bundle formula.

Lemma 8.27. Let E → Z be a projective bundle associated to a vector bundle V → Z of rank r.
Then pullback induces an isomorphism of graded rings

H∗(E,Z) ∼= H∗(Z,Z)[h]/(hr + c1h
r−1 + c2h

r−2 + . . .+ cr)

where ci = ci(V ) are the Chern classes of V .

Corollary 8.28. If dimX = 3 and Z = C is a smooth curve, then

H3(Y,Z) = H3(X,Z)⊕H1(C,Z).

In particular, Y → X is the blowup of a smooth threefold along a smooth curve, then

(IJ(Y ), θY ) ∼= (IJ(X), θX)× (Jac(C), θC)

Putting all this together, we have the first main theorem of [13].

Theorem 8.29 (Clemens-Griffiths Criterion). Let X be a smooth projective threefold. Suppose
X is rational. Then IJ(X) is isomorphic as a ppav to a product of Jacobians of curves. More
generally, if X and Y are birational smooth projective threefolds with h3,0 = h1,0 = 0, then there is
an isomorphism (IJ(X), θX)1 ∼= (IJ(Y ), θY )1 between the level ̸= 1 components of the intermediate
Jacobian.

Proof. Suppose Y 99K X is a birational map between threefolds with h3,0 = h1,0 = 0. Note that
this vanishing is a birational invariant by Proposition 2.5 so if one of X or Y satisfies it, so does
the other. Then we can resolve singularities of the map by blowing up Y along smooth centers to
obtain a diagram

W
f

  

b

~~
Y // X

where b is proper and birational and f is a composition of blowups at smooth centers. By Lemma
8.26 and Corollary 8.28, the blowup at points does not change the intermediate Jacobian while the
blowup along a curve introduces a Jacobian factor to the intermediate Jacobian. Thus,

(IJ(W ), θW ) ∼= (IJ(Y ), θY )×
∏
i

(Jac(Ci), θCi
)

where Ci are the sequence of curves that are blown up to produce b. Thus we have an isomorphism

(IJ(W ), θW )1 ∼= (IJ(Y ), θY )1.
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On the other hand, f is a proper and birational morphism so we have a well defined f∗ such
that f∗f

∗ = 1. Therefore, f ∗ embeds (IJ(X), θX)1 as a summand of (IJ(W ), θW )1 ∼= (IJ(Y ), θY )1.
Running the argument in reverse, i.e. picking a W ′ which is a blowup of X at smooth centers
and admits a proper birational morphism to Y , we also get that (IJ(Y ), θY )1 embeds as a direct
summand of (IJ(X), θX)1. By uniquness of the decomposition of a ppav into irreducible summands,
we must have that

(IJ(X), θX)1 ∼= (IJ(Y ), θY )1.

In the special case that X is rational, then Y = P3 which has no odd cohomology so (IJ(X), θX)1 ∼=
(IJ(Y ), θY )1 = 0 and IJ(X) is a product of Jacobians of curves.

8.4 The cubic threefold

Now we specialize the previous discussion to the case of the cubic threefold X3 ⊂ P4.
First let us determine the Hodge numbers of X. Since X is rationally connected, we know that

hi,0 = h0,i = 0 by Theorem 6.3 and Proposition 5.3. Serre duality tells us that hi,j = h3−i,3−j.
Finally, h3,3 = h0,0 = 1 and h1,1 = ρ(X) = 1 by the Lefschetz Hyperplane Theorem.

1
0 0

0 1 0
0 h2,1 h1,2 0

0 1 0
0 0

1

Lemma 8.30. Let X be a smooth cubic threefold. Then

h1,2 = h2,1 = h2(X,Ω1
X) = 5.

Proof. Note that by adjunction, ωX
∼= ωP4(3)|X = OX(−2). Consider the cotangent sequence

0 → OX(−3) → ΩP4|X → ΩX → 0

where OX(−3) = IX/I 2
X . By Serre duality and Kodaira vanishing,

h2(X,OX(−3)) = h1(X,OX(1)) = h1(X,ωX(3)) = 0

h3(X,OX(−3)) = h0(X,OX(1)).

Using the ideal sequence
0 → OP4(−3) → OP4 → OX → 0

we can compute h0(X,OX(1)) = h0(P4,OP4(1)) = 5. The Euler sequence gives us

0 → ΩP4|X → OX(−1)⊕5 → OX → 0.

Now hi(X,OX(−1)) = hi(X,ωX(1)) = 0 for all i > 0 by Kodaira vanishing. Moreover, hi(X,OX) =
0 for all i > 0 by Proposition 5.3. Thus,

hi(X,ΩP4|X) = 0

for i > 1. In particular,

h2(X,Ω1
X) = h3(X,OX(−3)) = h0(X,OX(1)) = 5.
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Corollary 8.31. The intermediate Jacobian (IJ(X), θX) of a smooth cubic threefold X3 ⊂ P4 is
ppav of dimension 5.

The goal now is to study the geometry of (IJ(X), θX) in order to show that it cannot be a
Jacobian of a genus 5 curve. Recall that to access the geometry of the Jacobian and its theta
divisor, we used the Abel-Jacobi maps AJk

x0
: Symk(C) → Jac(C). The analogue for the cubic

threefold comes from studying the Fano variety of lines. Recall that by Theorem 3.12, the Fano
variety of lines F (X, 1) on a cubic threefold is a smooth surface which we will denote by S.

8.4.1 The Fano surface of lines on a cubic threefold

In order to study the geometry of S, we can make use of the following geometric construction. First,
we define W as the incidence variety

W = {(x, L) | x ∈ L} ⊂ X ×Gr(1, 4).

Given two distinct points y, z ∈ X, we obtain a line Ly,z. If y, z are general, then Ly,z intersects X
in a unique third point x. In this way we get a rational map

t : Sym2(X) 99K W {y, z} 7→ (x, Ly,z).

Now Sym2(X) is singular but it can be resolved by a single blowup

Bl∆Sym
2(X) → Sym2(X)

where ∆ is the diagonal consisting of pairs {x, x}. In fact, a point of the blowup above {x, x}
corresponds to a tangent direction at x ∈ X. A tangent direction v ∈ PTX,x can be identified with
the length two subscheme Σ with

IΣ = {f ∈ OX | f(x) = 0, df(v) = 0} ⊂ OX

and conversely, every length two subscheme of X supported at x is of this form. Thus,

Bl∆Sym
2(X) ∼= Hilb2(X)

the Hilbert scheme of two points on X.
Any nonreduced length two subscheme determines a line L, namely, the line through x in the

direction of v. Thus rational map t extends to Hilb2(X) and is well defined at any length two
subscheme Σ as long as the linear span of Σ is not contained in X.

Let U ⊂ Hilb2(X) be the locus of Σ such that the linear span of Σ is not contained in X and
let V ⊂ W be the subset of pairs (x, L) such that L is not contained in X. Then t|U : U → V is
invertible. Indeed given any such (x, L), the residual intersection L ∩ X \ x will be a length two
subscheme in U . Putting this together, we get the following diagram.

U
∼= //

��

V

��
Hilb2(X) t //W

Y

OO

$$

Z

OO

~~
S

(22)
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Here Y and Z are the indeterminacy loci of t and t−1 respectively. Y is the locus of length two
subschemes whose linear span is contained in X and Y → S sends Σ to its linear span. Thus, the
fibers of Y → S are length two subschemes contained on a given line so Y → S is a Sym2(P1) = P2

bundle. On the other hand, Z is the locus of (x ∈ L ⊂ X) and Z → S forgets x. Thus Z → S is
the universal family of lines over S.

Remark 8.32. Diagram 22 is used by Galkin-Shinder [23] to compute many invariants of S. For
example, one can readily compute from this diagram that χtop(S) = 27 (this is closely related to
the 27 lines on a cubic surface) and that the Hodge diamond of S is given by

1
5 5

10 25 10.
5 5

1

Most important for us is the fact that h1,0(S) = h1,2(X) = 5.

Diagram 22 allows us to directly relate the geometry of S to the geometry of X. Clemens and
Griffiths also use a degeneration to access S. Namely, suppose that Xt is a family of cubic threefolds
degenerating to X0 a cubic with a single double point singularity x0 ∈ X0.

Lemma 8.33. X0 is rational.

Proof. Projecting from the double point x0 gives a birational map to P3.

It turns out that there is a 1-dimensional family of lines through x0 parametrized by a curve
D0 ⊂ S0 = F (X0, 1). Moreover, S0 is a non-normal surface with double locus D0 and whose
normalization is isomorphic to Sym2(D0). Using the specialization St → S0 as t → 0, Clemens-
Griffiths can analyze the topology of St (see [13, Sections 8 & 9]).

8.4.2 The Abel-Jacobi map

Next we define the Abel-Jacobi map. Let X be a rationally connected threefold and Z → W be any
algebraic family of curves on X over a smooth projective base W such that [Zu] = [Zv] ∈ H2(X,Z)
for all u, v ∈ W . Note this is always true if for example Z and W are irreducible and Z → W is
surjective.

Recall that the principal polarization on IJ(X) induces an isomorphism

IJ(X) =
H1,2(X)

H3(X,Z)/tors
∼=

H1,2(X)∨

H3(X,Z)/tors
.

compatible with Poincaré duality. Fixing a basepoint u0 ∈ W , for any u ∈ W we denote by σu a
choice of 3-chain with boundary [Zu]− [Zu0 ]. Note that σu is well defined up to a cycle in H3(X,Z).
Thus we obtain a well defined map

AJu0 : W → IJ(X) u 7→
(
ω 7→

∫
σu

ω

)
.

Remark 8.34. The point AJu0(u) depends only on the 1-cycles Zu and Zu0 and not on the family
Z → W . Another way to phrase this is that there is a group homomorphism

Φ : Z1(X)hom → IJ(X)
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from the group of 1-cycles Σ =
∑
aiCi such that the homology class [Σ] = 0. Then there exists a

3-chain σ with ∂σ = Σ and

Φ(Σ) =

(
ω 7→

∫
σ

ω

)
.

Thus for any algebraic family of curves Z → W , the Abel-Jacobi map satisfies that

AJu0(u) = Φ([Zu]− [Zu0 ]).

By universal property of Alb(W ), we obtain a factorization

W → Alb(W ) → IJ(X).

The corresponding map on lattices is given by

H1(W,Z) → H3(X,Z) γ 7→ σγ

where σγ is the 3-cycle obtained by considering the total space of the family of curves {Zu}u∈γ.
Lemma 8.35. Suppose that Zu ∼rat Zu0, then AJu0(u) = 0.

Proof. Rational equivalence means that there exists a family of curves Z ′ → P1 such that Z ′
0 = Zu0

and Z ′
∞ = Zu. On the other hand, Alb(P1) is a point so that induced Abel-Jacobi map AJ0 : P1 →

IJ(X) must be constant. Thus 0 = AJ0(∞) = AJu0(u).

Applying this construction to the universal family of lines Z → S over the Fano surface of lines
on X, we obtain a map

ϕ : Alb(S) → IJ(X)

On the other hand, Alb(S) is equipped with a canonical polarization depending only on a choice of
basepoint s0 ∈ S. Let

Ds = {u ∈ S | Zu ∩ Zs ̸=}.
Then we have a map S → Pic0(S) given by

s 7→ OS(Ds −Ds0).

This induces a factorization η : Alb(S) → Pic0(S). Finally, there is a natural map λ : IJ(X) →
Pic0(S) given by dualizing ϕ and identifying IJ(S) with its dual. By analyzing the geometry of S
using Diagram 22, one sees that ϕ is an isogeny (see Remark 8.32). In fact, much more is true.

Theorem 8.36. [13, Theorems 0.8 - 0.10] Let X be a smooth cubic threefold and S its Fano surface
of lines.

1. The diagram
Alb(S)

ϕ

%%
η

��

IJ(X)

λzz
Pic0(S)

commutes and every map is an isomorphism.

2. The map ψ : S → Alb(S) is generically injective and its image has cohomology class

[ψ(S)] =
θ3X
3!
.

3. The induced map Sym2(S) → Alb(S) is generically finite and its image is isomorphic to θX .
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8.4.3 Prym varieties and the Torelli theorem

There is another description of the intermediate Jacobian of a cubic threefold X ⊂ P4 using Prym
varieties.

Definition 8.37. Let π : C ′ → C be an étale double cover between smooth curves. The Prym
variety Prym(π) is the cokernel of the map

π∗ : Jac(C) → Jac(C ′).

Prym(π) is a principally polarized abelian variety (see e.g. [3]). We denote its theta divisor by θπ.
Let l ⊂ X be a line on a cubic threefold and let Y = BllX be the blowup of X along l. By

Corollary 8.28, IJ(X) ∼= IJ(Y ). The projection X 99K P2 away from l resolves to a conic bundle

µ : Y → P2

with discriminant C ⊂ P2 of degree 5. Over C we have a family

µ−1(C) → C

of reducible conics. Each fiber over C is a union of two lines and so the family of lines over C gives
a 2-to-1 cover

π : C ′ → C.

The following Theorem is attributed to Mumford (see [13, Appendix C]).

Theorem 8.38. The Prym variety (Prym(π), θπ) is isomorphic to (IJ(X), θX).

Proof sketch. Since X and Y have the same intermediate Jacobian, we may replace X with Y . By
definition, C ′ is the moduli space of lines in the fibers of µ−1(C) → C. Thus over C ′ there is a
universal family of lines {Zc′}c′∈C′ which induces an Abel-Jacobi map

C ′ → Jac(C ′) → IJ(X).

For x ∈ C, let lx, l
′
x be the two lines lying over x. Then for any two points x, y ∈ C,

AJ(π∗x− π∗y) = Φ(lx + l′x − ly − l′y) = Φ(µ∗x− µ∗y) = 0

since x and y are rationally equivalent on P2 so their pullbacks are rationally equivalent on Y .
Therefore, the map

Jac(C ′) → IJ(X)

factors through Jac(C ′)/π∗Jac(C) = Prym(π). With some work one can show this is an isomorphism
of ppavs.

By analyzing the geometry of this Prym variety Prym(π), Beauville was able to show the
following.

Theorem 8.39. [2] The theta divisor θX has a unique singular point z ∈ θx with projectivized
tangent cone isomorphic to X.

As corollaries, one obtains the final main theorems of [13], and in particular the irrationality of
a smooth cubic threefold.
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Theorem 8.40. [13, Theorems 0.11 & 0.12] Let X be a smooth cubic threefold.

(1) The intermediate Jacobian (IJ(X), θX) is irreducible and not the Jacobian of a curve. In par-
ticular, X is not rational.

(2) The Torelli Theorem holds for cubic threefolds. That is, X is determined by its intermediate
Jacobian (IJ(X), θX).

Proof. By Theorem 8.39, θX has a unique singular point and in particular must be irreducible.
Thus IJ(X) is an irreducible ppav by Lemma 8.13. Now the theta divisor θC of of a genus 5 curve
has singular locus of dimension at least 1 by Theorem 8.23. Thus, IJ(X) is not a Jacobian. We
conclude that X is not rational by Theorem 8.29. The Torelli Theorem follows from the fact that
the singularity of the theta divisor determines X (Theorem 8.39).
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[36] J. Lüroth. Beweis eines Satzes über rationale Curven. Math. Ann., 9(2):163–165, 1875.

[37] T. Matsusaka and D. Mumford. Two fundamental theorems on deformations of polarized
varieties. Amer. J. Math., 86:668–684, 1964.

[38] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2),
110(3):593–606, 1979.

[39] Johannes Nicaise and John Christian Ottem. A refinement of the motivic volume, and special-
ization of birational types, 2021.

[40] Johannes Nicaise and Evgeny Shinder. The motivic nearby fiber and degeneration of stable
rationality. Invent. Math., 217(2):377–413, 2019.

[41] Manuel Ojanguren. The Witt group and the problem of Lüroth. Dottorato di Ricerca in Matem-
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