Math 290: Birational geometry of algebraic varieties
\qquad
Class time: 11:00-12:15 EST
Office Hours $T B D$
Class Discussion: Discord server
Videos: will be available soon
Grades: Periodically assigned poets due 2 weeks later t final project

Goal: Classify algebraic varieties up to bicational equivaluce

$$
X \underset{\sim-i}{f} Y
$$ $u \xrightarrow{\text { flu }} V$

$V$$\quad$ Flu is an isomorplizen
$\xi 1:$ Background + basic tools
Blowups: $Z \not \subset X$ closed subvariety

$$
\begin{aligned}
& B l_{z} X=P_{\substack{j_{j} \\
x d \geqslant 0}}^{\oplus I_{z}^{d}} \quad I_{z}=\text { ideal sheet } \\
& E_{x}\left(\pi x_{1}\right)^{n} E \longrightarrow Z \\
& { }_{B 1 z}^{n} \times \xrightarrow{\pi} \times \\
& T_{\text {projective }} \text { + binational }
\end{aligned}
$$

Linear series: h a line burke on x

$$
\begin{aligned}
\phi \neq V & \subseteq H^{0}(x, L) \quad V=s_{p a n}\left(s_{0}, \ldots, s_{n}\right) \\
\varphi_{V} & : x \\
\cdots & \mapsto \mathbb{P}(V) \\
x & \longmapsto\left[V_{x}\right]=\{s \in V \mid s(x)=0\} \\
x & \longmapsto\left[s_{0}(x), \ldots, s_{n}(x)\right]
\end{aligned}
$$

D cartier divisor

$$
\varphi_{|D|}=\varphi_{H^{\circ}\left(x, \theta_{x}(D)\right)}
$$

$$
\begin{aligned}
B_{s}(v) & :=\left\{x \in X \mid \varphi_{V} \text { is mosfined }\right\} \\
& =\bigcap_{V} V(s)
\end{aligned}
$$

D aupte if $\varphi_{|m D|}$ is a closed embedding
D base-point free $\varphi_{|D|}$ is a morphism
(bpf)

D semi-auple if $\varphi_{|m, O|}$ is a arophism i.e. if $m D$ is bpf

Chow's Lemana: ary variety is bicational to a projective vority

Hironaka's theorem: x ay variety, then there exists a popper birational $f: x^{\prime} \rightarrow x$ whare X^{\prime} is nonsimutar.

New goal:
Classify smooth projective varieties
up to binational equivalence
Canonical divisor
X smooth Ω_{x}^{\prime} is locally free of rask $\operatorname{din} x$
$\omega_{x}=\Lambda^{\operatorname{dim} X} \Omega_{x}^{\prime} \quad$ is a line bundle
K_{x} is a cononical divisor if

$$
\partial_{x}\left(k_{x}\right)=w_{x}
$$

Ex $\quad \omega_{\mathbb{P}^{n}}=\delta_{\mathbb{P}^{n}}(-n-1)$
$-K_{\mathbb{P}^{n}}$ is ample Faro
§2: Overview of the minimal under program dim 1 (curves)
Fact every curve is binational to a Unique smooth projective curve!.

Classificication scheme (smooth maj)

genus $g=H^{\circ}\left(c, \omega_{c}\right)$	K_{c}	Ant (c)	$p_{r i} R\left(K_{c}\right)$	curate
$0 \mathbb{P}^{\prime}$	antianple	$P L_{2}$	ϕ	>0
1 (elliptic)	$=0$	$C \times$ finite	point	$=0$
$\geqslant 2\binom{$ higher }{ gens }	ample	finite	C	<0

Def Canonical ring of a smooth proj X

$$
R\left(k_{x}\right)=\bigoplus_{m \geqslant 0} H^{P}\left(x_{s} m k_{x}\right)
$$

Que stior of moduli:

$$
\begin{aligned}
& R\left(k_{x}\right) \cong R\left(k_{x^{\prime}}\right) \\
& \text { for } x_{c}=\cdots x^{\prime}
\end{aligned}
$$

smooth projective

$$
\begin{array}{cc}
\hline 0 & \mu+! \\
1 & \text { 1-din! } \\
9 \geqslant 2 & \begin{array}{c}
3 g-3 \operatorname{dim} \\
m o d u l i
\end{array}
\end{array}
$$

Proposed classification strategy

1) find a unique (or good) Smooth projective representative
2) classify the ge ometry of this representative using properties of k_{x}
3) construct mod li spaces that parametrize all representatives within each type in 2)
dim 2 (surfaces)
for $\operatorname{dim} \geqslant 2$, there are many smooth projective binational varieties

$$
\text { e.g. } \quad \mathrm{Bl}_{z} X \rightarrow X \quad z \in X \quad \text { a point }
$$

Undo the se blowups (blow down)
MMP sufaces

$$
x=x_{0} \rightarrow x_{1} \rightarrow x_{2} \cdots \rightarrow x_{m}^{r}
$$

\uparrow blowups
at appoint
$X_{m} \frac{\text { not }}{}$ of the blown $\left.\begin{array}{l}\text { a smooth projective } \\ \text { sw f ace }\end{array} x_{m}=\mathbb{P}^{2}\right)$ sur ace
(minimal surfaces)

Def 1 if x pejective, D cuttir Then D is nef if for any
cuve $C \leqslant x, \quad D_{i} C \geqslant 0$

$$
\begin{gathered}
\operatorname{deg}\left(f^{*} \theta_{x}^{(D))}\right. \\
f: C \rightarrow x
\end{gathered}
$$

In nuled case:

1) $H^{0}\left(d k_{x}\right)=0 \quad d>0$

$$
X_{m} \rightarrow c
$$

2) $\operatorname{Poj} R\left(K_{x}\right)=\phi$
3) Fibes of $x_{m} \rightarrow C$ are

$$
\mathbb{P}^{k^{2}}(-k \text {-auple) }
$$

(fond fibeation)
4) x_{m} is oot mitue

$$
\begin{aligned}
& \mathbb{P}_{c}(\varepsilon) \leftrightarrow P_{c}\left(\varepsilon^{\prime}\right) \\
& \text { fr ans } \varepsilon, \varepsilon^{\prime}
\end{aligned}
$$

$k_{x_{m}}$ hef case:

1) X_{m} is mique

Thu if $K_{x_{m}}$ is n, then if's Semi ample

$$
\varphi_{\mid d k_{x_{m}}}: X_{w_{m}} \longrightarrow Y=\operatorname{Proj} R\left(k_{x}\right)=\left\{\begin{array}{l}
2 \mathrm{dim} \\
1 \operatorname{dim} \\
0 \operatorname{dim}
\end{array}\right.
$$

Def Kodaira dimension of X

$$
\begin{aligned}
& \text { Kodaira dinersion at } \\
& K(x)=\operatorname{dim} P_{0 j} R\left(k_{x}\right)=\max \{\operatorname{dim}\left.\varphi_{\left|d k_{x}\right|}(x) \mid d>0\right\} \\
& \leqslant \operatorname{dim} X \\
& \text { denendon finite gereation } \quad \text { or }=-\infty
\end{aligned}
$$

$K=2: \quad X_{m}$ the minimal nobel \downarrow $X_{\text {con }}=Y=\operatorname{Poj} R\left(K_{x}\right) \quad$ canonical model $K_{X_{\text {con }}}$ is ample $X_{\text {cos }}$ is singular

$$
k=1: \quad X_{m} \rightarrow Y
$$

is a genus 1 fibration
elliptic surfaces K-trivial fibers
$k=0: \quad X_{m} \rightarrow Y=p t$
$d K_{X_{m}}$ is trivial for $d \gg 0$ k-trivial case

Def . of general type if $k(x)=\operatorname{dim} x$ X is $\quad k$-trivial if $d k \sim \sim_{Q} 0$ for some $d>0$

- Foo if $-k_{x}$ is ample

These 3 types of varieties form the building blocks for building binational eq classes
Thus (MMP for sufaces)
any saw th projective surface is biational to one of the following:
a minimal surface of gu real type
a k-trivial fibcation over a curve
X_{m} unique $k_{x_{m}}$ net
a k-trivial $k=0$ surface
a fans fibcation
over a curve
to construct maui, need boundedness
Expectation in higher dimensions

- for mump

Hopes/ conjecture
$K_{X_{m}}$ is nee

$$
x \xrightarrow{P_{1}} x_{1} \xrightarrow{P_{2}} x_{2} \xrightarrow{\rho_{3}} \rightarrow x_{3} \rightarrow x_{m}^{\beta^{\prime}}
$$

$$
X_{m} \xrightarrow{P_{z}} Z
$$ (mri fiber Spare)

$$
k(x)=-\infty \quad \operatorname{dim} z<\operatorname{din} x
$$

t in the $k_{x_{m}}$ net case

$$
\varphi_{\left|d k_{x_{m}}\right|}: x_{m} \rightarrow z=\operatorname{paj} R\left(k_{x}\right)
$$

φ is a k-trivial fibation

$$
0 \leqslant k(x)<\operatorname{dim} x
$$

φ is brational \& k_{z} is ample

$$
K(x)=\operatorname{din} x \quad \text { conmial mod }
$$

Key featmes:

1) the maps f are determined by geometry of rational curves on x Cone + Contraction the orem
2) minimal X_{m} not wique
but $Z=\operatorname{Poj} R\left(K_{x}\right)$
3) in the general type case, Z is birationd to x, want to construct modwi of finite s type indexed lo y numerical invariants of Z
4) in $k(x)<-\infty$, faro uvilties covered ba natl carves so expect this case to be the misruled case

Is sues + difficulties + etc
0) sirgworities

1) Existence + termination of flip
2) A bundance conjectwe : if $k X_{m}$ is nef then it is semiauple
(good minimul model)
3) finiteness of ninimal models?
4) Classify $\mathrm{Fav}+k$-trivial vaieties/fibations?
5) Important to ge resal ize to pairs

$$
(x, D)
$$

