Math 290: Birational geometry of algebraic Varieties
Class time: 11:00-12:15 EST
Office Hours: TBD
Class Discussion: Discord server
Videos: Will be available soon
Grades: Periodically accigned psets
due 2 weeks later
+ final project
Goal: Classify algebraic varieties up to birotional equivaluce
X = ? Y U = Slu U U = Slu V Flu is an isomorphism

$$\frac{S!: Backgrowd + basic tools}{Blowups: Z \neq X} closed subwariety}$$

$$\frac{Bl_2 X = Proj \oplus T_2^d \qquad T_2 = ideal shear$$

$$\frac{Bl_2 X = Proj \oplus T_2^d \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{X d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{20}} \qquad T_2 = ideal shear$$

$$\frac{Ec(D) + E \longrightarrow Z}{Y d^{$$

B₅(V) := {x \in X} 4, is modefined?
=
$$\bigwedge V(s)$$

s $\in V$
D ample if (P) is a closed
m770 (mD) Enbedding
D base -point free (P) is a norphism
(bpf)
D semi-ample if (P) is a norphism
i.e. if mD is bpf
Chow's Lemma: any variety is
birational to a projective variety
Him rule a's theorem: X any variety
Him rule a's theorem when X' is nonsingular.
New god:
Classify smooth projective varieties

sens $g = H^{\circ}(c, w_{c})$	Kc \	Áut(C)	Prij R(Kc)	antuctor
o P'	cation ple	PGL2	ø	70
(((iptic)	= 0	C × Finite	point	= 0
> 2 (higher)	ample	Finite	C	<0

2) classify the geometry of this representative using properties of kx

3) construct moduli spaces that parametrise all representatives within each type
dim 2 (surfaces)
for dim 72, there are many smooth projective birational varieties
e.g. $Bl_{2}X \rightarrow X$ ZEX a point
Undo the se blowyes (blow down)
MMP surfaces Kx is nef
$X = X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_m$
blowups at a point $P(\epsilon)$ $X_{m} \rightarrow C$ rules $P(\epsilon)$
$X_{un} \xrightarrow{not} the blownfof a smooth privetive (X_m = IP^2)swface$
(vininul surfaces)

Deflif X projective, D cartier Then D is net if for any curve CEX, D.C70 deg (5* 0, (D)) 守(->×

Thus if
$$K_{X_m}$$
 is nf , then it's
Se micromple
 $P_{|d|k_{X_m}}: X \longrightarrow Y = P_{noj} R(k_X) = \begin{cases} 2 d_n \\ 1 d_m \\ 0 d_m \end{cases}$
 $\frac{DeF}{kodaira} dimension of X$
 $k(x) = dim P_{noj} R(k_X) = max [dim P_{not}(X)] d^{20}$

depends on Sinite generation
$$\leq \dim X$$

or $= -\infty$

$$\frac{k=2}{\sum} \quad X_{n} + he minimal nodel$$

$$X_{can} = Y^{2} \quad Poj R(K_{X}) \quad canonical model$$

$$K_{X} \quad is \quad omple \quad X_{can} \quad is \quad singular$$

$$K_{X} \quad omple \quad X_{can} \quad is \quad singular$$

 $\frac{k=1}{M} \xrightarrow{\rightarrow} Y \qquad ip \quad a \quad genus \quad I$ Fibration Elliptic surfaces K-trivial fibers

0)	sirgworities
•)	Existence + termination of flip
2)	A bundance conjecture : if $K X_m$ is net then it is semi ample
	(good minimal model)
3)	finiteness of minimal models?
4)	Classify Fare + K-+rivial Varieties/fibertions?
5)	Important to ge renalize to pairs
	(×, D)