Def Y has terminal singularities
if K_{Y} is Q-cartier and
for any resolution $f: X \rightarrow Y$

$$
\begin{aligned}
& K_{x} \sim_{\mathbb{Q}} f^{*} K_{y}+\sum a_{i} E_{i} \quad a_{i}>0 \\
& E=E_{x}<(f)=U E_{i} \quad \begin{array}{l}
a_{i}=a\left(E_{i, ~} y\right) \\
\text { discrepancies }
\end{array}
\end{aligned}
$$

Example if Y is smooth, then Y
$x^{\prime \prime}$ has terminal singularities
$x^{\prime}{ }^{\prime \prime} x^{\prime} x^{\prime} \Rightarrow$ independent of choice of resolution
$k(y)=$ function field of Y
$E \subseteq X \xrightarrow{f} Y \quad f$ birational, $E \leq X$ divider

$$
o r \partial_{E}^{f}=N(E, x): k(x)=k(y) \text { is }
$$

$v(E, X) \Rightarrow a(E, Y) \quad$ a discrete valuation

$$
\begin{aligned}
\begin{array}{c}
\hat{b}+\rho \\
x
\end{array} & \text { point of } E, E^{\prime} \\
& \sim\left(E_{,}^{\prime} x^{\prime}\right)=\sim(E, x) \\
& \Rightarrow a(E, y)=a\left(E^{\prime}, y\right)
\end{aligned}
$$

E is a divisor c lying over Y up to equivalence coming from inducing the same valuation $N(E, x)$ center $(E)=$ closure of $f(E) \leq Y$

Lemma Y has terminal singudaitis if and only if \exists some $f: x \rightarrow Y$ resolution sit.

$$
F_{*} \theta_{x}\left(m k_{x}-E\right) \cong \theta_{p}\left(m k_{y}\right)
$$

m_{y} is Courtier \& $E=\sum E_{i}$ reduced exceptional

Proof

$$
m K_{X}=f_{m}^{*} K_{Y}+\sum m a_{i} E_{i}
$$

$$
\mathbb{Z} \geqslant m a_{i}>0
$$

$m a_{i} \geqslant 1$
effective

$$
m k_{x}-E=f_{m}^{*} k_{\varphi}+\widetilde{\sum\left(m a_{i}-1\right) E_{i}}
$$

maj $-1 \geqslant 0$, then proceed as before
Summum determined by $a(E, y)$ smooth \leq treminal \leq Canonical

Ex 1) terminal surfaces are smooth.
$f: X \rightarrow Y$ resolution, but Y is fer minal, di apl$=2$
$E=U E_{i} \quad\left(E_{i}, E_{j}\right)$ negative definite

$$
k_{x} \sim_{\mathbb{Q}} f^{*} k_{y}+\sum a_{i} E_{i} \quad a_{i}>0
$$

negative - definite \Rightarrow there exists E_{i}
soto $\left(\sum_{i} a_{i} E_{i}\right) . E_{j}<0$

$$
\begin{aligned}
& K_{x} \cdot E_{j}=\left(f^{*} \not K_{y}+\sum a_{i} E_{i}\right) \\
&<0 \\
& E_{j}^{2}<0 \quad E_{j}
\end{aligned}
$$

so ow resolution factors as

$$
x \stackrel{g}{\hat{\rho}} x^{\prime} \xrightarrow{f^{\prime}} r
$$

blowup of a point
\& $E_{j}=E_{x c}(9), X^{\prime}$ is smooth be castelnuo vo
2) $\quad C \leq \mathbb{P}^{2} \quad$ deyree n cunve

$$
X=\operatorname{cone}\left(c \leq \mathbb{P}^{2}\right) \leq \mathbb{A}^{3}
$$

$$
\begin{aligned}
& E^{2}=\operatorname{deg} N_{E / X}=\operatorname{deg}_{C} \theta(-1)=-n \\
& \left.\left(K_{\tilde{x}}+E\right)\right|_{E}=K_{E}=2 g-2=n(n-3) \\
& K_{\tilde{x}}=F^{*} K_{x}+a E \\
& K_{\bar{x}} \cdot E=n(n-3)+n=n(n-2) \\
& \left(f^{*} K_{x}+a E\right) \cdot E=-a_{n}^{\prime \prime} \\
& a=2-n
\end{aligned}
$$

$n=1 \quad$ Smuoth cone $\quad a=1$
quadric
$n=2 \quad$ cone $y^{2}-x z \quad a=0$
cononical singwarity
$n=3 \quad \log$ cononial $\quad a=-1$ $\frac{n \geq 4}{} \quad$ bad
3) $\quad S \subseteq \mathbb{P}^{3} \quad$ of degree n

$$
\begin{aligned}
& T_{0+} d(-1)=\underset{u}{\tilde{x}} \rightarrow x=\text { cone } \\
& E \cong S \\
& \text { log Liscreperry } \\
& K_{\tilde{x}}+E \equiv f^{*} K_{x}+\widetilde{(1+a) E} \\
& \left.\left(K_{X}+E\right)\right)_{E}=K_{S}=\mathcal{c}_{S}(n-4)=\left.\left(K_{p^{3}}+s\right)\right|_{S} \\
& \left.\left(f^{*} k_{x}+(1+a) E\right)\right|_{S}=\left.(1+a) E\right|_{E} \\
& =\theta_{s}(-1-a) \\
& 1+a=4-n \\
& a=3-n
\end{aligned}
$$

$n=2$ cone over quadric surface

$$
\begin{aligned}
\{x y-z w & =0\} \leq A^{4} \\
\text { but } a & =3-2=1
\end{aligned}
$$

singular but terminal

$$
n=3
$$

$a=0$
cone (cubic)
kNt sing
colonial sing ularities
$n=4 \quad$ log canonical sing $a=-1$
$n \geq$ bad $\quad\left(k l+\begin{array}{c}\text { singularities } \\ \text { are rational }\end{array}\right)$
log pairs

$$
(x, D)
$$

л
no coal
ir, q-p~j
Def 1$)(x, D)$ a \quad a \log pair if

$$
K_{x}+D \text { is } Q \text {-cartier. }
$$

2) D is a boundary if $0 \leq a_{i} \leq 1$
rand up $\lceil D\rceil=\sum\left\lceil a_{i}\right\rceil D_{i} \in$ Weir round down $L D\rfloor=\sum\left\lfloor a_{i} \perp D_{i}\right.$ divisors
D is reduced if $D=\lfloor D\rfloor$ $\& D$ is boudary
$K_{x}+D$ will be the muir forms generalizing K_{x} if $D=0$
log canonical
if $\underset{U}{x}$ is smooth

$$
\Omega^{\prime}(\log D)=\frac{d x_{1}}{x_{1}} \wedge \ldots d x_{n}
$$

$$
\begin{aligned}
& O_{x}\left(K_{x}+D\right)=\omega_{x}(D)^{=1} \Omega_{x} \\
& \text { the af of } \\
& \text { dimx-forms with } \\
& \text { lag poles dong } D
\end{aligned}
$$

$$
D=\left\{x_{1}=0\right\}
$$

Philosophy smooth but not poler $U \leq X \quad \begin{gathered}\text { smooth } \\ \text { compactification }\end{gathered}$ with $\quad D=x \backslash 4 \quad$ simple normal casings, then $\Omega_{x}^{\prime}(\log D)$ are invariants of U

Motivation for us

1) flexibility : a) egg. $K_{x}+D$ is \mathbb{Q}-cantier even if $K_{x n}$ not,
b) if $k_{x} \equiv 0$ but we can add some bowdwy $D \leq X$ ad now $\log m m p$ for $K_{x}+D$ car help understand x
c) adjunction $\left.\left(K_{x}+D\right)\right|_{D}=K_{D}$
 of pairs $(x, D)^{\log }$ in dim $_{\text {in }}$ nt to app in dim D
d) Canonical bundle formula far $k-+c i v i a l$ fibrafions
$\frac{(\log) \text { discrepencies }}{(x, D) \quad \text { log pair }}$
$f: Y \rightarrow X \quad \log$ resolution
$E=U E_{i}$

$$
\begin{aligned}
& \left(F_{*}^{-1} D \cup E_{\text {simple sorcmal }}(f)\right) \\
& \text { coss io as }
\end{aligned}
$$

$$
\begin{aligned}
& Y \backslash E \cong X \backslash F(E) \\
& \left.\left.f^{*} \theta_{X}\left(m\left(k_{X}+D\right)\right)\right|_{Y \backslash E} \cong O_{Y}\left(n\left(k_{Y}+f_{\pi}^{\prime} D\right)\right)\right|_{Y E}
\end{aligned}
$$

\exists mique $a\left(E_{i}, x, D\right) \in \mathbb{Q}$
s.t.

$$
\begin{aligned}
& m\left(k_{Y}+f_{*}^{-1} D\right) \sim f^{*}\left(m\left(k_{X}+D\right)\right)+\sum_{E_{i} \operatorname{exc}} a\left(E_{i} \times, D\right) E_{i} \\
& k_{Y}+f_{*}^{-1} D \sim_{\mathbb{Q}} f^{*}\left(K_{X}+D\right)+\sum_{E_{i} \operatorname{exc}} a\left(E_{i} \times D\right) E_{i}
\end{aligned}
$$

$a\left(E_{i}, x, D\right)$ is the discrepeny af
$P \leq X_{\text {excenting }}$ pripe divisor the exceptional E_{i}

$$
\begin{aligned}
& P \leq x_{\text {exceptipune }}^{\text {nivisur }} \\
& \text { not }
\end{aligned}(P, x, D)=-a_{i} \text { if } P=D_{i}
$$

$$
\begin{aligned}
& \text { or }{ }^{0 \quad \text { else }} \begin{array}{l}
K_{y} \sim f_{Q}^{*}\left(K_{x}+D\right)+\sum_{p: p r i m e} a(P, x, D) p
\end{array} A_{p(x, D)}^{A} a\left(E_{i}, x, D\right)
\end{aligned}
$$

$$
\log \text { discepence, }
$$

$$
\left(Y, F_{A}^{-1} D+E\right)
$$

$$
K_{y}+F_{*}^{\left(Y, F_{k}^{-1} D+E\right)} D+E \sim_{Q} F^{*}\left(K_{x}+D\right)+\sum_{E_{i}: \operatorname{exc}} b\left(E_{i 1}^{\times} D\right) E_{i}
$$ $E_{i}:$ exc

lasing numerical equivalence

$$
K_{\gamma} \equiv F^{*}\left(K_{x}+D\right)+A
$$

$A_{Y}(X, D)$ is uniquely by being the mique A sit.

$$
\delta_{*} A=-D \quad \text { (negativity lemma) }
$$

Exercises:

1) D^{\prime} effective \mathbb{Q} - Cartier divisor, for any Prime P lying over x, $a(P, x, D) \geqslant a(P, x, D+D)$ strict iff center $(P) \subseteq D^{\prime}$
2) x smooth, $z \leq x$ irreducible

$$
\begin{aligned}
& \mathrm{Bl}_{z} x \xrightarrow{P} x, \quad D=\sum a_{i} D_{i} \\
& \begin{array}{l}
U \prime \\
E
\end{array} \quad \begin{array}{l}
u \\
Z
\end{array} \quad a(E, x, D)= \\
& k-1-\sum a_{i} n u_{z} D_{i} \\
& k=\operatorname{codim}(z \subseteq x)
\end{aligned}
$$

3) $f: y \rightarrow X$ proper binational

$$
\begin{aligned}
& D_{Y}, D_{x} \quad \text { sot. } \\
& f_{*} D_{Y}=D_{x} \quad \ell \quad k_{Y}+D_{Y}=f^{*}\left(k_{x}+D_{X}\right)
\end{aligned}
$$

then for any prime P lying over X,

$$
a\left(P, Y, D_{y}\right)=a\left(P, X, D_{x}\right)
$$

