Kowa mat - Viehweg Vanishing
Thu (KVI)
$n=\operatorname{dim} x$
X smooth projective, L big + nv Cartier divisor

$$
\begin{aligned}
& H^{\prime}\left(x, g_{x}\left(K_{x}+L\right)\right)=0 \text { for } i>0 \\
& \text { 介 } \mathrm{SD} \\
& H^{i}\left(x, \theta_{x}(-L)\right)=0 \text { for } i<n
\end{aligned}
$$

Thu (KV II = log kodair a vanishing) let (x, Δ) suc + projective (kit)

$$
\Delta=\sum a_{i} D_{i} \quad 0 \leqslant a_{i}<1
$$

L cartier divisor

$$
L \equiv M+\Delta
$$

M ample \mathbb{Q}-Cartier \mathbb{Q}-divisor

$$
\begin{aligned}
H^{i}\left(x, \theta_{x}\left(K_{x}+\widetilde{\Delta}^{L}+M\right)\right. & =0 & \text { for } & i>0 \\
H^{i}\left(x, \theta_{x}(-L)\right) & =0 & \text { for } & i<n
\end{aligned}
$$

$R_{n k}$ in $k v \mathbb{I}$, if $a_{i} \leq 1$ ample

$$
\begin{aligned}
\Delta^{\prime}= & (1-\varepsilon)^{\operatorname{cosf}<1} M^{\prime}=M+\varepsilon \Delta \\
\Rightarrow \quad & H^{i}\left(x, \theta_{x}\left(K_{x}+M+\Delta\right)\right)=H^{i}\left(x_{1} \theta_{x}\left(k_{x}+M^{\prime}+\Delta^{\prime}\right)\right) \\
& =0
\end{aligned}
$$

Prop let (x, Δ) sic pair
w/ boundary
$\Delta,\lfloor\Delta\rfloor=0$, L cartier divisor with $L \equiv M+\Delta$, then there exists a finite flat $p: Z \rightarrow X$ set.

1) z
smooth $\Delta=\sum a_{i} D_{i}$
2) $M_{z}=p^{*} M$ cartier
3) $H^{i}\left(x, \theta_{x}(-L)\right) \leq \mathcal{S u}_{\text {mai }} \delta\left(Z, \theta_{z}^{i}\left(-M_{z}\right)\right)$

Thm $(k V$ III $=\log k V I)$
let (x, Δ) projective sic pair with $0 \leq a_{i}<1$, L cartier divisor with $L \equiv M+\Delta$ for M big + net \mathbb{Q}-divisor Then $\quad H^{i}\left(x, \theta_{x}\left(k_{x}+L\right)\right)=0$ for $i>0$

$$
\int_{H^{i}\left(x, \theta_{x}(-L)\right)=0 \quad \text { for } i<n}^{k_{x}+x^{2}}
$$

Thu (kV IV)
let (x, Δ) projective $k l t$ pair L cartier divisor, $L \equiv M+\Delta$ where M is a big +net Q-cartier Q-divisor
Then $H^{i}\left(x, \theta_{x}\left(K_{x}+L\right)\right)=0$ for $i>0$

$$
H^{i}\left(x, \theta_{x}(-\mu)=0 \quad \text { for } i<n\right.
$$

Outline

$$
\begin{aligned}
& \text { Kodaira } \stackrel{\text { Pop }}{\Longrightarrow} \mathrm{KV} \text { II } \stackrel{\text { log resolution }}{\Longrightarrow} \mathrm{KVI} \\
& \begin{array}{l}
\text { Grauast-Riemerdheridor } \\
\text { Vouishing }
\end{array} \\
& \mathrm{KVI} \xrightarrow{\text { Pope }} \mathrm{KV} \text { III } \xrightarrow[\substack{\text { granger } \\
G R}]{\substack{\text { Vogrishing } \\
\text { resolution }}} \mathrm{CV} \text { II }
\end{aligned}
$$

Proof of proposition

$$
\begin{array}{ll}
\Delta=\sum_{i=1}^{r} a_{i} D_{i} & a_{1}=\frac{b}{m} \quad 0 \leq b \leq m-1 \\
\frac{b}{m} D_{1} &
\end{array}
$$

Step $1 \quad \exists \quad F: x^{\prime} \rightarrow x \quad$ finite flat sot. $\quad 1) F^{*} D_{1}=m D$
2) x^{\prime} smooth \& $f^{\star} \Delta$ is snc

$$
\begin{aligned}
& \text { if } D_{1} \text { very ample }
\end{aligned}
$$

2) by Kleiman- martini $\quad f^{*} D_{1}=m D$
for arbitrary D_{1},
write $D_{1}=H-H^{\prime} \quad H, H^{\prime}$ very ample
Step $2 \quad f^{*} \frac{b}{m} D_{1}=b D$

$$
H^{i}\left(x, \theta_{x}(-L)\right) \underset{\text { summed }}{\subseteq} H^{i}\left(x^{\prime}, \theta_{x^{\prime}}\left(-f^{*} L\right)\right)
$$

splits
finite debra ext in thar 0

$$
F_{x} \theta_{x^{\prime}}=\theta_{x} \oplus B
$$

For my \mathcal{F} on x
f finite

$$
\begin{gathered}
f_{*} f^{*} \mathcal{F}=\mathcal{F} \oplus P \otimes \mathcal{F} \\
\left.H^{i}(x, F) \leqslant H_{\text {summand }} \leq f_{*}^{i} f^{*} \mathcal{F}\right)^{=}=H^{i}\left(x^{\prime}, f^{*} F\right)
\end{gathered}
$$

Step 3 Use cyclic covering to Subtract bD
$F^{*} D, E|m D|$ mo ∂ cyclic cover

$$
\begin{aligned}
g: x^{\prime \prime} & =x_{m,}^{\prime} f^{*} D_{1} \rightarrow x^{\prime} \\
g_{*} \theta_{x^{\prime \prime}} & =\bigoplus_{i=0}^{m-1} \theta_{x^{\prime}}(-i D)
\end{aligned}
$$

+ Projection formula

$$
H^{i}\left(x^{\prime \prime}, g^{*} \theta_{x^{\prime}}\left(b D-f^{*} L\right)\right)=\bigoplus_{i=0}^{m-1} H^{i}\left(x^{\prime} \theta_{x^{\prime}}^{\left.(b-i) D-f^{*} L\right)}\right.
$$

be cause $0 \leq b \leq m-1 \Rightarrow H^{\frac{u}{i}}\left(x^{\prime}, \partial_{x}\left(-f^{*} L\right)\right)$
Ul summind

$$
H^{i}\left(x, \theta_{x}(-L)\right)
$$

$$
\begin{aligned}
& f \cdot g: X^{\prime \prime} \rightarrow x \\
& g^{*}\left(f^{*} L-b D\right)=g^{*} f^{*} M+\sum_{i>1} a_{i} \cdot g^{*} f^{*} D_{i} \\
& L \equiv M+\Delta
\end{aligned}
$$

so or $\quad x^{\prime \prime}, \Delta^{\prime \prime}=\sum_{i=2}^{r} a_{i} g^{*} f^{*} D_{i} \quad$ snc

$$
L^{\prime \prime}=g^{*}\left(f^{x} L-b D\right)
$$

by induction $\Rightarrow b: z \rightarrow x^{\prime \prime}$
s.t. $H^{i}\left(x, \partial_{x}(-L) \in H^{i}\left(x^{\prime \prime}, \theta_{x}\left(-L^{\prime \prime}\right)\right)\right.$
$\underset{\text { Summad }}{\leq} H^{i}\left(Z, \partial_{Z}\left(-h^{*} g^{*} f^{x} M\right)\right.$

$$
P=f \cdot g \cdot h: z \rightarrow x
$$

Proof of kV

KV II: $\quad(x, s)$ as before

$$
L \equiv M+\Delta \quad M \text { ample }
$$

by $p \rightarrow p, \quad p: Z \rightarrow X$ with

$$
H^{i}\left(x, \theta_{x}(\mu)\right) \leq H^{i}\left(z, \theta_{z}\left(-p^{*} M l\right)\right.
$$

ρ finite $\Rightarrow \quad p^{*} M$ ample

$$
\Rightarrow 1^{i}\left(z, \theta_{z}\left(-p^{*} M\right)\right)=0 \quad i<n
$$

$b_{y} \quad k_{0} \partial a i r a$
KV X smooth poos L bigrbif Cartier
Ex L big tref $\Leftrightarrow \exists$ effective N st. $L-\frac{1}{k} N=A_{k}$ ample for all $k \rightarrow 0$
take \log resolution of (x, N)

$$
\mu: y \rightarrow x \quad E x(\mu)=\sum E_{i}
$$

$$
\begin{aligned}
& L \sim_{\mathbb{Q}} A+\frac{1}{k} N \\
& \mu^{*} L \sim_{Q} \mu^{*} A+\frac{1}{k} \mu_{*}^{-1} N+\frac{1}{k} \sum \propto E_{i}
\end{aligned}
$$

Pick $k \gg 0$ sit. $\frac{a_{i}}{k}<1$ for all
Negativity Leman
$\mu^{*} A-\sum b_{i} E_{i}$ is ample for

$$
\mu^{*} L \sim_{\mathbb{Q}}(\underbrace{\mu^{*} A-\sum b_{i} E_{i}}_{A_{Y}})+\underbrace{\sum_{k}\left(\frac{a_{i}}{k}-b_{i}\right) E_{i}{ }^{1} N+}_{\Delta_{Y}})
$$

Now by KV II

$$
H^{i}\left(Y, \omega_{Y} \otimes \mu^{*} \theta_{X}(L)\right)=0 \quad \text { for } \quad i>0
$$

Lemma $M^{\prime}: Y \rightarrow X$ morphison between projective ubieties. TFAE

1) $H^{j}\left(y, \mathcal{F} \otimes_{\mu}^{*} \theta_{x}(H)\right)=0$
for H sufficiently ample

$$
\text { 2) } R^{j} \mu_{*} F=0
$$

PE Leray ss + projection formula

$$
H^{a}\left(x, R^{b} \mu_{\lambda} F \otimes \theta_{x}(H)\right) \Rightarrow H^{a+b}\left(Y, F\left(\mu^{*} H\right)\right)
$$

for H sufficiently ample
$=0$ for all $a>0$ by serge
\Longrightarrow Leroy degenerates to.

$$
H^{\circ}\left(x, R^{j} \mu_{*} \mathcal{F} \otimes \theta_{x}(H)\right)=H^{j}\left(Y, F\left(n^{*} H\right)\right)
$$

so $R H S=0 \Leftrightarrow R_{\mu_{*}}^{j} F=0$

$$
\text { for } H
$$

$$
\begin{aligned}
& \text { sufficiently } \\
& \text { ample }
\end{aligned}
$$ ample

Wont

$$
\begin{aligned}
& H^{j}\left(x, \omega_{x} \otimes \partial_{x}(l)\right) \\
& H^{j}\left(y, \omega_{Y} \otimes \mu^{*} \partial_{x}(L)\right)=0
\end{aligned}
$$

Know
add H to L for $r>0$
as havre ${ }^{H}$ ample

$$
H^{j}\left(Y, \omega_{y} \otimes \mu^{*} V_{x}(L+r H)\right)=0
$$

$$
\begin{aligned}
& \mu^{*} L=A_{Y}+\Delta_{Y} \\
& \mu^{*}(L+r H)=\underbrace{A_{Y}+r \mu^{*} H}_{\text {ample }}+\Delta_{Y}
\end{aligned}
$$

but $L+r H$ for $r>0$ is sufficiently ample on x

$$
\underset{\text { Lemme }}{\Rightarrow} \quad \begin{aligned}
& R_{j}^{j} \mu_{x} \omega_{Y}=0 \quad(G R \text { varishims) } \\
& \Rightarrow
\end{aligned}
$$

$\mu_{*} \omega_{Y}=\omega_{X} \quad X$ is smooth so ir parsi war

$$
H^{i}\left(X, R_{\mu_{*}}^{j} \omega_{y} \otimes v_{x}^{v}(L)\right) \Rightarrow H^{i+j}\left(Y_{1} \omega_{Y} \otimes \partial_{y}\left(\mu^{x} L\right)\right)
$$

ss degenerates to

$$
H^{i}\left(X, \mu_{*} \omega_{y}^{1 /} \otimes v_{x}(L)\right)=H^{i}\left(Y, \omega_{y} \otimes d \delta_{1}\left(y^{r}\right)\right)
$$

$\xrightarrow{\text { KV III }}(x, \Delta) \quad \sin c, \quad \underset{L \Delta J=0}{\Delta b_{i n d}}$

$$
L \equiv M+\Delta \quad M \quad \text { big }+n e f
$$

by prop $p: Z \rightarrow X$ flat finite

$$
\begin{aligned}
& H^{i}\left(x, \theta_{x}(-L)\right) \leq H^{z} \quad \text { smooth }\left(z, \theta_{z}\left(-p^{*}, M\right)\right) \\
& \left.\begin{array}{r}
\text { Sumac } \\
\\
0
\end{array} \right\rvert\, \begin{array}{l}
\text { for bigtnef } \\
0
\end{array}
\end{aligned}
$$

