$$\frac{K \text{ own mater-Vieleweg vanishing}}{Thum} (K \vee III) X is smooth projective
uith sinc $\Delta = \Sigma \alpha_i D_i$, $O \leq \alpha_i < 1$
L tentier divisor site
 $L \equiv M + \Delta$ where M is a
big thef D -cartier
 $Q - divisor$
Then $H^i(X, O_X(-L)) = O$ for ic dim X
Thum (KV III') let X be a smooth
Proj variety $R \Delta = \Sigma d_i D_i$,
 $D := L + \Delta$ L contier
D big thef $[\Delta T - \Delta$ has sinc
support
Then $H^i(X, O_X(K_X + \Gamma D T)) = O$
 $\Delta = \Gamma \Delta - \Delta$ $\Gamma D T = D + \Delta$ is this is
 $L \Delta = O$ D big ther (X, A) R DD$$

Cor (Beneralized Gravert - Rieman schneider
Vanishing)

$$F: Y \rightarrow X$$
 is a birational morphism
between projective varieties F suppose
 (Y, Δ) is Snc , $[\Delta] = 0$, Λ effective
 $L = M + \Delta$ where M is a nef
 $Q_{-diviser}$
Then $R^{i}S_{*} \partial_{Y}(K_{Y} + L) = 0$ for $i > 0$
Proof fix H a make on X
 $Cur lemma from last time told us that
 $R^{i}S_{*} \partial_{Y}(K_{Y} + L) = 0$
 $H^{i}(Y, \partial_{Y}(K_{Y} + L) = 0$
 $fr all r > 0$
 $H^{i}(Y, \partial_{Y}(K_{Y} + L) = 0$
 $fr all r > 0$
 $From K = M + S^{*}rH + \Delta$
 $high wef$
 $Firshak from kv = m$
 $Firshak from kv = m$
 $Firshak from kv = m$$

Rent Cas extend this and relative key uniting
to the case where
$$f$$
 is projective
by compactifying
Thum (kV III) let (K) B) be a projective
A)t poir , L be a (Qr) Contier divider
s.t. L= M+B with M a big + mp
Q-contive
Q-divider
Then
Hⁱ(K, $\partial_x(K_x+L))=0$ for ind
PF let $5: Y \rightarrow x$ be a log resolution
Ky + $5_x^{-1}\Delta + 5^xM = 5^x(K_x+\Delta) + \sum_{\alpha_i} E_i + 5^xM$
 $a_i > -1$
 $C_Y = \sum i E_i \qquad [E_Y] > 0$
 $K_y + 5_x^{-1}\Delta + c_y + 5^xM = conc
gifteening $5^x(K_x+\Delta) + F^xM + (E_y)$
Simple wormand closing s
 $L(y) = 0$$

(or (relative KV) f: (X, D) -> 2 morphism of projective varieties with (x,s) belt D offective, L a Q-Carties divisor with $L \equiv M + \Delta$ where M is F-big + F-nef Then $R^{i} = \mathcal{O}_{X}(K_{X}+L) = 0$ for iso proof exercite Ex (fuilwe of KV vanishing when LAJ = 0) $\frac{1}{2} = \frac{1}{2} \frac{$ (X,E) cone ouer on elliptic curve 5 p2 log anonical suc pair big + NRF $\mathsf{M}=\mathsf{F}_*\mathsf{H}$ $\Delta = E$ L= M+E 4 KV $\mathcal{O} \rightarrow \mathcal{O}(M) \rightarrow \mathcal{O}(L) \rightarrow \mathcal{O}(L)_{E}^{(1)}$ 0= +1'(0x(M)) = H'(0x(W) - H'(0= (LIE)) H2 (0, (H))=)

$$\begin{split} \Box_{E} &= (S^{X} + E) \bigg|_{E} = degree -3 \\ \implies H'(O_{E}(\Box_{E})) \neq O! \bigg| \\ The issue is that M fails to be big on the Woo -kelt center! (i.e. centers) \\ Thus (log cononical KY) \\ Si(X, b) = 72 projective marphism w/ X \\ someoth, b she boyadary, let L write L = M + b st. i) M S-mef + S-big \\ 2) M restricted to each Component of Nkl+(X,b) is S-big Then Ri F_{X} O_{X}(K_{X}+L) = 0 for i70. Proof: Induct on dimension: if n=dimX = 1 then theorems true Suppose n>1 Lb] = \sum_{i=1}^{r} D_{i}$$
 we will induct or r

$p \in La$	
$O \rightarrow O((K_{+}+L-P_{1}) \rightarrow O((K_{+}+L) \rightarrow O)((K_{+}+L))$	D) -90
$L-D_{i} = M + ZaiD_{i}$ $(K_{x}+D_{i}+L-D_{i})$	ID,
$p_{i}^{i}f_{*} \stackrel{\circ}{\times} (k_{x}+L-p_{i}) = 0 (see 11)$ $k_{p_{i}} \stackrel{\circ}{\times} (k_{x}+L-p_{i}) = 0 (see 11)$ $k_{p_{i}} \stackrel{\circ}{\times} (k_{x}+L-p_{i}) = 0 (see 11)$ $k_{p_{i}} \stackrel{\circ}{\times} (k_{x}+L-p_{i}) = 0 (see 11)$,)(P()(
by induction on N, P,	s moth
$R'_{F_{*}O_{D_{1}}}(K_{D_{1}} + (1-D_{1}))) = 0$ iso	
$(L-q) _{D_1} = M _{D_1} + \sum_{i=2}^{n} a_i D_i _{D_1}$	
5-big + f-nef by assumption	
$\implies R^{i}F_{*}O_{*}(K_{*}+L)=0$ for in the form is the	

theorems (Mori, Kawamata, Reid, (one Shokwov, Kell 65 80'1-90') Thm (Basepoint free theorem) let (X, S) be a projective but pair with A spective. D is a net Cartier divisor s.t. $aD - (K_x + \delta)$ is big +nef for M some a 70 Then D is semi-ample 1601 is bof for 670 if $k_x + \Delta + M$ is nef $\implies k_x + \delta + M$ is + M is big + nef semi-ample Thm (Non-Vonishing theorem) let X projective, Danef Grier Livisor, G a Q -divisor 1) a D - (kx - G) is a big thef D consider this Q contier div for some and 2) $(X_{1} - G)$ is klt

Then
$$H^{\circ}(X, O_{\chi}(mD + \Gamma GT)) \neq O$$

Sor all $M > TO$

Rationality theorem
Redicality theorem
Red (x, d) pojective half, d affective
Fix
$$M > 0$$
 s.t. $m(k_x + d)$ is cartier
Suppose $k_x + d$ hot hef
Fix H a big + nef $Q - cartier$
 $G - divisor$
 $r = r(H)^2 = Sup \{ + t | R \} + t(k_x + d)$
is nef f
then $r = \frac{u}{V} \in Q$ s.t.
 $o \leq v \leq m(din X + l)$
Thus (Cone + (on + raction))
Ret (x, d) pojective Relt, D>0
I) there exist countably many
C; pational $2ut - 0$
 $0 < -(k_x + d) \cdot C_1 \leq 2din X$
 $Q = NE(X) = NE(X)(k_x + d)_{HO} + ERE(X)$

2) for on anple H 270 $\overline{NE}(X) = \overline{NE}(X) + \overline{ZR_{a}^{[i]}}$ (K,+A+2H), finite 3) FSNE(X) extremal face which in (Kx+D) <0 then \exists ? projective $\Psi_F: Cont_F: X \rightarrow 2$ $\Rightarrow t \rightarrow 1$ $:) \quad \forall f \neq \partial_x = \partial_z$ $ii) \varphi_{F}(c) = P \in [c] \in F$ ony Cartier 2 s.t. 4) for L. C=O for all [C]EF there exists cartier LZ s_{+} $\varphi_{F}^{*}L_{Z} = L$