K aw a mata-Viehweg vanishing
Thu (KV III) X is smooth projective with such $\Delta=\sum a_{i} D_{i}, 0 \leq a_{i}<1$ L cantier divisor sit.

$$
L \equiv M+\Delta
$$

where M is a big the f Q-cartier

Q -divisor
Then $H^{i}\left(x, \theta_{x}\left(K_{x}+L\right)\right)=0$ for $i>0$
π

$$
H^{i}\left(x, \theta_{x}(-L)\right)=0 \quad \text { for } \quad i<\operatorname{dim} x
$$

Thu $(k V$ III') let x be a smooth proj variety \& $\Delta=\sum d_{i} D_{i}$,
$D:=L+\Delta \quad L \quad c$ artier
D big the
$\left\lceil\Delta T-\Delta \quad \begin{array}{c}\text { has such } \\ \text { support }\end{array}\right.$
Then $H^{i}\left(x, \theta_{x}\left(K_{x}+\lceil D\rceil\right)\right)=0$

$$
\begin{aligned}
& \Delta=[\Delta]-\Delta \quad\lceil D\rceil=D+\Delta^{\prime} \quad \text { so this is } \\
& \left\lfloor\Delta^{\prime}\right\rfloor=0 \\
& D \text { big + her }
\end{aligned}
$$

Cor (generalized Gruuert-Riemenschneider Vanishing)
$F: Y \rightarrow X$ is a biratiocal more p his between projective varieties f suppose (Y, Δ) is sic, $\lfloor\Delta I=0, \Delta$ effective L is a contier divisor

$$
L \equiv M+\Delta \quad \text { where } M \text { is anef } \begin{aligned}
& \text { Q-diviser }
\end{aligned}
$$

Then $\quad R^{i} f_{*} \theta_{Y}\left(K_{Y}+L\right)=0$ for $i>0$
Proof fix H a maple or X our lemma from last time told us that

$$
\begin{aligned}
& R^{i} f_{*} \theta_{Y}\left(K_{Y}+L\right)=0 \\
& H^{i}\left(Y, \delta_{Y}\left(K_{Y}+L\right) \otimes f^{*} \partial_{x}(\sigma H)\right)=0 \\
& \text { for all } r>0 \\
& L+f^{*} r H \cong M+F^{*} r H+\Delta
\end{aligned}
$$

follows from KV III
Ruck Often applied to say that $R^{i} f_{*} \omega_{Y}=0, i>0$, for $f: Y \rightarrow X_{\text {with }}^{X_{Y} \text { birationed }}$

Rok Car extend this or relative key vanishing to the case where f is projective by comp actifying

Thu (kV IV) let (x, s) be a pojective lt pair, L be a (a-)cartier divisor s.t. $L \equiv M+\Delta$ with M or big $+n f$ Q-Cartier Q -divisor
Then

$$
H^{\prime}\left(x, \theta_{x}\left(K_{x}+L\right)\right)=0 \quad \text { for } \quad i>0
$$

Pf let $f: Y \rightarrow X$ be a \log resolution

$$
\begin{gathered}
K_{y}+f_{*}^{-1} \Delta+f^{x} M=f^{*}\left(K_{x}+\Delta\right)+\overbrace{\sum_{\left.a_{i}\right\rangle-1}^{E_{i}} E_{i}}^{E_{i}}+f^{*} M \\
C_{y}=\sum_{i} c_{i} E_{i} \quad \quad\left|E_{y}\right\rangle \geqslant 0
\end{gathered}
$$

$$
K_{y}+f_{*}^{-1} \Delta+C_{y}+f^{*} M=
$$

effective $F^{*}\left(k_{x}+\Delta\right)+f^{*} M+\left[E_{y}\right\rangle$
simple nor mat crossings

$$
\left\langle C_{Y}\right|=0
$$

$F^{*} M \quad$ is big +nef, $\quad \Delta_{y}=f_{*}^{-1} \Delta+C_{y}$
Now $\left(Y, \Delta_{y}\right)$ is on snc pair with Δ_{y} effective $\left\lfloor\Delta_{\varphi}\right\rfloor=0$

$$
\Rightarrow H^{i}\left(Y, \theta_{y}\left(K_{Y}+\Delta_{y}+f^{*} M\right)\right)=H^{i}\left(Y, F^{*} \theta_{x}\left(K_{x}+\Delta+m\right)([F F)),\right.
$$

$i>0$ 11 by kVIII

$$
\begin{aligned}
& f_{*}\left(F^{*} \theta_{x}\left(K_{x}+\Delta+m\right)\left(\Gamma_{E_{y}}\right)\right)={ }^{\sim} \text { aryument } \\
& f_{*} F^{*} O_{x}\left(K_{x}+\Delta+M\right) \\
& =\theta_{x}\left(K_{x}+\Delta+M\right) \\
& \text { projection formalu }+f_{*} \theta_{r}=\theta_{x}
\end{aligned}
$$

By GR varishing, $\left.R^{j} F_{*} \partial_{Y}\left(f^{+}\left(k_{x}+\Delta+M\right)+F_{Y}\right)\right)$

$$
\begin{aligned}
& =R^{j} f_{*} \theta_{Y}\left(K_{Y}+\Delta_{Y}+f^{*} M\right) \\
& =0
\end{aligned}
$$

Leray

$$
\begin{array}{r}
H^{i}\left(x, \theta_{x}\left(K_{x}+\Delta+M\right)\right)=H^{i}\left(y, f^{*} \theta_{x}\left(K_{+}+M+\Delta\right)\left(F_{x}\right)\right) \\
=0
\end{array}
$$

Cor (relative KV) $f:(x, \Delta) \rightarrow 2$ morphism of priective varieties with (x, Δ) blt Δ effective, L a Q-cartier diviore with $L \equiv M+\Delta \quad$ where

$$
M \text { is f-big }+f \text {-nef }
$$

Then $R^{i} f_{*} \partial_{x}\left(K_{x}+L\right)=0$ for $i>0$ Proof evercise

Ex (fuilure of $K V$ vaishing when $L \Delta\rfloor \neq 0$)

$$
\begin{aligned}
& =\text { Totul spave }=x \\
& =\text { of } d_{p p}^{\text {(}-1)\left.\right|_{E}}=x
\end{aligned}
$$

cone ouer

$$
(X, E)
$$

$$
\begin{aligned}
& \text { on elliptic arve } \leq \mathbb{P}^{2} \\
& M=F^{*} H \quad \text { big }+n \in f \\
& L=M+E \quad \Delta=E \\
& 0 \rightarrow \theta_{x}(M) \rightarrow \theta_{x}(L) \rightarrow \theta_{E}\left(\left.L\right|_{E}\right) \rightarrow 0 \\
& 0=H^{\prime}\left(\theta_{x}(\mu)\right) \rightarrow H^{\prime}\left(\theta _ { x } (L) \rightarrow H ^ { \prime } \left(\theta_{E}\left(L L_{E}\right) \rightarrow H^{2}\left(\theta_{x}(M)\right) \Rightarrow 0\right.\right. \\
& \text { loy cononical } \\
& \text { suc pair }
\end{aligned}
$$

$$
\begin{gathered}
L_{E}=\left.\left(f^{*} H+E\right)\right|_{E}=\text { degree }-3 \\
\Rightarrow H^{\prime}\left(\theta_{E}\left(L_{E}\right)\right) \neq 0!
\end{gathered}
$$

The issue is that M fails to be big on the won -kit center!
(lc centers)
Thu (log cononical $K V$)
$f^{\prime}(x, s) \rightarrow z \quad$ projective marphisan w) x smooth, Δ she boundary, let L cartier $L \equiv M+\Delta \quad$ sit.

1) $M \quad f$-ne $+f$-big
2) M restricted to each component of $N k l+(x, \Delta)$ is f-big
Then $R^{i} f_{*} \theta_{x}\left(K_{x}+L\right)=0$ for $i>0$.
prof:
InDuct on dimension: if $n=\operatorname{dia} x=1$ then theorem is true

Suppose $\quad n>1$
$L \Delta\rfloor=\sum_{i=1}^{r} D_{i} \quad$ we will induct or r
$\Gamma=0 \quad L \Delta \Lambda=0$ so we get $k V$ III
$r>0 \quad D_{1} \in \perp \Delta 1$

$$
\begin{aligned}
& \left.0 \rightarrow \theta_{x}\left(K_{x}+L-D_{1}\right) \rightarrow \theta_{x}\left(K_{x}+L\right) \rightarrow \theta_{D_{1}}\left(K_{x}+L\right)_{D_{1}}\right) \rightarrow 0 \\
& L-D_{1}=M+\left.\sum_{i=2}^{3} a_{i} D_{i} \quad\left(k_{x}+D_{1}+L-D_{1}\right)\right|_{D_{1}} \\
& R^{i} f_{x} \partial_{x}\left(k_{x}+L-D_{1}\right)=0 \text { iso } \\
& K_{D_{1}}+\underbrace{\left(L-D_{1}\right) I_{D}}_{D_{n c}} \\
& b_{1} x \text { induction on } r \\
& \text { by induction on } n_{1}
\end{aligned}
$$

$$
\begin{aligned}
& R^{i} f_{*} \theta_{D_{1}}\left(K_{D_{1}}+\left(L-D_{i}\right) \|_{D_{1}}\right)=0 \quad i>0 \\
& \left.\quad\left(L-D_{1}\right)\right|_{D_{1}}=\left.M\right|_{D_{1}}+\left.\sum_{i=2}^{s} a_{i} D_{i}\right|_{D_{1}}
\end{aligned}
$$

f-big $+f-1$ ff by assumption

$$
\begin{array}{r}
\quad R^{i} f_{*} \theta_{x}\left(K_{x}+L\right)=0 \\
\text { for } i>0
\end{array}
$$

Cone theorems (Mori, Kawamuta, Reid, shokw ov, Koll as 80'-90
Thm (Basepoint free the oren)
let (x, Δ) be a projective lalt pair with Δ effective. D is a nef Cartier diviso e s.t.

$$
\underbrace{a D-\left(K_{x}+\Delta\right)}_{M} \text { is big+nef for } \begin{gathered}
\text { go me } a>0
\end{gathered}
$$

Then D is semi-ample $|b D|$ is bpf for $b>0$
if $K_{x}+\Delta+M$ is nef $\Rightarrow k_{x+\Delta+M \text { is }}$

$$
+M \text { is big+nef semi-ample }
$$

Thm (Non-Vanishing theo rem)
let X projective, D a nef cutier divisor, G a \mathbb{Q}-divisor

1) a $D-\left(k_{x}-G\right)$ is a big+nef Q eartier div fue some $a>0$
2) $(x,-6)$ is $k l t$

Then $\quad H^{0}\left(x, \theta_{x}(m D+[G 7)) \neq 0\right.$
for all $m>0$
Rationality theorem
let (x, Δ) pojective balt, Δ effective fix $m>0$ sit. $m\left(k_{x}+\Delta\right)$ is courier Suppose $k_{x}+s$ not ne f
fix H a big+nef \mathbb{Q}-cartier Δ-divisor

$$
r=r(H):=\sup \xi+\in \mathbb{R}) H+\underset{\text { is }}{t}\left(\begin{array}{l}
\left.K_{x}+\Delta\right) \\
n e f \xi
\end{array}\right.
$$

then $r=\frac{u}{v} \in \mathbb{Q} \quad$ sit.

$$
0<v \leq m(\operatorname{dim} x+1)
$$

Thu (Cone + Contraction)
let (x, s) projective kit, $\Delta \geqslant 0$

1) There exist cocprably many c_{i} rational sot.

$$
\begin{aligned}
& 0<-\left(k_{x}+\Delta\right) \cdot c_{i} \leq 2 \operatorname{din} x \\
& \& \quad \widehat{N E}(x)=\sqrt[N E]{ }(x)_{\left(K_{x}+\Delta\right) \geqslant 0}+\sum \mathbb{R}_{\infty}[(i)]
\end{aligned}
$$

2) For om ample $H \quad \varepsilon>0$

$$
\overline{N E}(x)=\overline{N E}(x) \quad+\sum_{\left(K_{x}+\Delta+\varepsilon H\right) \geqslant 0} \mathbb{R}_{i n}
$$

3) $F \subseteq \sqrt[N E]{N E}(x)$ extramal face which is $\left(k_{x}+\Delta\right)<0$ then 7 ! projective

$$
\varphi_{F}: \operatorname{Cont}_{F}: x \rightarrow z \quad, \quad, t-
$$

$$
\text { i) } \mathbb{R}_{F} * \theta_{x}=\theta_{z}
$$

ii) $\varphi_{F}(c)=p+\Leftrightarrow[c] \in F$
4) for any cartier L sot. L. $C=0$ for all $[C] \in F$ there exists courtier $L Z$

$$
\text { sot. } \varphi_{F}^{*} L_{Z}=L
$$

