Thm (Non-Varishing theorem) X projective, Danet Cartier Livier, G a Q divisor such that 1) a) + 6 - K_x is big that for Q-contient some and 2) (X, -G) is kl+ Then for moro H°(X, MD + [67) \$0 Thm (base point free theorem) X projective, (X, S) klt pair with a effective. D pef Cartier divisor such that $aD - (K_x + D)$ is big + n F for some ard D'is semiample ther 16 pl is bef for 670

Non Nanishing
$$\implies$$
 bopf \implies Dationality \Rightarrow cone
 $bpf + cone =$ content tion
Strategy (bpf)
X smooth, $b = O_1$ M is anple
F effective integral
 $0 \rightarrow O((K_+ +M) \rightarrow O_X(K_X + F + M) \rightarrow O_X(K_F + M|_F))$
 $(K_X + F) (F = K_F \rightarrow 0$
 $(K_X + F) (F = K_F \rightarrow 0$
 $(K_X + F) (F = K_F \rightarrow 0$
 $H^o(K_X, O_X(K_X + F + F)) \Rightarrow H^o(F, O_F(K_F + M|_F))$
 $bD - K_X = M + F$
Need Kawamata Nichneg vanishing holds
 $for K_X + M$

Obs 1 proper birntional map F:Y つX bf*D+E E offective + f-exceptional $H^{\circ}(X, O_{X}(bD)) = H^{\circ}(Y, O_{Y}(bF^{*}D))$ = $H^{\circ}(Y, \partial_{Y}(Jf^{*}D + E))$ Wart F\$ Supp(dy) (N+Dy)|F NF + DF 7 F The for F suthifies Obs 2 f-axc (an assume lypothesis 5" | mD = (L) + Z 5; E; + Z 5 E, Pot moving port (ixed + bpf $\Gamma_{j_1} \Gamma_k > 0$

$$b f^{*} D - k_{y} = (b - cm - \alpha)f^{*} D + cL = N(b)c$$

$$F = cn^{D}$$

$$F = cn^{D}$$

$$F = f^{*}(\alpha D - k_{x}) - \Sigma \alpha_{j} E_{j}$$

$$F = f^{*}(\alpha D - k_{x}) - \Sigma \alpha_{j} E_{j}$$

$$F = C T_{j} E_{j}$$

$$F = C T_{k} F_{k}$$

$$F = f^{*}(\alpha D - k_{x}) - \Sigma \alpha_{j} E_{j}$$

$$F = C T_{k} F_{k}$$

Ay to be a left boundary heed E Sfective + exception since $\lfloor \beta(c) - \lfloor B(c) \rfloor \leq 0$ =) by the boundary is exceptional $-E = \sum (cr_j - r_j) E_j$ $cr_{j} - \alpha_{j} \leq 0$ $we' = written \qquad integral + united = 0$ $bf^{*}D - K_{y} = N + A_{y} + F - E^{e} exceptional$ So we're written bigther building issues i) F is not irreducible 2) N/F doesn't have to be big thef we perturb by Solution ocp; cc) Zp; F; to nuke F; cc) F; méducible & Nample

nonvorishing => bpF Proof that Dnef, (X, D) proj klt $aD - (k_{\chi}+b)$ is big that for Some a70 Step | |mD| ≠ 95 for m >>0 F: Y > X log resolution s.f. 1) $K_{Y} = f^{*}(K_{x}+\delta) + Z_{x}F_{j}$ a: >-1 2) {*(a)-(K,+s)) - ZP;F; is ample for OSP; es l (aD-(Kx+S) big+net () Afective $aD - (k_x + s) = A_k + \frac{1}{k}N$ ample $a f^* D - k_{\gamma} + Z(a_j - P_j)F_j$

a: -?; > -1 => rG7 effective [G] is f-exceptional (lain $a_{i_{j}} - P_{i_{j}} = 70$ $F_{i_{j}} = 767$ $F_{i_{j}} = 767$ $F_{i_{j}} = 767$ F; exceptional blc S is effective $H^{\circ}(Y, \partial_{Y}(mF^{*}D + \Gamma GT)) = H^{\circ}(X, \partial_{X}(mD))$ At my nonvanishing b/c ast D+c-ky is big + hot Step 2 since [mD] # \$ for moid Stoble base locus Northerian induction $\bigcap B_{s}(|mD|) = B(D) = B_{s}(|mD|)$ men for for theoretic some mode

Fix such an m
Suppose
$$B_{s}([mDl]) \neq p^{s}$$

Pick log resolution satisfying
 $D + 2$ from step 1 as
well as
 $J = [L] + \Sigma r_{s}r_{s}$ $r_{s}\pi a$
 $J = [L] + \Sigma r_{s}r_{s}$ $r_{s}r_{s}$ $r_{s}r_{s}$
 $J = [L] + \Sigma r_{s}r_{s}$ $r_{s}r_{s}$ $r_{s}r_{s}$

$\equiv (b - cm - a)F^{*}D$
+ ch
+ $f^*(aD - (k_x + \Delta)) - ZP_jF_j$
ors to no as a ple
e70 67, cm+a
$\Gamma N(b, c) = a f^* D - K_Y + \Sigma \Gamma a_j - cr_j - P_j T_j$
Pick P. & c s.t. Al-F
min & a; -cs; -p; = -1 + a chieved fr a unique
$\sum (\alpha_j - c r_j - P_j) F_j = A - F$
F=Fk E-DY boundary OFFer 7 pt boundary
Step 4 lifting sections
Ky + [N6,0] = bf*D+ (A7-F

$$\begin{array}{c} \rightarrow & \partial_{Y} \left(b \beta^{*} D + (A - F) \right) \Rightarrow & \partial_{Y} \left(b \beta^{*} D + f A - F \right) \\ & H_{II} & \rightarrow & \partial_{F} \left(\left(b \beta^{*} D + f A - F \right) \right) \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$