Thm (Base point free the oren)
(x, s) pojective $k l t$, D nef cartier

$$
Q D-\left(k_{x}+\Delta\right) \text { is big + nef }
$$

Then D is semi ample.
Thm (Non vaniching the one n)
$(x,-6)$ Pojective klt, \quad) nef -6 not s.t. a $D-\left(K_{x}-6\right)$ is bigthed necesarily $\Rightarrow H^{P}(X, m D+\lceil G\rceil) \neq 0$ for $m>0$
Rmk: 「GT effective, \& if -6 is a boundary, $\Rightarrow \Gamma 67=0$

Last time
non varishing \Rightarrow basepoint free Strategy
(X, Δ) take $f: Y \rightarrow X \quad$ a \log resolution
Wont

$$
\begin{aligned}
& \text { ample } \\
& b f^{*} D-K_{Y}=\widetilde{N}(b, c)+F+\widetilde{\Delta Y-E} \text { effectice } \\
& \text { smath irpeceducible klt bouday }
\end{aligned}
$$

Split bD into it paving + Fixed ports, add discrepancies
perturb by a small generic fample

$$
k_{Y}+F+[N(b, c)]=b f^{*} D+[A\rceil
$$

If F shares no components with $N(b, c)$ then restriction to F ample

$$
K_{F}+|N(b, c)|_{F}=\left.\left(b f^{*} D+A\right)\right|_{F}
$$

left hand side has sections
by induction
2) $\mathrm{KV} \Rightarrow H^{\prime}\left(Y, \quad K_{Y}+\left[N\left(b, c_{i}\right)\right)=0\right.$
\Rightarrow restriction map is surjective
so $b F^{*} D+A 7$ has sections on Y it so that
3) We aroinge it so that [A] is effective f-exceptional $\left.+f^{*} / 6\right\rceil$

$$
\Longrightarrow H^{0}\left(Y, b f^{*} D+\lceil A T)=H^{0}(X, b D+[6\rceil)\right.
$$

Proof of non-vaishing
Step 1 Without loss of gene reality, we can assume $a D-\left(k_{x}-G\right)$ is ample \& $(X,-6)$ is snc
let $f: x^{\prime} \rightarrow x$ be a log resolution

$$
f^{*}\left(k_{x}-G\right)=k_{x^{\prime}}-G^{\prime} \quad f_{*} G^{\prime}=G
$$

the dice of P over $(x,-6)$ are the some as those $(x,-6)$
$\Rightarrow\left(x,-6^{\prime}\right)$ bet

$$
\begin{aligned}
& a f^{*} D-\left(k_{x^{\prime}}-c^{\prime}\right)= f^{*}\left(a D-k_{x}+6\right) \\
& b i g+\text { ne }
\end{aligned}
$$

Pick som small f-exceptional effective

$$
E=\sum P_{j} E_{j} \quad 0<P_{j} \ll 1
$$

st. $f^{*}\left(a D-K_{y}+G\right)-E$ is ample

$$
\begin{aligned}
& G^{\prime \prime}=G^{\prime}-E \quad a f^{*} D-K_{x^{\prime}}+G^{\prime \prime} \\
& G^{\prime}=G^{\prime \prime}+\begin{array}{c}
f- \\
\text { exceptional }
\end{array} \\
& H^{H^{0}\left(x^{\prime}, m f^{*} D+\left[G^{\prime \prime} 7\right) \subseteq\right.} \begin{array}{l}
H^{0}\left(X^{\prime}, m f^{*} D+\left[G^{\prime}\right\rceil\right) \\
\\
H^{0}(x, m D+\Gamma 67)
\end{array}
\end{aligned}
$$

Step 2 suppose $D \equiv 0$
$G \equiv K_{x}+A$ where A is ample

$$
\begin{aligned}
h^{0}(x, m D+[6\rceil) & =x(m D+\lceil\sigma])=x(\Gamma G 7) \\
\uparrow R & =h^{0}(x, \sqrt{6}
\end{aligned}
$$

by $k V$ vanishing $\quad R_{R}=h^{0}(x,\lceil 6)$
$(x,-6)$ kat $\Rightarrow \quad \Gamma 67 \geqslant 0$ $k v \neq 0$
so $w \log$ assume $D \neq 0$

$$
\begin{array}{ll}
\Rightarrow \quad \begin{array}{ll}
3 & \text { curve } c \leq x \\
\text { sit. } & \text { D. } \subset>0
\end{array}
\end{array}
$$

Step 3 pick some $x \in X$ away for G

$$
\text { Claim } \exists^{q \gg} M(q) \in\left|q D-k_{x}+6\right|
$$

with mull $t_{*} \mu(q)>2 \underbrace{\operatorname{dim}_{d}}_{d}$
Since D is
Since D is
Ref $\Rightarrow D^{e} \cdot A^{d-e} \geqslant 0 \quad$ fer $e \geqslant 0$
$\& \quad A$ angle
for $\quad q>0$

$$
\begin{aligned}
(\underbrace{\left(q D-k_{x}+6\right)^{d}}_{N(q)} & =\left[\frac{(q-a) D}{n e f}+\frac{\left.\left(a D-k_{x}+6\right)\right]^{d}}{\text { ample } d-1}\right. \\
& \geqslant d(q-a) D \cdot(a D-k+6)
\end{aligned}
$$

Since $\rightarrow C$ it $D . C>0$ $\&$ since ample \leftrightarrows

$$
\begin{gathered}
\text { since ample } \\
\Rightarrow \begin{array}{c}
a D-K+6)^{d-1} \equiv C^{\prime}+E \\
\text { sit. } \quad D . c^{\prime}>0,
\end{array} \sum_{\text {effective }}
\end{gathered}
$$

in fact, as $q \rightarrow \infty$,

$$
\begin{aligned}
\left(q D-k_{x}+6\right)^{d} & \rightarrow \infty \\
h^{0}(t(q D-k+6)) \geqslant t^{\delta} & \\
d! & q)+\begin{array}{c}
\text { lower der } \\
\text { oferms } \\
\text { f! }
\end{array}
\end{aligned}
$$

Codimension of the lours of divisors with mull $>2 \operatorname{dim} x t$ grus as $\frac{t^{\delta}}{d!}(2 d)^{\delta}+$ lower adder
so for $q f+$ large, the difference becomes barge \Rightarrow

$$
M(q, t) \in|t| q D-k+c| |
$$

with mull $M(q, t)>2 d t$

$$
M(q):=\frac{M(q, t)}{t} \bar{च}_{Q} q D-k+\sigma
$$

has multiplicity $>2 d$
Step $4 \quad$ pick $f=f(q): y \rightarrow X$
a \log resolution of $(X, G+M(q))$
sit. f factors through

$$
\mathrm{Bl}_{x} \mathrm{X} \rightarrow \mathrm{X}
$$

1) $k_{y}=f^{*}\left(K_{x}-G\right)+\sum b_{j} F_{j}$
2) $\left.\frac{1}{2} f^{*}(a)+G-K\right)-\sum P_{j} F_{j}$ is ample for $\alpha P_{j} \ll 1$
3)

$$
\begin{aligned}
& f^{*} M(q)=r_{0} F_{0}+\sum_{\sum>} r_{j} F_{j} \\
& F_{0}=\underset{B+x}{\operatorname{exccptiond}} \text { of } \quad r_{0}>2 d \\
& K_{Y}+\Delta_{Y}+F+N(b, c)=b F^{*} D+E \\
& N(b, c)=b f^{*} D-K_{Y}+\sum\left(-c r_{j}+b_{j}-p_{j}\right) F_{j} \\
& =f^{*}\left(b D-K_{x}+G\right)-c f^{*} M(q)-\sum p_{j} F_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv f^{*}\left(b D-k_{x}+G-c q D+c k-c G\right) \\
& -\sum P_{j} F_{j} \\
& \equiv f^{*}([b-c q-a(1-c)] D+(1-c)(a D-k+6)) \\
& -\sum P_{j} F_{j} \\
& \equiv \frac{f^{*}\left(\left(b-c q_{20}^{a}(1-c)\right) D+\left(\frac{1}{2}-c\right)^{20}(a D-k+c)\right)}{n+\left(\frac{1}{2} f^{*}(a D-k+c)-\sum p_{j} F_{j}\right)}
\end{aligned}
$$

So $N(b x)$ is ample if

$$
c \leqslant 1 / 2 \quad b \geqslant a+c(q-a)
$$

Step 5 let $c=\min \left\{\left(1+b_{j}-P_{j}\right) / r_{j}\right\}>0$
pick p; generically so that C is a chieved exactly once

$$
F_{j}=F
$$

need to check that $\ll 1 / 2$

$$
b_{0}=d-1 \quad r_{0}>2 d
$$

$$
\begin{aligned}
& 0<c \leqslant \frac{d-\varepsilon}{2 d}<\frac{1}{2} \\
& N(b, c)=b f^{*} D-K_{Y}+\sum \underbrace{\left(-c r_{j}+b_{j} \rho_{j}\right)}_{A-F} F_{j}
\end{aligned}
$$

So $\lceil A\rceil$ is effective

$$
\begin{aligned}
& K_{Y}+N(b, c)+F=b F^{*} D+A \\
& F^{*} G=\sum g_{j} F_{j} \quad \text { if } \begin{array}{c}
F_{j} \text { not } \\
\text { exceptional }
\end{array} \\
& \left(-c r_{j}+b_{j}-P_{j}\right)<b_{j}=g_{j}^{+} \\
& \lceil A\rceil \leqslant f^{*}\lceil 6]+\text { effective } \\
& \text { exceptionds } 2 \text { contribut } \\
& H^{0}\left(Y, b f^{*} D+[A 7)\right. \\
& \subseteq H^{0}\left(Y, b f^{*} D+f^{*}\lceil G\rceil\right) \\
& =H^{\circ}(x, b D+567)
\end{aligned}
$$

by $K V$ vaisshing

$$
\begin{aligned}
& K V \text { vaisshing } \\
& H^{0}\left(Y, b F^{*} D+[A 7) \rightarrow H^{0}\left(F, b^{\alpha} X_{F}+A_{1}^{-A}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(b f^{*} D+\Gamma A^{2}\right)\right|_{F} \equiv \\
& \text { induction on dimensian }
\end{aligned} \begin{aligned}
& k_{F}+\left.N(b, c)\right|_{F} \\
& \begin{array}{c}
\text { ample } \\
\text { snc }
\end{array}
\end{aligned}
$$

