Non-vanishing
$$\Rightarrow$$
 basepoint free (Last time)
Abundance Conjecture
 (X, Δ) projective Log cononical, Δ effective
then
1) $R(K_X + \Delta) := \bigoplus H^0(X, mK_X + [m\Delta])$
mixe generated
2) if $K_X + \Delta$ is ref
then $K_X + \Delta$ is semiample
Cor Ret (X, d) is a projective
kit pair R $K_X + \Delta$ is big + nef
then abundance holds.
 $\sum leg generated$
 $\frac{1}{2} leg gen$

 $\implies b(k_x + \delta)$ is base point free it defines f: X -> Z $b(K_{x} + \Delta) = f^{*}H$ $Q_{m} = F_{\chi} \partial_{\chi} (mk_{\chi} + Lm\Delta)$ $G_{m} \otimes O(H) = G_{m+b}$ by projection Z = M + b formula $R(K_{x}+b) = \bigoplus H(z, g_{m})$ R(K+3) m70 5 6 i a f.g. nodule $R(H) = \bigoplus H^{\circ}(z, H)$ are R(H) H anple. but R(H) is f.g. b/c Thm (Rationality theorem) let (X, Δ) be a projective kit pair with Δ effective, $K_{X} + \Delta$ not nef fix a s.t. a(Kx+A) in cartier

Let H be a big + net Cortier
divisor

$$\Gamma := \max\{\xi \in \mathbb{R} \mid H + t(K_{x} + \delta) \text{ is net}\}$$

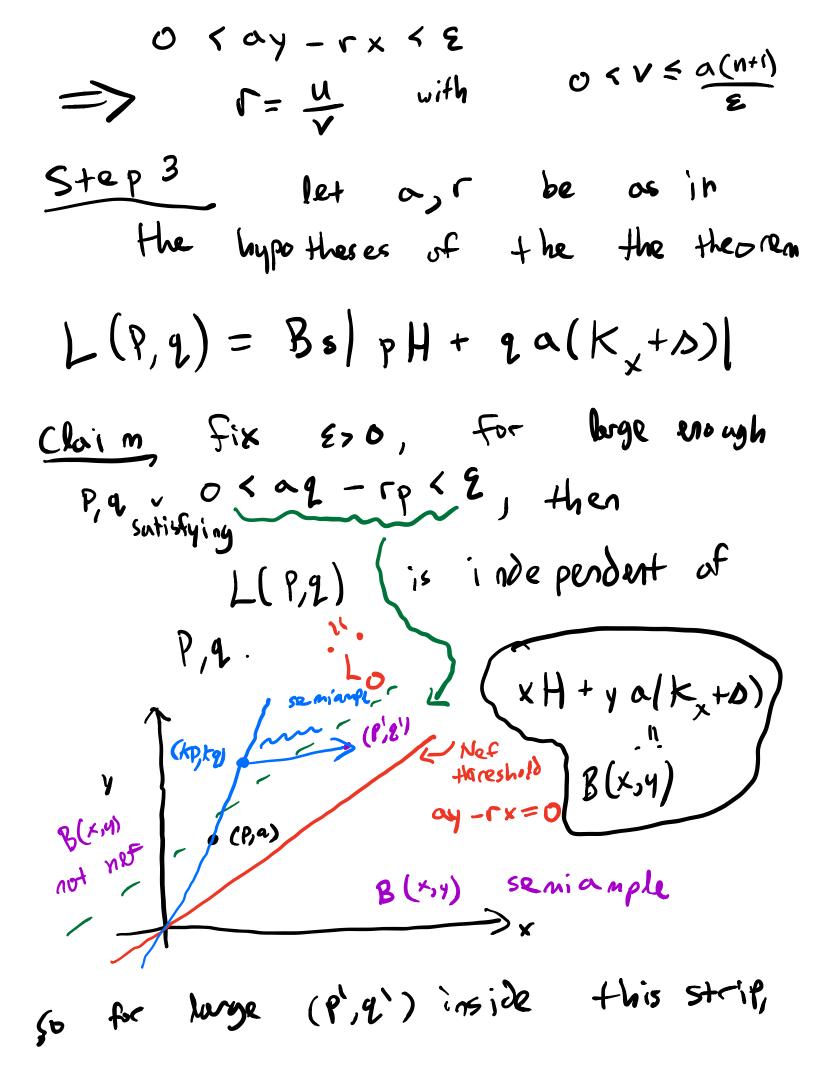
then $\Gamma = \bigcup_{V} \in \mathbb{Q}$ with
 $o < V < a(\dim X + 1)$
Proof
 $\frac{1}{P} < \Gamma < \frac{1}{P}$
 $PH + (1-1)(K_{x} + \delta)$ $PH + 1(K_{x} + \delta)$
big + net not net not servi a mple
 $H^{i}(x, K_{x} + \Delta + D) = O$ for $i > 0$ by
 KV Varishing
if Γ is not rational
 $\implies \max_{V}$ such pairs $(P, 2)$
with $PH + 1(K_{x} + \Delta)$ effective

Step 1 Wlog H is basepoint free
H =
$$m(cH + da(K_x + d))$$

m >> c >> d >0 remining the by
bpf
H + $r(K_x + d) \sim 0$ H' + $r'(K_x + d)$
 $\implies r = \frac{r' + mda}{mc}$
r' rath => $r' + mda$
 mc
 $r' rath => r' + mda$
 $r' rath == r' + r' rath$
 $r' rath == r' rath == r' + r' rath$

2)
$$\Sigma u_i D_i - (k_y - A)$$

is ample
the n () $H^i (m \Sigma u_i D_i + TAT) = 0$
for is o m > 0 by
 $kV \quad Vanishing$
2) $[m \Sigma u_i D_i + TAT] \neq p$
for all $m \gg 0$
50 $P(u_{1j} - u_k) \neq 0$
 $uith \quad deg \leq dim Y$
Step³ rationality criteria
Lemma Suppose $P(x_{34}) \in \mathbb{Z}[x_{34}]$
is not identically zero, of degree son
fix $\alpha \in \mathbb{Z}$, $z > 0$, $T \in \mathbb{R}$ s.t.
 $P(x_{34}) = 0$ for all sufficiently
sorge integers sottisfying



we get B(p', 2') = k B(P, 2) + Seriante \implies L(P', 2!) \subseteq L(P, 2) For P,q' >>>> inside this strip by Noetherian, this chain stabilizes to some $L_0 \neq \emptyset$ set I = Z × Z to be the set of (P,2) inside the strip with L(P, 4) = Lo (=ع 5+895 9: Y - X log resolution $D_1 = 9^{+}H$, $D_2 = 9^{+}a(K_x+a)$ $A = A_{y}(X, \Delta)$ $K_{Y} = \mathcal{O}^{*}(K_{y} + \mathcal{O}) + \mathcal{A}$ Alt => [A] effective 9-exceptional

$$K_{Y} - A = g^{*}(K_{y} + A)$$

$$x D_{1} + yD_{2} = g^{*} B(x,y)$$

$$P(x,y) = \chi(xD_{1} + yD_{2} + (AT)) \neq O$$

$$h_{Y} \quad SHe p 2$$

$$H^{0}(Y, xD_{1} + yD_{2}) = H^{0}(Y, g^{*} B(x,y) + (AT))$$

$$= H^{0}(X, B(x,y))$$

$$= H^{0}(X, xH + ya(K_{x} + dI))$$

$$SHe p (X, xH + ya(K_{x} + dI))$$

$$SHe p (X, xH + ya(K_{x} + dI))$$

$$= g^{*}(B(x, y - k))$$

$$g^{*}(B(x, y -$$

 $\implies H'(Y, \times D, +YD_2 + \lceil A7 \rceil) = 0$ for i 70 by kv Suppose that r&Q then by the lemma, we have infinitely many (P, 2) oxaq-rpel s.t inside $O \neq P(P, 2) = h^{\circ}(Y, P, 2) + 2P_{+}(A7)$ $= h^{\circ}(X, pH + 2a(k, to))$ B(P, L) $L_{0} = L(P,q) \neq X$ for P, q >> 0 in the strip i.e. for $(P,q) \in T$ Step? F:Y > X be resolution such that a log) Ky = 5* (Kx+0) + ZajF, 057-1

2)
$$F^*(PH + (2a-1)K_x+0) - \Sigma P_r F_r^r B(P_r^u L-K)$$
 ample
big + Mef
3) $F^*(PH + Qa(K_x+\Delta)) = F_r^r B(P_r L)$
 $F_r^r B(P_r L) = F_r^r B(P_r L)$
 $F_r^r F_r^r F_r^$

0 < 12' - 19' < 02 - 5p 21 by the buse point free method, $H^{0}(Y, F^{*}B(p', q') + \Gamma A')$ $(4 \times) \longrightarrow H^{\circ}(F, S^{\dagger}_{B(P,1)}|_{F} + F^{\circ}_{F})$ $(4 \times) \longrightarrow H^{\circ}(F, S^{\dagger}_{B(P,1)}|_{F} + F^{\circ}_{F})$ $(4 \times) \longrightarrow H^{\circ}(F, S^{\dagger}_{B(P,1)}|_{F} + F^{\circ}_{F})$ 70 $N(P, 2') = (f^* B(P', 2') + A' - F - k_{f})|_{F}$ $v_{MP} = f^* B(P', 2')|_{F} + A'|_{F} - k_{F}$ so by step 2 $P_{F}(x,y) = \chi(F, F^{*}B(P, v) + \Gamma A^{*}T)_{F})$ $= \frac{F}{h'(F, F^*B(P', Q')|_F + \Gamma A' M_F)} = 0$ for 170

by step 3, there are infinitely many
in
$$U < aq! - rp! < aq - rp < 1$$

 $P_F(P', q!) \neq D$
 $H^0(F, 5" p(p', t') | p + fA'7|F)$
Step 10
by surjectivity of $(**)$
 $H^0(Y, 5" p(p', q') + fA'7) \neq D$
 $H^0(Y, 5" p(p', q') + fA'7) \neq D$
 $H^0(X, fXp', q!))$
 Ue have a section that doesn't
van bh on $F(F) \neq L(p', q')$
 $fL(p, q) = Lo$