N.on-vaishing \Rightarrow basepoint free (Last time)

Abundance Conjecture
(x, Δ) projective tog canonical, Δ effecting then 1) $R\left(K_{x}+\Delta\right):=\bigoplus H^{0}\left(x, m K_{x}+[m \Delta t)\right.$
finitely generated
${ }^{2}$) if $k_{x}+\Delta$ is ref then $K_{x}+\Delta$ ir semiample

Cor let (x, Δ) is a projective kIt pair \& $k_{x}+\Delta$ is big + ne then abundance holds.

Proof pick mol s.t.
$D:=m\left(k_{x}+s\right)$ is cantier + nee
$D-\left(k_{x}+\Delta\right)$ is big the
so by bp, D is semiauple
$\Longrightarrow b\left(k_{x}+\Delta\right)$ is base point free
it defines $f: x \rightarrow z$

$$
\begin{aligned}
& b\left(K_{x}+\Delta\right)=f^{x} H \\
& g_{m}=f_{*} \partial_{x}\left(m k_{x}+\lfloor m \Delta\rfloor\right) \\
& g_{m} \otimes \theta_{z}(H)=g_{m+b} \quad \text { by } \begin{array}{l}
\text { projection } \\
\text { for mull }
\end{array} \\
& R\left(K_{x}+\Delta\right)=\bigoplus \bigoplus_{m} H^{0}\left(z, g_{m}\right) \int_{i \text { a } \quad \text {.g. }} R\left(k_{x}+s\right) \\
& R(H)=\oplus H^{0}(Z, H) \quad \begin{array}{c}
\text { module } \\
\text { ores } R(H)
\end{array}
\end{aligned}
$$

but $R(H)$ is fog. b/c H ample.
Thy (Rationality theorem)
let (x, Δ) be a pojective kat pair with Δ effective, $K_{x}+\Delta$ not nef fix a sit. $a\left(K_{x}+\Delta\right)$ is cartier
let H be a big + nef Cartier divisor

$$
r:=\max \left\{t \in \mathbb{R} \mid H+t\left(K_{x}+\Delta\right) \text { is ne f }\right\}
$$

then $r=\frac{u}{v} \in \mathbb{Q}$ with

$$
0<v<a(\operatorname{dim} x+1)
$$

Proof

$$
\begin{array}{ll}
\frac{q-1}{p}<r<\frac{q}{p} & \\
p H+(q-1)\left(k_{x}+s\right) & \text { pH+q(k+s)} \\
\text { big + net } & \begin{array}{ll}
\text { not net so } \\
\text { not semi a apple }
\end{array}
\end{array}
$$

$H^{i}\left(x, K_{x}+\Delta+D\right)=0$ for $i>0 \quad$ by KV vanishing
if r is not rational

$$
\Longrightarrow \text { many such pairs }(p, q)
$$ with $p H+q\left(k_{x}+\Delta\right)$ effective

Step $1 \quad \omega \log H$ is basepoint free

$$
\begin{aligned}
& H^{\prime}=m\left(c H+d a\left(k_{x}+\Delta\right)\right) \\
& m \ggg \gg 0 \quad a_{\text {semiample }} b_{y} \\
& H+r\left(k_{x}+\Delta\right) \sim_{\mathbb{Q}} H^{\prime}+r^{\prime}\left(k_{x}+\Delta\right) \\
& \Longrightarrow r=\frac{r^{\prime}+m d a}{m c}
\end{aligned}
$$

$$
\begin{gathered}
r^{\prime} r_{u} r^{\prime} \\
r_{v} l \\
r_{v} \\
r a t ' l \\
v
\end{gathered}
$$

Step 2 y smath paj, $\left\{D_{i}\right\}_{j=1}^{k}$ A snc s.t. $\quad\lceil A\rceil \geqslant 0$ cortier $(y,-A)$

$$
\begin{aligned}
& P\left(u_{1}, \ldots, u_{k}\right)= \\
& \quad x\left(\sum u_{i} D_{i}+\lceil A\rceil\right)
\end{aligned}
$$

ket

Suppose that 1) $\sum u_{i} D_{i}$ is ref

$$
\text { 2) } \sum_{i s} u_{i} D_{i}-\left(k_{Y}-A\right)
$$

the n 1)

$$
H^{i}\left(m \sum u_{i} D_{i}+[A\rceil\right)=0
$$

for $i>0 \quad m>0$ by kV Vanishing
2) $\mid m \sum u_{i} D_{i}+[A T \mid \neq \varnothing$ for all $n \gg 0$
so $\quad P\left(u_{1}, \ldots, u_{k}\right) \neq 0$
with $\operatorname{deg} \leq \operatorname{dim} Y$
Step 3 rationality criteria
Lemma Suppose $p(x, y) \in \mathbb{Z}[x, y]$ is not jentically zero, of degree $\leq n$ fix $a \in \mathbb{Z}, \varepsilon>0, r \in \mathbb{R}$ s.t. $P(x, y)=0$ for all sufficient, large integers satisfying

$$
\Rightarrow \quad \begin{aligned}
& 0<a y-r x<\varepsilon \\
& r=\frac{u}{v} \quad \text { with }
\end{aligned} \quad 0<v \leqslant \frac{a(n+1)}{\varepsilon}
$$

Step 3 let a, r be as in the hypotheses of the the theorem

$$
L(p, q)=B s\left|p H+q a\left(K_{x}+s\right)\right|
$$

Claim fix $\varepsilon>0$, for large enough p, q satisfying $0<a q-r p<\varepsilon$, then

so foe large $\left(p^{\prime}, q^{\prime}\right)$ inside this strip,
we get $B\left(p^{\prime}, q^{\prime}\right) \equiv k B(p, q)+$ semiante
$\Longrightarrow L\left(p^{\prime}, q \prime\right) \subseteq L(p, q)$
For $\quad p, q^{\prime} \gg 0$ inside this strip
by Noetherion, this chain stabilizes to some $L_{0} \neq \varnothing$
set $I \subseteq \mathbb{Z} \times \mathbb{Z}$ bo be the set of (p, q) inside the strip with $L(p, q)=L_{0}$ $\varepsilon=1$

Step 5
$9: Y \rightarrow X \quad$ log resolution of (x)

$$
\begin{gathered}
D_{1}=g^{*} H, \quad D_{2}=g^{*} a\left(K_{x}+\Delta\right) \\
A=A_{y}(x, \Delta) \\
K_{y}=g^{*}\left(K_{x}+\Delta\right)+A
\end{gathered}
$$

kelt $\Rightarrow \quad\lceil A\rceil$ effective y-exceptional

$$
\begin{aligned}
& K_{y}-A=g^{*}\left(K_{x}+\Delta\right) \\
& x D_{1}+y D_{2}=g^{*} B(x, y) \\
& P(x, y)=x\left(x D_{1}+y D_{2}+[A T) \not \equiv 0_{\sin }\right.
\end{aligned}
$$ since $[A]$

b_{4} ste $p 2$ is fere

$$
\begin{aligned}
H^{0}\left(Y, \times D_{1}+y D_{2}\right) & =H^{0}\left(Y, g^{*} B(x, y)+\left[A^{2}\right)\right. \\
& =H^{0}(x, B(x, y)) \\
& =H^{0}\left(x, x H+r a\left(K_{x}+\Delta 1\right)\right.
\end{aligned}
$$

Step 6

$$
\begin{aligned}
& x D_{1}+y D_{2}-\left(k_{y}-A\right)=g^{*}\left(B(x, y)-\left(k_{x}+\Delta\right)\right) \\
& =g^{*}\left(\cdot B\left(x, y-\frac{1}{a}\right)\right) \\
& \text { if }<a y-5 x<1 \Longrightarrow B(x, y-1 / 4) \\
& \text { big }+n e f \\
& x D_{1}+4 D_{2}+A-K_{Y} \text { is big+nef }
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \quad H^{i}\left(Y_{2}, \times D_{1}+4 D_{2}+[A 7)=0\right. \\
\text { for } i>0 \quad \text { by } k v
\end{gathered}
$$

Suppose that $r \notin \mathbb{Q}$ then by the k mama, we have infinitely many (p, q) inside $\quad 0<a q-r p<1$ s.t.

$$
\left.\begin{array}{rl}
0 & \neq P(p, q) \\
=h^{0}\left(Y, p D_{1}+q D_{2}+[A T)\right. \\
& =h^{0}(X, p H \underbrace{+q a}_{B(p, q)}\left(k_{X}+\Delta\right)) \\
L_{0} & =L(p, q)
\end{array}\right) \neq X \quad \text {. }
$$

for $p, q \gg 0$ in the strip i.e. for $(p, q) \in I$
$\frac{\text { Step } 7}{\text { resolution }}$ f: $y \rightarrow x$ such that \rightarrow a \log

$$
\text { 1) } K_{y} \equiv f^{*}\left(K_{x}+\Delta\right)+\sum a_{j} F_{j} \quad a_{j} j-1
$$

2) $F^{*}\left(p H+(q a-1) K_{x}+\Delta\right)-\sum p_{j} F_{j}$

$$
\left.\frac{B(p, L-1 / /)}{b i g+n e f} \text { for } a<p_{j} \ll\right)
$$

3)

$$
\begin{aligned}
& f^{*}\left|p H+q a\left(K_{x}+\Delta\right)\right|=\sum^{\text {fixed pct }} \\
& B(p, q) \\
& \underset{\substack{\text { bye }}}{ }|2|+\sum r_{j} F_{j}
\end{aligned}
$$

Step 8

$$
\sum\left(-c r_{j}+a_{j}-p_{j}\right) F_{j}=A^{\prime}-F
$$

pick the c, p_{j} st.
F integral, reduced, port of fixed locus of
「A'ग effective

$$
F^{*} B(p, a)
$$

f-exceptional

$$
N\left(p^{\prime}, q^{\prime}\right)=f^{*} B\left(p^{\prime}, q^{\prime}\right)+A^{\prime}-F-k_{\gamma}
$$

this is a rumple when $P^{\prime}, q^{\prime} \gg 0$ inside the strip

$$
0<a q^{\prime}-r p^{\prime}<a q-r p<1
$$

by the base point free method,

$$
\begin{aligned}
& H^{0}\left(Y, f^{*} B\left(p^{\prime}, q^{\prime}\right)+\Gamma A^{\prime}\right] \\
& \left(*^{*}\right) \longrightarrow H^{0}\left(F,\left.f^{*} B\left(p^{\prime}, i^{\prime}\right)\right|_{F}+\sqrt{A^{\prime}} \mid q\right) \\
& \text { step } a
\end{aligned}
$$

$$
\begin{array}{ll}
\left.N\left(p^{\prime}, q^{\prime}\right)\right|_{F}= & \left.\left(f^{+} B\left(p^{\prime}, q^{\prime}\right)+A^{\prime}-F-k_{y}\right)\right|_{F} \\
\text { ample } & \left.f^{*} B\left(p^{\prime}, q^{\prime}\right)\right|_{F}+\left.A^{\prime}\right|_{F}-K_{F}
\end{array}
$$

So by step 2

$$
\begin{gathered}
\quad P_{F}(x, y)=\chi\left(F, f^{*} B\left(P^{\prime}, q^{\prime}\right)+\left.\Gamma A^{\prime} T\right|_{F}\right) \\
\neq 0 \\
h^{i}\left(F,\left.f^{*} B\left(P^{\prime}, q^{\prime}\right)\right|_{F}+\left.\left[A^{\prime}\right]\right|_{F}\right)=0
\end{gathered}
$$

for $i>0$

By step 3, there are infinite many

$$
\begin{aligned}
& \text { in } \quad 0<a q^{\prime}-r p^{\prime}<a q-r<1 \\
& P_{F}\left(p^{\prime}, q^{\prime}\right) \neq 0 \\
& H^{\prime}\left(F,\left.f^{\prime} B\left(p^{\prime}, q^{\prime}\right)\right|_{F}+\left[A^{\prime}\right] \mid F\right)
\end{aligned}
$$

Step 10
by surjectivity of $(* *)$

$$
\begin{gathered}
\Longrightarrow \quad H^{0}\left(Y, f^{*} B\left(P^{\prime}, q^{\prime}\right)+\left[A^{\prime} 7\right) \neq 0\right. \\
/{ }_{6}^{s} \text { st. }\left.\quad s\right|_{F} \not \equiv 0 \\
H^{0}\left(x, \mid\left(p^{\prime}, q^{\prime}\right)\right)
\end{gathered}
$$

we have a section that doesn't vanish on $f(F) \not f L\left(P^{\prime} q\right)$ $夭 L(p, q)=L_{0}$
contradiction so $r \in Q$

