Thum (Cone theorem) read the saction on bedetreak let (X,D) be a projective belt Poir with D effective. Then: i) there are countably many rational arves C; SX s.t. O<-(k+2). C<2dimX \*  $\overline{NE}(X) = \overline{NE}(X) + \Sigma R_{30}E(Z)$ 2) for any  $\varepsilon \to 0 + H$  ample in Tr:  $\overline{NE}(X) = \overline{NE}(X) + \overline{\Sigma}R_{2}\overline{C}$   $\overline{NE}(X) = \overline{NE}(X) + \Delta + 2H_{20} + 5inite$   $\overline{NE}(X) = \overline{NE}(X) + \Delta + 2H_{20} + 5inite$ 3) for F=NE(x) on (Kx+3)-negative extremal foce,  $\Im! \qquad \varphi_F: X \rightarrow Z$ which is projective s.t. i)  $\varphi_F \otimes_X = \Im Z$  ii)  $\varphi_F(c) = Pt$  E = E = E = E4) if Lix a line budle on X s.t. L.C=0 for  $(C] \in F$ , then  $L= P_F^*LZ$  for  $LZ \in P_{ic}(Z)$ 



$$\begin{split} \Gamma_{L}(n, H) &\leq \Gamma_{L}(n+1, H) \\ \text{Pick } 56 F_{L}^{(N)E_{RW}}(nL + H + \Gamma_{m}^{(n)H}) \\ \text{H. } > 0 \\ \text{H. } > 0 \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &\leq (m + 1.3) \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &\leq (m + 1.3) \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &\leq (m + 1.3) \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &\leq (m + 1.3) \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &\leq (m + 1.3) \\ \text{K. } 3 < 0 \\ \text{K. } 3 < 0 \\ \Gamma_{L}(n, H) &= nn \\ \text{He sequeve} f_{L}(n, H) \\ \text{stabilizes} \\ \text{to } F_{L}(H) \\ \text{for } n \geq n_{0} \\ \text{He sequeve} \\ \text{K. } 3 < 0 \\ \text{K. } 3 \\ \text{K. } 3 < 0 \\ \text{K. } 3 < 0 \\ \text{K. } 3 < 0 \\ \text{K. } 3 \\ \text{K. } 3 < 0 \\ \text{K. } 3 < 0 \\ \text{K. } 3 \\ \text{K. } 3 < 0 \\ \text{K. } 3 \\ \text{K. } 3 < 0 \\ \text{K. } 3 \\$$

Step 2 Suppose din 
$$F_{L} > 1$$
, then  
(lain we can pick  $H$  s.t.  
dim  $F_{D(n_{1}L_{3}, H) \leq \dim F_{L}$   
Pick some ample basis  $\{H_{3, -3}, H_{3}\}$   
for  $N'(X)$   
 $D(n_{3}L_{3}, H_{1})|_{F} = (mH_{1} + \sum_{i}(H_{i})K_{i})|_{F}$   
 $F_{L} \qquad (Spec F_{L})$   
the  $H_{i}$  are line of  $h_{i}$  independent  
 $si \quad if \quad (Spec F_{L})$  has  $h_{i} > 1$   
 $\Rightarrow \quad D(n_{3}L_{3}H_{1})|_{F_{L}} \quad cost \quad joert(cully vanish)$   
 $f_{2} \quad f_{3} \quad cost \quad joert(cully vanish)$   
 $\Rightarrow \quad D(n_{3}L_{3}H_{1})|_{F_{L}} \neq 0$   
so  $F_{D(n_{3}L_{3}H_{1}) \neq F_{L}$ 

•







 $\mathbb{P}(\mathcal{H}(\mathbf{x}))$ if we look at  $A_{IR}^{P-1} = \{k \neq 0\}$ [\* \* ] give consinutes for the offine chart U = (k < 0)so (\*) tells us U 3 A-1 that FL maps to a point with quotient by Roo coordinates in = FL cont accumulate inside of 4  $V = P(\overline{NE}(x) + \varepsilon H \leq 0) \subseteq P(4) = A^{P-1}$ for H ample compact so finitely may [F] lie inside V I finitely many of the FL lie inside (K+zH EO)

$$\frac{11}{NE(x) + 2F_{L}} \subseteq NE_{K} + SH = 20 \quad F_{L} \leq NE(x)$$

$$\frac{1}{K \geq 0} T \subseteq NE_{K} + SH = 20 \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} = 1 \quad F_{L} = NE(x)$$

$$\frac{1}{K \geq 0} \quad F_{L} = NE(x)$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0} \quad F_{L} (k + sH) < 0$$

$$\frac{1}{K \geq 0$$



 $mD - (k_x + s) + D neF$ Step 7 70 = 0 on F >0 olsa So olsa Su for lorge in, mD-(Kx+D) is a mple buse print free theorem, so by for bro V: X -> Z [bD] (Tituka fibrutions) Stein factorize + take blonge Call this litute fibration  $(4F: X \rightarrow 2)$  pojective  $\Psi_F: X \rightarrow 2$  with  $\Psi_{F_F} X$  $\Psi_{\rm F}(C) = 0 \iff C.D = 0$  by semiande E) [C] E F 50 (PF is us in part c) of the theorem but this iniquely determines QF