Thu (Cone theorem) let (x, Δ) be a projective blt $\hat{1}$ pair with Δ effective. Then:
1) There are countably many rational curves $c_{i} \leq x \quad$ sit. $\frac{0<-\left(k_{x}+\Delta\right) \cdot c_{i} \leq 2 \operatorname{dim} x}{+\sum R_{\geqslant 0}\left[c_{i}\right]}$

$$
\overline{N E}(x)=\overline{N E}(x)_{K_{x}+\Delta \geqslant 0}+
$$

2) for any $\varepsilon>0 \quad \&^{x} H$ ample

$$
\overline{N E}(X)=\overline{N E}(X)_{K_{x}+\Delta+\varepsilon H \geqslant 0}+\sum_{\text {finite }} \mathbb{R} \geqslant[\mathcal{C}]
$$

3) for $F \subseteq \overline{N E}(x)$ as $\left(K_{x}+\Delta\right)$-he gative extre mat face, $\exists!\quad \varphi_{F}: x \rightarrow Z$ Which is projective st.

$$
\text { i) } \varphi_{F_{*}} \theta_{x}=\theta_{z}
$$

$$
\text { ii) } \varphi_{F}(c)=\rho t
$$

$$
\Leftrightarrow[c] \in F
$$

4) if L is a Dine bands on x sit. $L . C=0$ for $L C \in F$, then $L=\varphi_{F}^{*} L_{Z}$ for $L_{Z} \in P_{i c}(z)$

Proof $\quad k:=k_{x}+\Delta, \quad a\left(k_{x}+\Delta\right)$
recall denominators in rat theorem are bounded by $a(\operatorname{dim} x+1)$
Let m be a common denominator

Suppose k is not ref.
Step 1 om ref but not ample divisor
$0 \neq F_{L}=L^{\perp} \cap \overline{N E}(x)$, suppose that

$$
F_{L} \notin \overline{N E}_{K \geqslant 0}
$$

$\Gamma_{L}(n, H)=m a x\left\{+t \mathbb{R} \backslash n L+H+\frac{t}{m} k \quad n e f\right\}$ $\underset{\mathbb{Z}}{\infty} \operatorname{lo}_{y}$ rationality

$$
r_{L}(n, H) \leq r_{L}(n+1, H)
$$

K. $\zeta<0$
$L . \xi=0$

$$
r_{L}(n, H) \leqslant m \frac{H \cdot \xi}{K_{-} \xi}
$$

\Longrightarrow the sequere $r_{L}(n, H)$ stabilizes to $r_{L}(H)$ for $n \geqslant n_{0}$
take $n>n_{0}$

$$
D\binom{n, L, H)}{\text { nef }}=m n L+m H+r_{L}(H) K
$$

$$
\Downarrow
$$

$D(n-1, L, H)$ is also n.f

$$
\begin{aligned}
& \left.L\right|_{F_{D(n, L, H)}=0} \Rightarrow F_{D(n, L, H)} \subseteq F_{L} \neq 0 \\
& \quad+F_{D(n, L, H)} \backslash\{0\} \subseteq \\
& b /\left.c L\right|_{F_{D}}=0, H \|\left._{F_{D}>0<0} \Rightarrow k\right|_{F_{D} \backslash 0^{*}}<0
\end{aligned}
$$

Step 2 Suppose $\operatorname{dim} F>1$, then claim we can pick H sat.

$$
\operatorname{din} F_{D(n, L, H)}<\operatorname{din} F_{L}
$$

pick some ample basis $\left\{H_{1,-}, H^{2}\right\}$ for $N^{\prime}(x)$

$$
\left.D\left(n, L, H_{i}\right)\right|_{F_{L}}=\underset{\left.\left.\left(m H_{i}{ }^{+} r_{L}\left(H_{i}\right) K\right)\right|_{F_{\text {para }}} F_{L}\right)^{*}}{\left({ }_{L}^{*}\right.}
$$

the H_{i} are lineally indepodent
so if $\left(S\right.$ pan $\left.F_{L}\right)$ has $\operatorname{dim}>1$
$\left.\Rightarrow D\left(n, L_{1} H_{i}\right)\right|_{F}$ cont for identically vanish

$$
\begin{array}{ll}
\Rightarrow & \left.\exists D\left(n, L_{1} H_{i}\right)\right|_{F_{L}} \neq 0 \\
& F_{D\left(n, L, H_{i}\right)} \neq F_{L}
\end{array}
$$

by repeat eddy applying this process, we cut down to rays
$F_{L} \quad L$ nev $\quad \operatorname{dim} F_{L}=1$

$$
F_{L} \backslash\{0\} \subseteq \overline{N E}(x)_{k<0}
$$

each face $F_{L^{\prime}}$ for L^{\prime} ne with $F_{i} \notin \overline{N E}(x)_{k \geqslant 0} \quad$ contains such rays

Step 3
by definition

Suppose that then there exists rational M sit.

$$
\begin{aligned}
& \widehat{N E}(x)=\left(\overline{N E}(x)_{k \geqslant 0}+\sum_{\operatorname{dim} F} F_{L}\right)^{c l} \\
& \geq
\end{aligned}
$$

$$
\omega \subseteq M_{>0}, \quad M_{<0} \cap \overline{N E}(x) \neq \varnothing
$$

apply rationality theorem to porto M by some $H++K$ s that were on the boundary of $\overline{N_{E}}(x)$ avoiding ω
by the previous step, we con cut out a ray of $\overline{N E}(X)$ of the form F_{L}, but not contained in ω, contradiction.

Step 4 there are no a cumulation points of F_{L} inside $K<0$

$$
\begin{aligned}
& \left.F_{L}=\mathbb{R}\right\}_{20} \xi_{L} \text {, pick apples } H_{i} \\
& \text { 2.t. }\left\{k, H_{1, \ldots}, H_{p-1}\right\} \\
& \text { is a basis for } N^{\prime}(x) \\
& \frac{H_{i} \cdot \xi_{L}}{K \cdot \xi_{L}}=\frac{\text { integer }}{m} \\
& \left.\left.\zeta \mapsto(K .\}, H_{1} \cdot\right\} \ldots H_{P-1} . \xi\right)
\end{aligned}
$$

gives coordinates for $N_{1}(x)$
if we look at [**) give coordinates for the offline chat

$$
\begin{aligned}
& \mathbb{P}\left(-N_{1}(x)\right) \\
& U_{1}^{\prime} \\
& \mathbb{A}_{\mathbb{R}}^{-1}=\{k \neq 0\}
\end{aligned}
$$

$$
U=(k<0)
$$

$$
u \xrightarrow{g} \mathbb{A}^{p-1}
$$

quotient by R_{50}
$\left[F_{i}\right] \in \mathbb{P}(N,(x))$

So (*) tells us that F_{L} maps to a point with coordinates in $\frac{1}{m} \mathbb{Z}$ under 9

Cain accumulate
inside A^{p-1}
$\Rightarrow F_{L}$ cont accumulate inside of 4

$$
V=\mathbb{P}\left(\widehat{N E}(x)_{K+\varepsilon H \leqslant 0}\right) \subseteq \mathbb{P}(u)=A^{P-1}
$$

for H ample \uparrow compact
so finitely may $[E]$ lie inside V
\Rightarrow finitely many of the F_{L} lie inside $\quad(K+\varepsilon H \leqslant 0)$

$$
\begin{aligned}
& \overline{N E}(x)+\sum F_{L} \subseteq \overline{N E}_{K+\{H}+\sum F_{L} \leq \overline{N E}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { closed } \\
& \text { so } \overline{N E}_{K+\varepsilon H \geqslant 0}+\sum_{F_{L}(K+\varepsilon \mu)<0} F_{L}=\sqrt[N E]{ }(X)
\end{aligned}
$$

Step 5 use a limit $\begin{gathered}\sum \rightarrow 0 \\ \operatorname{argument}\end{gathered}$ to show that

$$
\overline{N E}(x)_{K \geqslant 0}+\sum_{\operatorname{dim} F_{L}=1} F_{L}
$$

is dosed
Step 6 chain: if F any K-negative extrenul face, then

$$
F=F_{D} \quad \text { for } \quad D \quad n e f+c w t i e r
$$

$$
V=S_{p o n}(F)^{\perp} \leq N^{\prime}(x)
$$

F is rational $\Rightarrow V$ is a rations subspace

Pikk small enough $\varepsilon>0$ s.t.

$$
\begin{aligned}
& F \backslash\{0\} \leq\left(K_{X}+\varepsilon H\right)<0 \quad{ }_{N E} \\
W= & \\
& +\sum_{L+\varepsilon H F} F_{L}=\{=0
\end{aligned}
$$

pick $g \in V$ s.t. $\frac{\left.g\right|_{\omega}>0}{\text { open'condition in } V}$
sime V is rational
$\Longrightarrow 3 g^{\prime}$ with rat'l cordinats

$$
\begin{array}{ll}
\text { st. }\left.\quad g^{\prime}\right|_{F}=0 & \left.g^{\prime}\right|_{W}>0 \\
g^{\prime}=\left[\frac{1}{m} D\right] \quad \text { for } \quad D \begin{array}{c}
\text { divisser integral }
\end{array}
\end{array}
$$

so $\left.D\right|_{F}=0,\left.D\right|_{\omega}>0$

$$
\Rightarrow D \text { is nef, } \quad D^{\perp} \xlongequal[=]{\perp} \overline{N E}(x)
$$

Step $7 \quad m D-\left(k_{x}+\Delta\right)+D n e f$
so for large $m, m D-\left(k_{x}+\Delta\right)$ is ample
so by base point free theorem,

$$
\text { for } \quad b>0 \quad \varphi_{|b D|}: X \rightarrow Z
$$

Stein factor ize + take b longe call this sitaka fibration

$$
U_{F}: x \rightarrow z \quad \begin{aligned}
& \text { projective } \\
& \text { with } \varphi_{F_{*}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { projective } \\
& \text { with } \varphi_{F_{*}} \theta_{x}=J_{z}
\end{aligned}
$$

$\varphi_{F}(c)=0 \Leftrightarrow \quad C_{-} D=0$ by semilaple $\Leftrightarrow[C] \in F$
so φ_{F} is us in part c) of the theorem, but this uniquely determines φ_{F} '

