Thus (Cone theorem) read the section on bedetreak let (X, D) be a projective blt 7 Poir with D effective. Then: i) there are countably many rational curves C; SX s.t. OK-(K+A). C.<2dimX $\overline{NE}(X) = \overline{NE}(X) + \overline{\Sigma}R_{30}Ci$ K 2) for any ETO & H ample $\overline{NE}(X) = \overline{NE}(X) + \overline{\Sigma} R_{2} \overline{EG}$ $F \leq \overline{NE}(X) + \overline{C} + 2H^{2} O = \overline{FG}(X)$ 3) for F=NE(x) on (Kx+3)-negative extremal foce, $\Im! \qquad \varphi_F: X \rightarrow Z$ which is projective s.t. i) $\varphi_F \otimes_Z = \Im_Z \qquad ii) \qquad \varphi_F(c) = Pt$ E = E = E = E = E4) if Lix a line budle on X s.t. L.C=0 for $[G] \in F$, then L= Q=LZ Pr LZ EPic(Z)

Iltaka fibration for b->0 + Stein factorization Ψ=: X→ Z pojecti ve morphim $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$ s.t. 2 is recould step8 [c] e R Ì so $R = F_1 = R_{70} [C]$ Step 9 Suppose D is net 5.t. $F_{D} = F$ Unique ness of $q_F = 7$ the Istaka Fibertion of the bpf series 16P1

D= QF DZ for Some DZ 50 L is ony divisor No u suppose L.C=0 for [c] EF 5.7. (onsider mD+L m7)0 with D as above (mD+L). C=0 for [c] & F D.3 >0 for SENE(X) \F mp+L is not for more 50 so by above argument, $anD+L= \psi_F^* D_Z'$ $L = \Psi_F^* (D_Z' - m D_Z)$ if $F=R=IR_{30}LCJ$ is a (k_x+s) -negative Cor_ extremul ray, then the following sequence is exact $\Box \rightarrow Pic(Z) \xrightarrow{P_{F}} Pic(X) \rightarrow Z$ P(2) - (4)-1 L IN L.C

Say F is in case a generic fiber of le 3), $(K_x + \Delta)|_F = K_F + \Delta |_F$ =) (X, Δ_F) is a pair with $-(K_F + \delta_F)$ ample (or let (X, S) be a projective ket pair, RENEXI a (K+D)-negative extremed ray. Suppose X is Q fact Le QR is either divisorial or R fibration (Mori fibr space) + 100- 7 then Z is Q-factorial Proof i) of is divisorial, EEX exceptional divisor E.R. < O. let B be a weil divisor on Z. R=R30[c] $\begin{pmatrix} \varphi^{-1} & B + s E \end{pmatrix}$. C = Othere exists on s = s.t.since X > 0 factorial, then

is Cartier $W\left(\Psi_{F}^{-}\right) B+SE$ **))** M₂ € € Y=MZ B~Q IMZ => B is Q-cartier 1 exceptional lous of Since VE is cuding 2002 din Z (din X, B weil div on Z **3)** ;f lig open UI cartier locus B° ≤ B $\Psi_{F} \Big(\begin{array}{c} * \\ \Psi_{F} \Big) \Big)^{*} = D \subseteq X$ r Unb cartier for some m Ì۲ mP m). gueric fiber = 0 but mD.C=0 for ECI spanning 50 the ray $mD = \Psi_F^* M_Z \qquad M_Z \in Pi_c(z)$ => B is Q - cartier. B Q M2/m Q

then, D is
$$\overline{F} - se minuple}$$

bD is $\overline{f} - bpf$ for $b \gg 0$
i.e. $\overline{F}_{\overline{F}} \stackrel{\circ}{\sigma}_{\overline{X}} (bD) \xrightarrow{\longrightarrow} \stackrel{\circ}{\sigma}_{\overline{X}} (bD)$
Proof (sketch)
Step1 (compatibly & resulve
to reduce to the case
of \overline{F} o norphism of
projective Varieties
Step2 Let A be an ample or Y
it suffices to show that
m D' = nD + m \overline{F} \stackrel{\times}{A} is
base point free
indeed, for my xex, $s(x) \neq 0$
 $\overline{f}(x) = \stackrel{\circ}{\nabla} e x$ se H^o(X, mD) $\stackrel{\sim}{\to} Ho(Y, \overline{f}_{X} (mD + m \overline{f} \stackrel{\times}{A}))$
 $\overline{f}(x) \in U = Y$ H^o(u, $\overline{f}_{X} mDl_{y}) = Ho(Y, m)$

nD) y

Pick ut to be a trivialization of Oy(A) Step 3 $aD - (k_x + \Delta)$ is f-big $\alpha D - (K_x + \Delta) + f^* H$ big if H is very anple enough some E effective s.t. Pick a D- (K+0)+P*H-2E is on ple For 200 Small, (X, 3+2E) is **bl**+ $A = \frac{H}{A}$ $D' = D + F^{*}A$ (X, D+SE) is kl+ & $aD'-(k_X+b')=6$ is an ple su if D'is nef=>52 miample by bof need to check that D' step J

can be more to be net
apply conp theorem to
$$(X, S')$$

=> J Finitely many extremal mys R
s.t. $R \setminus sol = (K + \Delta' + G) < 0$ $R_{yo}[E]$
 $T)' < 0$
since $D' = 5ineF + pullback,$
then $C \notin Fibers of F$
 $+ (. F^*A = F_*C \cdot A > 0)$
So by mediting A more
Positive, we can make $D'_{x}(\geq 0)$
So by mediting A, we
can make D'_{y} and R_{y}