Thu (Cone theorem)
let (X, Δ) be a povjective blt pair with Δ effective. Then:
n) There are countably many rational curves $c_{i} \leq x \quad$ a.t. $0<-\left(k_{x}+\Delta\right) \cdot c \leq 2 \operatorname{dim} x$

$$
\overline{N E}(x)=\overline{N E}(x)_{K_{x}+\Delta \geqslant 0}
$$

2) for any $\varepsilon>0 \quad x^{x} H$ ample

$$
\overline{N E}(X)=\overline{N E}(X)_{K_{x}+\Delta+\varepsilon H \geqslant 0}+\sum_{\text {fin in te }} \mathbb{R}
$$

3) for $F \leq \overline{N E}(x)$ as $\left(K_{x}+\Delta\right)$-negative extrenal face, \exists ! $\varphi_{F}: x \rightarrow z$ which is projective
s.t. i) $\varphi_{F *} \theta_{x}=\theta_{z}$ ii) $\varphi_{F}(0)=p t$ $\Leftrightarrow[c] \in F$
4) if L is a line bundle on x st. $L . C=0$ for $[C \in F$, then $L=\varphi_{F}^{*} L_{Z}$ for $L_{Z} \in P_{i c}(z)$

Proof (Continued)

$$
K=K_{x}+\Delta
$$

recap

$$
\sqrt{N E}(x)=\overline{N E}(x)_{K \geqslant 0}+\sum_{\operatorname{dim} F_{L}} F_{L}
$$

$L=$ nef, not ample cortier

$$
\begin{aligned}
& F_{L}=L \frac{1}{n \in}(x) \\
& \text { s.t. } F_{L} \backslash\{0\} \subseteq \overline{N E}(x)_{k<0}
\end{aligned}
$$

* for $\varepsilon>0, H$ auple

$$
N_{E}^{\varepsilon>0}, H_{K+\varepsilon H \geqslant 0}+\sum_{F_{L} \cdot(K+\varepsilon H)<0^{L}} F_{L} \text { firite }
$$

+ For any extcenal face F s.t. $F \backslash\{0\} \leq \bar{N} E(X)_{k<0}$, then there is a nef divisor D s.t. $\quad F=F_{D}$

Then, by basepoint free theocem D is senia mple
$a D-\left(k_{x}+\Delta\right)$ is ample
$\Rightarrow \varphi_{|b D|}$ rnorphism for layge b

Il taka fibretion for $b \rightarrow \infty$ + stein factorize ation
$\varphi_{F}: X \rightarrow Z \quad$ projective
s.t. Z is areal morphia

Step 8

$$
\text { i) } \varphi_{F_{t}} \theta_{x}=\theta_{z}
$$

$$
\text { ii) } \varphi_{F}(c)=P t
$$

$$
\Leftrightarrow[c] \in F]^{\varphi_{F}}
$$

${ }^{\text {let }} \varphi_{R} F=R=F_{L}$ is a a a $\frac{\text { ray }}{\text { the }}$ identity
since $R \neq \xi 0$
then φ_{R} contracts some curve C

$$
\Rightarrow \quad[c] \in R
$$

so $\quad R=F_{L}=\mathbb{R}_{\geqslant 0}[c]$
Step q Suppose D is net sit.

$$
F_{D}=F
$$

unique cess of $\varphi_{F} \Rightarrow$ the Iituka Fibation of the bp series |bDl
so $D=\varphi_{F}^{*} D_{z}$ for some D_{z}
Now suppose L is on y divisor sot. L. $C=0$ for $[C] \in F$

Consider $m D+L \quad m \gg 0$ with D as above

$$
(m D+L) . C=0 \quad \text { for } \quad[c] \in F
$$

$D . \zeta>0$ for $\zeta \in \overline{N E}(x) \backslash F$
So $m D+L$ is nov for $n \gg 0$ So by above argument,

$$
\begin{aligned}
& m D+L=\varphi_{F}^{*} D_{z}^{\prime} \\
& L=\varphi_{F}^{*}\left(D_{z}^{\prime}-m D_{z}\right)
\end{aligned}
$$

Cor if $F=R=\mathbb{R}_{\geqslant 0}[c]$ is a $\left(k_{x}+s\right)$-negative e x tremul ray, then the following sequence is exact

$$
\begin{array}{rl}
p(z) \\
=P(x)-1 & 0 \rightarrow P_{i} c(z) \xrightarrow{\varphi_{F}^{*}} P_{i-}(x) \rightarrow \mathbb{Z} \\
L \mapsto L . C
\end{array}
$$

Proof just need to check that φ_{F}^{A} is injective, since exactness in the middle is step 9 .

$$
\begin{aligned}
& \varphi_{F_{*}} \varphi_{F}^{*} \theta_{z}(L)=\theta_{Z}(L) \otimes \varphi_{F_{*}} \theta_{x} \\
& \Rightarrow \varphi_{F}^{*} \text { is infective }
\end{aligned}
$$

Cor (classification of extre maul contractions) Suppose (x, s) is a projective \mathbb{Q}-factorial balt pair \& R is o $\left(K_{x}+\Delta\right)$-negative exreaal ray. Then $\varphi_{R}: X \rightarrow Z$ is either

1) birational with exceptional locus $E \subseteq X$ on irreducible divisor
2) Small birational map
3) $\operatorname{dim} z<\operatorname{dim} x \quad k$ in this case φ_{R} ia \log Fard fibration
say F is a generic fiber of φ_{R}
3),

$$
\begin{aligned}
& \left.\left(K_{X}+\Delta\right)\right|_{F}=K_{F}+\left.\Delta\right|_{F} \\
& \Rightarrow\left(x, \Delta_{F}\right) \text { is a pair } \\
& \text { with }-\left(K_{F}+\left.\Delta\right|_{F}\right) \text { duple }
\end{aligned}
$$

Cor let (x, Δ) be a projective $k l t$ pair, $R \leq \overline{N E}(x)$ a $\left(k_{x}+\Delta\right)$-negative extrenal ray. Suppose x is Q fact \& φ_{R} is either divisorial or a fibration (Mari fibs space) then Z is \mathbb{Q}-factorial
Proof 1) φ_{R} is divisurial, $E \leq X$ exceptional divisor $E, R<0$. let B be a wail divisor on $Z . \quad R=\mathbb{R}_{\geqslant 0}[C]$

$$
\left(\varphi_{F^{*}}^{-1} B+s E\right) \cdot c_{T}=0
$$

there exits as s sot.
since X is \mathbb{Q} factorial, then

$$
m\left(\varphi_{F}^{-1} B+s E\right) \text { is Cartior }
$$

$$
\varphi_{F}^{*} M_{Z}
$$

$$
M_{z} \in Z
$$

$B \sim \mathbb{Q} \frac{1}{m} M_{z} \Rightarrow B$ is \mathbb{Q}-cutier \uparrow exceptiond lous of since φ_{F} is fovims $200 Z$
3) if $\operatorname{din} z<\operatorname{din} x, \quad B$ weil div on z
$B_{\square}^{B^{0} \subseteq B} \quad \frac{\text { cartier locus bispen ul }}{\left.\varphi_{F}\right|_{\varphi_{F}^{-1}(u)} ^{*} B^{0}}=D \subseteq X$
$m D$ is cartier for some m
but $m D$. guere fiber $=0$
so $m D . C=0$ for $[C]$ spaning theray

$$
\begin{aligned}
\Rightarrow & m D=\varphi_{F}^{*} M_{Z} \quad M_{z} \in P_{i c}(z) \\
& B \sim \mathbb{Q} M_{z} / m \Rightarrow B \text { is } \mathbb{Q} \text {-catios. }
\end{aligned}
$$

Cor $\varphi_{F}: x \rightarrow z$ extrema mall contraction of a $\left(k_{x}+\Delta\right)$-negative
(x, Δ) pas w_{t}, face
$\Delta \geqslant 0$
Then $R^{l} \varphi_{F_{*}} \theta_{x}=0$ for $i>0$

$$
R \varphi_{F *} \theta_{x} \simeq \theta_{z i}
$$

Prop $-\left(k_{x}+\Delta\right)$ is φ_{F}-ample
$D=0$ so by $k v$ vanishing

$$
R^{i} P_{F_{*}} \theta_{x}(D)=R^{i} \varphi_{F_{*}} \theta_{x}=0 \text { for } i>0
$$

The relative setting
Thu (relative bop the orem) let $(X A)$ a balt pair with $\Delta \geqslant 0, f: x \rightarrow Y$ projective morphism. D f-nif cartier divisor such that aD $-\left(K_{x}+\Delta\right)$ is fig \& fine for some a>0
then, D is f-semiauple
$b D$ is f-bp for $b \gg 0$
i.e. $f^{*} f_{A} \vartheta_{x}(b D) \rightarrow v_{x}(b D)$

Proof (sketch)
Step Compactify \& resolve to reduce to the case of F o norphism of projective Varieties

Step 2 let A be an ample or Y it suffices to show that $m D^{\prime}={ }_{m} D+{ }_{m} f^{*} A$ is base point free
indeed, for any $x \in X$,

$$
\begin{aligned}
& f^{\prime}(u)=C^{x} \leq x \text { st } H^{\infty_{y}\left(X, m D^{\prime}\right) \stackrel{\sim}{\rightarrow} H^{0}\left(Y, f_{A}(x) \neq 0\right.} \\
& f(x) \in \stackrel{\downarrow}{U} \subseteq \stackrel{\downarrow}{Y} \\
& H^{0}\left(u, F_{*} m D I_{u}\right)=H^{\circ}(v, m 01)
\end{aligned}
$$

Step $3 a D-\left(k_{x}+\Delta\right)$ is f-big $a D-\left(K_{x}+\Delta\right)+f^{*} H$ big if
H is very ample enough
Pick some E effective sit.

$$
a D-\left(k_{x}+\Delta\right)+f^{*}+1-\varepsilon E
$$

is ample
for $\varepsilon>0$ sacral, $(x, y+\varepsilon E)$ is kt

$$
A=H / a \quad D^{\prime}=D+f^{*} A
$$

$\left(x, \frac{1}{D+\Sigma E)}\right.$ is kit \& $a D^{\prime}-\left(k x+\Delta^{\prime}\right)=6$ is ample
so if D^{\prime} is ref \Rightarrow se mi a uple by bp step 5 need to check that D^{\prime}
con be aude to be ret apply cone theorem to $\left(x, s^{\prime}\right)$
$\Rightarrow \exists$ finitely many extremal rays R
sit. $\left.R \backslash \xi_{0}\right\} \subseteq\left(K_{x}+\Delta_{11}^{\prime}+6\right)<0 \quad \mathbb{R}_{70}^{\prime \prime}[6]$

$$
D^{\prime}<0
$$

since $D^{\prime}=$ free + pullback, then $C \notin$ fibers of f

$$
+C \cdot F^{*} A=F_{*} C \cdot A>0
$$

so by nuking A more
Positive, we can make $D_{0}^{\prime}(\geqslant 0$ so by modifying A, we con make D^{\prime} net

