The (relative cone theorem)
(X, b) is kilt, f: X->Y a projective
morphism of cons quasiprojective normal
Varieties. Then
)
$$NE(X/Y) = NE(X/Y) = K_X + 0 = 20$$
 commute
2) for $z \gg 3$ H f-ample,
 $NE(X/Y) = NE(X/Y) = K_X + 0 = 20$ commute
3) contractions of $(K_X + 0) = NE(X/Y) = NE(X/Y) = K_X + 0 = 20$
faces of $NE(X/Y) = E(X/Y) = K_X + 0 = 20$
faces of $NE(X/Y) = E(X/Y) = 20$ commute
4) fine bundles that are frivial on
on apprend face F are fulled
back by the extremal contraction

$$J = M + \sum r_{j} [c_{i}] \qquad k_{j} \qquad \text{one theorem of} \\ (x_{j} = \gamma) \\ \overline{NE(x)}_{k_{i} + \delta \ge 0} \qquad \text{fenerators of } (k_{j} + \delta) - \text{regative} \\ coup of \quad \overline{NE(x)} \\ \overline{r_{j}} \ge - \overline{s_{x}} M + \sum r_{j} \overline{f_{x}} [c_{j}] \\ \overline{r_{j}} \ge - \overline{s_{x}} M + \overline{NE(Y)} \\ contains \quad m \quad \beta \text{ in } es \quad = \sum \overline{s_{x}} M = \overline{s_{x}} [c_{j}] = \delta \\ \text{So } \overline{NE(x)} = \overline{NE(x_{i})} + \sum R_{2} [c_{j}] = \delta \\ \text{So } \overline{NE(x_{i})} = \overline{NE(x_{i})} + \sum R_{2} [c_{j}] = \delta \\ completes \quad \overline{first} \quad port \\ \overline{s_{x} + \delta \ge 0} \quad \overline{s_{x}} [c_{j}] = \delta \\ complete \quad on \quad Y \quad s_{i} + \sum H + \overline{f^{*}} A \quad is \\ complete \quad on \quad Y \quad s_{i} + \ldots + H + \overline{f^{*}} A \quad is \\ complete \quad NE(x_{i}) = \overline{NE(x_{i})} + \sum R_{2} [c_{j}] \\ \overline{NE(x)} = \overline{NE(x_{i})} K_{x} + \delta + zH + \overline{f^{*}} A \ge 0 \quad \overline{finite} \\ OI \\ \overline{NE(x_{i})} = \overline{NE(x_{i})} K_{x} + \delta + zH + \overline{f^{*}} A \ge 0 \quad \overline{finite} \\ OI \\ \overline{NE(x_{i})} = \overline{NE(x_{i})} K_{x} + \delta + zH + \overline{f^{*}} A \ge 0 \quad \overline{finite} \\ \end{array}$$

Step 4
to Produce relative bpf theorem
to Produce extremend contractions

$$X \xrightarrow{\Im X}$$
 continue
 $T \xrightarrow{\Im Y}$ as before
Cor relative cone theorem hulds for
dit pairs.
Proof if (X, Δ) is dit, then
 $(X, (1-S)\Delta)$ is dit, then
 $(X, (1-S)\Delta)$ is dit, for
 $O < S < I$
H imple, $Z > O$, Pick S s.A. $EH + S\Delta$
is ample $+ \sum_{\text{Finite}} R_{2}[S]$
 $\overline{NE}(X/Y) = \overline{NE}(XY)_{K_X} + (I-S)\Delta + EH + S\Delta$
 $= \overline{NE}(XY)_{K_X} + \Delta + EH$ finite
 $+ \sum_{X} R_{2}[S]$

The	log	mini nul	mod el	prog ra M
(x, s)			(1	MMP/MMP)
recall	when	\$ = O ₂	۵	minimul model
is	QN	p"X-0 X"	5,4.	XM
			k has K has K has	ferminal sing
		tii)	sur je	birational
¢ ^C : X) × ^c	0	onorial	model
		;) X ^c hu	s cons	niced sing
		si) k si) k si	is bire	an ple tional
}	x' = Pop	$p(k_x)$	Alando	M(2
LMMP	-	_		
Input	= (×,)))	projec i) (X, ii) X ii	stive morphism b) is dl+ C - Factorial
Algori tha	r Pi	ck u	$(k_{x} + \Delta)$) - negative offerend $\overline{NE}(X/y)$
Algorithm set (X.,	0°) = (XV)	> ray	'R S	NE (X/Y)

if \$R is $let \quad \not P_{-} : X_{i---} X_{i+1} \quad be \quad \not P_{R}$ not a fiber space or its flip, Dit= P+ 4 Need to know Xiti D Q-factorial (X:+1, B:+1) is 814 either a Mori fiber space Out put Ø: X -> Z with dinz rdinx (Xn, Sn) where ky + On is fnef Ø. never extract divisors, Rmk i.e p.-1 does not contract di visors. $(\mathbb{P}^2, \mathbb{X}) \leftarrow (\mathbb{B}_{\mathbb{P}} \mathbb{P}^2, \mathbb{D} = 9_{\mathbb{F}}^{\prime} \mathbb{D})$ EK In this example, the pluricanonial sections are different (X, D) s.t. Kx+D is A -Grtier A (Kx + D) - Flipping contraction Def a small birational morphism 12

 $f: \chi \rightarrow \gamma \qquad s.t. \qquad \rho(\chi/\gamma) = j \qquad s.t.$ -(Kx+D) is f-ample. The Flip of f, f: xt -> Y s.t. Fly ft that Ky + Dt is \$ Y Ft & A - Cartier ii) ft is small (iii) $K_{x^+} + D^+$ is ample Prop let (X,S) be a R-factorial dlt pair, \$\$ x => Y a (Kx+s)-flipping contraction of an extremal ray, let \$\$\$\$\$\$\$\$ xt -74 be a flip. i) xt is Q-factorial Then 2) $p(x) = p(x^+)$ Proof

D⁺ some weil divisor on X⁺ Y__' D⁺=: D $(D + r(k_x + \delta))$. R = Othere exists on r s.t. $\beta_R m D_2 \sim m(D + r(k_x + s))$ cone theorem, where by mDz is Cartier $D^{+}=\varphi_{*}D^{-}\varphi_{*}\varphi_{R}^{*}D_{2}-\varphi_{*}r(k_{*}+3)$ $(\mathcal{P}_{R}^{+*})_{z} - r(k_{x}^{+})_{x}$ => Dt is Q-Cart Q - Cartier $D_{iv}(x) = W D_{iv}(x) = W D_{iv}(x)$ so p(x) = p(x'). It previous step

Prop kt
$$(X, \Delta)$$
 with Δ effective
let $g: X \dots X'$ be either
 α divisorial contraction of an
extremal ray, or a flip
of a small contraction of an
 $extremal$ ray. Then
 (X, Δ) is kit (resp k, resp dit)
 $(X, \Delta) = (X, \Delta) = -- > (X, \Delta')$
i) $g_{A} = g_{A}^{L} \Delta' = g_{A}^{L} = g_{A}^{L} \Delta' = g_{A}^{L} = g_{A}^{L} \Delta'$
 $2) - (k_{X} + \Delta)$ is
 $\Omega - continer > g - met$
i) $k_{X} + \Delta$ is $\Omega - continer$

Then for any exceptional E lying our Y, $\Delta(E, X, A) \leq \alpha(E, X', S')$ Furthermore, if 1) - (ty +s) is g-ample and g is not an iso OR at the generic point of 2) K, + 1 is center (E) g'- an ple & y' is not an ino at the generic point of conterp(E) then $a(E, X, d) \prec a(E, X, d)$ pf of lemma f 2, ' x ----> x' Pick $h = g \circ f = g' \circ f'$ 9 34 49' suppose that a divisor $(e_{1}+e_{2}^{2}(E) \leq 2$ is $k_{2} - \sum \alpha_{i} (E_{i}, X, \Delta) E_{i} = f^{*}(k_{X} + \Delta)$

 $E_{z} - \sum a_{i}(E_{i}, x', 0) E_{i} = f^{*}(K_{x} + 3') - B$

$$\sum \alpha_{i}(E_{i}, x, \beta) - \alpha_{i}(E_{i}, x', \beta') E_{i}$$

$$= S^{ix}(K_{x}(+\beta')) - S^{x}(K_{x}+\beta)$$
so by our assumptions and the positivity
of $K_{x'}+\beta' = K - (K_{x}+\beta)$, the
-B is h-nef
Negativity Ramma -B h-nef

$$= \sum B i \quad \text{offective} <= \sum \\ h_{x}B = k \quad \text{offect$$

This proves the prop for kI+ & kc (X, M) dl+, pick Z = X sit-(X12,5(2)), snc $2' = p'(2) \cup E_{x}(g')$ let ≤ x' on XZ x'\2'= X\Z Sh(di Uisur let E be a divisor with center, (E) = 2' dle $\alpha(E_{y}, x', b') \ge \alpha(E_{y}, x, b) \ge -1$ Certer, (E) E Ex (g-1) then the 1st F In Rquality is strict if $(x_1+e_{x_1}(E) \leq \mathcal{O}(2) =)$ center (E) so the 2nd inequality is strict Ī