Thu (relative cone theorem)
(x, Δ) is kIt, $f: x \rightarrow Y$ a projective morphism of conn quasipojective normal Varieties. Then

1) $\sqrt{N E}(x / y)=\overline{N E}(x / y)_{K_{x}+B \geqslant 0}+\sum_{\text {counthb }} \mathbb{R} \geqslant\left[c_{i}\right]$
2) for $s>0, H$ f-ample,

$$
\overline{N E}(x / y)=\widetilde{N E}(x / y)_{\kappa_{x}+\Delta+\varepsilon H}+\sum_{\text {finite }} \mathbb{R}_{3 p}\left[c_{i}\right]
$$

3) Contractions of $\left(K_{x}+\Delta\right)$-negative extremal faces of $\overline{N E}(X / y)$ exist f de unique
4) line bundles that are trivial an on extremal face F are pull ed buck by the extremal contraction

Proof sketch

Ste pl
Compactify X, Y, f to be a projective morphisen between projective varieties, and extend the divisors appropriately

Step 2

$$
\zeta \in \overline{N E}(x M)_{K_{x}+\Delta<0}
$$

$$
\zeta=\eta+\sum r_{j}\left[c_{j}\right] \quad b_{y} \quad(x, \Delta) \text { ane on }
$$

$$
\text { NE }(x)_{k_{x}+\Delta \geqslant 0} \quad \text { generator of }\left(k_{x}+\Delta\right) \text {)executive }
$$

$$
\text { coup of } T E(x)
$$

$$
\begin{aligned}
\left.0=f_{*}\right\} & =f_{*} n+\sum r_{j} f_{k}\left[c_{j}\right] \\
& r_{j}>0 \quad f_{k} n \in \overline{N E}(Y)
\end{aligned}
$$

Since $\quad Y$ is projective, $\overline{N E}(Y)$ contains no lines $\Rightarrow f_{*} M=f_{*}\left[c_{j}^{j}\right]=0$
so $\overline{N E}(x / y)=\overline{N E}(x / y)_{k}+\sum \mathbb{R}_{20}[\delta]$ completes first put $k_{x}+\Delta \geqslant 0 f_{k}\left[c_{j}\right]=0$
Step 3 let H be an f-anple 270, can pick some A ample on Y sit. $\varepsilon H+f^{*} A$ is ample or X, so

$$
\begin{aligned}
& \overline{N E}(x)=\overline{N E}(X) K_{x}+\Delta+\varepsilon H+f^{*} A \geqslant 0+\sum_{\text {finite }} \mathbb{R}_{2} C_{j} C_{j} \\
& 01 \\
& \overline{N E}(X / Y)_{K_{X}}+\Delta+\varepsilon H \geqslant 0
\end{aligned}
$$

Step 4 use relative bpf theorem to produce extrema anal contractions

$$
\begin{aligned}
& x \xrightarrow{\phi_{R} x^{\prime}} \quad \text { continue } \\
& \rho^{\prime} y^{L^{\prime}} \quad \text { as before }
\end{aligned}
$$

Cor relative cone theorem holds for dit pairs.
Proof if (x, Δ) is $d t t$, then
$\frac{(x,(1-\delta) \Delta)}{\text { is kelt for }}$ $0<\delta \ll 1$
H couple, $\varepsilon>0$, pick δ st. $\varepsilon H+\delta \Delta$
is ample

$$
\begin{aligned}
\overline{N E}(X / y) & =\overline{N E}(X / y)_{K_{x}}+(1-\delta) \Delta+\varepsilon H+\delta \Delta \\
& =\overline{N E}(x / y)_{k_{x}+\Delta+\varepsilon H} \quad+\sum_{\text {finite }} \mathbb{R}_{20}[\xi]
\end{aligned}
$$

+ argument as in the prof of the corp theverem to hand $k \varepsilon \rightarrow 0$
$\frac{\text { The log minimul } \operatorname{model} \text { program }}{(\text { LMMP/MMP) }}$

$$
(x, s)
$$

recall when $\Delta=O_{2}$ a ninimal moodel is on $\beta^{m}: x_{x \rightarrow 0} x^{m}$ at. x^{m}
i) x^{m} has terminal sing
i) $k_{x^{m}} n f$
ii) 8^{m} is birational
$\phi^{*}: x, \cdots x^{c}$ a conorial model
i) X^{c} has conbrial sing
ii) $K_{x^{c}}$ is anple

19i) $\begin{gathered}x^{c} \\ x^{c} \\ \text { is bicational }\end{gathered}$
$X^{c}=\operatorname{Poj} R\left(K_{x}\right) \quad$ Alandeace
LMMP
$I_{\text {rput }}=(x, y) \xrightarrow{\pi} B \quad$ pojective morp hism
i) (x, s) is $d l+$
ii) X is \mathbb{Q}-factorial

Aloprithm pick a $\left(K_{x_{i}}+\Delta_{i}\right)$-negative atremal set $\left(x_{0}, s_{0}\right)=(x, s) \quad$ rag $\quad i R \subseteq \overline{N E}(x / y)$
if ϕ_{R} is let $\phi_{i}=x_{i} \cdots x_{i+1}$ be ϕ_{R} not $\underset{\text { space }}{0}$ fiber or its flip, $\Delta_{i+1}=\phi_{i} \Delta_{i}$

Need to know x_{i+1} is \mathbb{Q}-factorial

$$
\left(x_{i+1}, \Delta_{i+1}\right) \text { is } \partial l t
$$

Output either a Mari fiber space

$$
\phi: x_{n} \rightarrow z \quad \text { with } \quad \operatorname{din} z<\operatorname{din} x_{n}
$$

af $\left(x_{n}, x_{n}\right)$ where

$$
k_{x_{n}}+\Delta_{n} \text { is fief }
$$

Rank ϕ_{i} never extract divisors, i.e ϕ_{i}^{-1} does not contract divisors.

Ex

$$
\left(\mathbb{P}_{1}^{2} \underset{D^{\prime \prime}}{\neq}\right)<{ }^{9}\left(B L_{p} \mathbb{R}^{2}, D^{\prime}=g_{*}^{-1} D\right)
$$

In the example, the pluricanorial sections as 'different (x, D) st. $K_{x}+D$ i D-cartier Def A $\left(K_{x}+D\right)$-flipping contraction is a small binational morphism
$f: X \rightarrow Y \quad$ sit. $\quad P(x / y)=1 \quad$ s.t. $-\left(k_{x}+D\right)$ is f-ample.
The flip of $f, f^{+}: x^{+} \rightarrow y$ sit.
ii) F^{+}is small
iii) $K_{x^{+}}+D^{+}$is ample

Prop let (x, Δ) be a Q-factorial dit pair, $\phi_{R}: x \rightarrow Y$ a $\left(k_{X}+\Delta\right)$-flipiry contraction of as external cay, let $\phi_{R}^{+}: x^{+} \rightarrow 4$ be a flip.
Then 1) x^{+}is Q-factorial

$$
\text { 2) } p(x)=\rho\left(x^{+}\right)
$$

Proof
φ
$\phi_{R} D Y^{k} \phi_{R}^{+} \quad \begin{aligned} & \varphi \text { is sirational, expects no div }\end{aligned}$

D^{+}some wail devise on X^{+} $\varphi *^{-1} D^{+}=D$

$$
\left(D+r\left(K_{x}+\Delta\right)\right) \cdot R=0
$$

there exists an r s.t-

$$
\phi_{R}^{\alpha} m D_{Z} \sim m\left(D+r\left(k_{x}+\Delta\right)\right)
$$

by cone there as, where $m D_{z}$ is cartier

$$
\begin{aligned}
& D^{+}=\varphi_{*} D \sim \varphi_{*} \phi_{R}^{*} D_{z}-\varphi_{*} r\left(k_{x}+s\right) \\
& \left(\phi_{R}^{+}\right)^{+} D_{z}-r\left(K_{x^{+}}+s^{+}\right) \\
& \Rightarrow D^{+} \text {is } \mathbb{Q}-\text { cor }{ }^{4} Q_{-c o n t i e r}^{\lambda} \\
& \Rightarrow \operatorname{Div}_{Q_{R}}(x)=W D_{i_{R}}(x)=4 D_{i v_{R}}\left(x^{\prime \prime}\right. \\
& \rightarrow \operatorname{Din}_{R}\left(x^{\prime}\right) \\
& \text { so } P(x)=\rho\left(x^{\prime}\right) \text {. by previous step }
\end{aligned}
$$

Pop kt (x, Δ) with Δ effective let $g: x \rightarrow X^{\prime}$ be either a divisorial contraction of as extreenal ray, or a Flip of a small contraction of an extrenal cay. Then
(x, s) is $k 1+$ (resp k, resp $d l+$)
V
$\left(x^{\prime}, g_{*} \Delta\right)$ is $k l+(\operatorname{cesp} k$, resp $d t)$
Prof Lemma
0) 9ϕ poi $(x, s)-\varnothing>\left(x^{\prime}, s^{\prime}\right)$

1) $g_{A} \Delta=g_{*}^{\prime} \Delta^{\prime} \quad g>_{Y}<g^{2}$
2) $-\left(k_{x}+\Delta\right)$ is
\mathbb{Q} - Cutter $29-n e f$
3) $k_{x}+\Delta$ is Q-cutier
g'nef

Then any exceptional E king our

$$
Y, \quad a(E, \times A) \leq a\left(E, x^{\prime}, \Delta^{\prime}\right)
$$

Furthermore, if 1$)-\left(k_{x}+\Delta\right)$ is 9 -ample

OR
2) $K_{x}+\Delta^{\prime}$ is
g^{\prime} - angle
and g is not as is at the generic point of center (E)
\& y^{\prime} is st on is e at the generic point of center (E)
then $a(E, x, \Delta)<a\left(E, x^{\prime}, 4^{\prime}\right)$
pf of lemma
pick

$$
h=g \circ f=g^{\prime} \circ f^{\prime}
$$

suppose that

$$
\text { center }_{z}(E) \leq z \text { is a divisor }
$$

$$
\begin{gathered}
k_{z}-\sum a_{i}\left(E_{i}, x, \Delta\right) E_{i}=f^{*}\left(k_{x}+\Delta\right) \\
k_{z}-\sum a_{i}\left(E_{i}, x^{\prime}, \Delta^{\prime}\right) E_{i}=f^{\prime^{*}}\left(k_{x^{\prime}}+\Delta^{\prime}\right) \\
-B
\end{gathered}
$$

$$
\begin{aligned}
& x_{x-\cdots x^{\prime}}^{Z_{f^{\prime}}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum a_{i}\left(E_{i}, x, \Delta\right)-a_{i}\left(E_{i}, x^{\prime} \Delta^{\prime}\right) E_{i} \\
= & f^{\prime x}\left(K_{x^{\prime}}+\Delta^{\prime}\right)-f^{x}\left(K_{x}+\Delta\right)
\end{aligned}
$$

so by ow assumptions on the pasjitivits
of $k_{x^{\prime}}+s^{\prime} \&-\left(k_{x}+\Delta\right)$, then $-B$ is h-of
$\xrightarrow{\text { Negativity Rama }}-B$ beef
$\Rightarrow B$ is effective \Longleftrightarrow

$$
b_{*} B \text { is effective }
$$

by negativity lemma,

$$
a\left(E_{i}, x, \Delta\right) \leq a\left(E_{i}, x^{\prime}, \Delta^{\prime}\right)
$$

under ow extra assumptions, $-\left.B\right|_{E}$ is not numerically trivial at the generic point \Rightarrow strict inequality

This proves the prop for blt \& lc $(x, s) d l t$, pick $z \leq X$ sit. $(x \neq, \Delta x)$ is sic
let

$$
\begin{aligned}
Z^{\prime} & =\varnothing(z) \cup E_{x}\left(g^{-1}\right) \\
& \leq x^{\prime}
\end{aligned}
$$

$$
x^{\prime} \backslash z^{\prime} \leq x \backslash z \quad \text { on have an }
$$

let E be a divisor \sin (divisor with center $x_{x^{\prime}}(E) \subseteq Z^{\prime}$

$$
a\left(E, x^{\prime}, \Delta^{\prime}\right) \geqslant d^{\text {dem ma }} \geqslant(E, x, \Delta)^{\prime \prime} \geqslant-1
$$

if carter. $(E) \subseteq E_{x}\left(g^{-1}\right)$ then the $1^{\text {t }}$ inequality is strict
if center $x_{\prime}^{\prime}(E) \subseteq \varnothing(Z) \Rightarrow$ center (E) so the $2^{\text {nd }} \leq$ inequality is stich

