Types of models $f:(x, 1) \rightarrow B$
Def
(x, s) is a $\log \operatorname{minimal} m o d e l / B$ if (x, s) has dit singularities \& $K_{x}+s$ if fonef

What should be called the log min/can model of the pair (X, A) ?

1) 9 projective
$\left.{ }^{2}\right) \varnothing$ extracts no divisors

$$
\Delta_{Y}=\phi_{*} \Delta
$$

e.g. if ϕ a morphism 3) $a(E, X, \Delta) \leq a(E, Y, \Delta y)$ $K_{x}+\Delta=\phi^{*}\left(K_{y}+\Delta_{y}\right)+\sum_{\mathcal{L}_{i}} a_{i} e_{i}$ for all ϕ-exceptional $\begin{gathered}\text { divis orr } E\end{gathered}$
3) $\Rightarrow \quad a_{i} \geqslant 0 \quad$ effective exceptional
3) $\Rightarrow a_{i}>0$
3) $a(E, X, s)<a(E, Y, \Delta y)$ for $E \quad \phi$-exc
Def $f:(x, s) \rightarrow B$ le pair poj/B a pair $\left(Y, \Delta y=\phi_{*} \Delta\right)$
x, ϕ_{-}, y is a
F Δ_{B} / g I) weak \log canonical model $\operatorname{WLCM}(x, \Delta / B)$ if it Satisfies $1+2+3$ above \& $K_{Y}+\Delta_{Y}$ is $g-n e f$
II) (log) minimal model (log terminal model if (x, s) is dit, $\operatorname{LTM}(x, s / B))$
it satisfies $1+2+3$

$$
k_{Y}+\Delta_{y} \text { is } g-n e f
$$

III) \log canonical model if its a $\omega L C M(X, \Delta / B) \& K_{Y}+\Delta_{Y}$ is g-ample

Prop $f:(x, \Delta) \rightarrow B$ as above, $\left(Y, \Delta_{Y}\right)=\operatorname{WLCM}(X, \Delta / B)$ then for all E lying over $X, a(E, x, \Delta) \leqslant a\left(E, Y, \Delta_{Y}\right)$

Proof

$$
\begin{aligned}
& x^{p} \operatorname{Len}_{0}^{\omega} \nu^{q} \\
& f \sum_{B} / g \text { a diviboe }
\end{aligned}
$$

$$
\begin{aligned}
& \left.K_{\omega}=p^{*}\left(K_{X}+\Delta\right)+A_{X} \quad a\left(E_{,}, \Delta_{Y}\right)-a(E X \Delta)\right) \\
& K_{\omega}=q^{*}\left(K_{Y}+\Delta_{Y}\right)+A_{Y} \quad \operatorname{cosf}_{E}\left(A_{Y}-A_{x}\right) \\
& B:=p^{*}\left(K_{X}+\Delta\right)-q^{*}\left(K_{Y}+\Delta_{Y}\right)=A_{Y}-A_{X}
\end{aligned}
$$

1) $P_{*} B$ is effective by a sumption
2) $-B=q^{*}\left(k_{y}+\Delta_{y}\right)-p^{*}\left(k_{x}+\Delta\right)$
is p-ref
Indeed if $\left.\} \in \overline{N E}(\omega / x) \quad p^{*}\left(K_{x}+\Delta\right).\right\}=0$ but $K_{y}+\Delta_{y}$ is if,

$$
\left.\left.q^{*}\left(K_{y}+s_{p}\right)\right\rangle=\left(k_{y}+D_{y}\right) q_{k}\right\} \geqslant 0
$$

b_{y} assumption that $\left(Y, \Delta_{y}\right)=L_{l} C H$
Negativity Le ama $\Rightarrow B$ effective
Cor the singularities of WLCM are in the sone class as those of (x, s)
Def a $\log _{\text {gairimal mad }}\left(Y, \Delta_{Y}\right)$ good if $k_{Y}+\Delta_{Y}$ is f-semimample

Abundance $=$ all minimal models are good
LMMP conj
let $f:(x, s) \rightarrow B \quad d l+$ pair $p v^{j} / B$ there for all sequence a sequere of $\left(k_{x}+s\right)$-flips + divisorial extremal contractions sit. composition ϕ either
$x \ldots m y$ al is a good minimal
 or $\Leftrightarrow K_{x}+\Delta$ pseurooff
b) is a mori fiber space

$$
\Leftrightarrow \quad K_{x}+\Delta \text { not }
$$

pseudo effective
Thy (uniqueness of canonical modes)
$f:(x, s) \rightarrow B$ as before
$\left(Y, \Delta_{Y}\right)=\operatorname{LCM}(x, \Delta / B)$, then

$$
y=p a j_{B} \bigoplus_{m>\infty} f_{*} \theta_{x}\left(m K_{x}+\lfloor m \Delta\rfloor\right)
$$

Proof

$$
\begin{aligned}
& \text { reduced } \\
& \text { p-exeptionals } \\
& \vdots
\end{aligned}
$$

$$
f \searrow_{B}^{l g} \quad k_{\omega}+\Delta_{\omega}=q^{*}\left(k_{Y}+\Delta_{Y}\right)+\stackrel{\substack{\text { effective } \\ q-e x_{L}}}{\text { ns }}
$$

by the regatijicitume by def of $L \mathrm{LCM}$

$$
\begin{aligned}
& P_{x} \theta_{\omega}\left(m k_{\omega}+L m \Delta_{\omega} \downarrow\right)=\theta_{x}\left(m k_{x}+\lfloor m \Delta\rfloor\right) \\
& q_{\alpha} \theta_{\omega}\left(m k_{\omega}+\left[m \Delta_{\omega}\right]\right)=\theta_{y}\left(m k_{Y}+\left[m \Delta_{y} L\right)\right. \\
& y=\operatorname{Poj}_{B} \bigoplus g_{*} \theta_{Y}\left(m K_{Y}+\left\lfloor m \Delta_{Y}\right\rfloor\right) \\
& \text { b/c } \\
& \mathrm{K}_{4}+\mathrm{DC} \\
& \text { is g-ample } \quad g_{*} q_{*} \partial_{\omega}\left(m k_{\omega}+\left[m \Delta_{\omega}\right\rfloor\right) \\
& f_{*} P_{*} \theta_{\omega}\left(m K_{\omega}+\left(m \Delta_{\omega}\right)\right. \\
& f_{*} \theta_{x}\left(m k_{x}^{\prime \prime}+(m \Delta l)\right.
\end{aligned}
$$

Rmk $\operatorname{LCM}(x, s / B)$ is arique if it exists exists $\left.\Leftrightarrow \underset{m \rightarrow 0}{\oplus} f_{*} \partial_{x}\left(m k_{x}+\operatorname{Lm} \Delta\right)\right)$ f.g.

Cor $\varphi: x^{\prime} \rightarrow x \quad$ set. $\quad\left(x^{\prime}, s^{\prime}\right) \quad$ lc

$$
\begin{aligned}
& K_{x^{\prime}}+s^{\prime}=\varphi^{*}\left(K_{x}+\Delta\right)+\text { eff } \varphi \text {-exc } \\
& \Rightarrow L C M\left(x, \Delta^{\prime} / B\right)=\operatorname{LCu}(x, s / B)
\end{aligned}
$$

Pop let $f: x \rightarrow y$ be a $\left(k_{x}+s\right)$-flipping contraction of an en pair (x, Δ) then

1) the flip $f^{+}: x^{+} \rightarrow y$, if it exist, s the $\operatorname{LCM}(x, \Delta / y)$
2) the flip exists \Leftrightarrow

$$
\bigoplus_{m \rightarrow 0} f_{x} \partial_{x}\left(m k_{x}+m \Delta 1\right) \text { fig. }
$$

3) Flips are unique
proof

$$
\begin{aligned}
& x \stackrel{\phi}{x} x^{+} \quad \Delta^{+}=\phi_{k} \Delta \\
& f \nabla_{Y} \mathrm{lf}^{+} \quad \phi_{\&} \text { extacti no io divisors } \\
& \& \text { has no exceptional }
\end{aligned}
$$

$K_{X^{+}}+s^{+}$is ff^{+}-ample by def of
a flip
$\Rightarrow \quad x^{+}=\operatorname{LCM}(x, \Delta / y) \quad$ by $\quad d e f$
Inversion af adjunction
recall if $s \subseteq x$ cartier divisor

$$
\begin{aligned}
& \left.\left(K_{x}+s\right)\right|_{s}=K_{s} \quad R: w_{x}(s) \rightarrow \omega_{s} \\
& (k+s+\Delta) \mid+k^{0 \rightarrow w_{x} \rightarrow w_{x}(s) \xrightarrow{R}+\Delta w_{s} \rightarrow 0} \text { Smart cure }
\end{aligned}
$$

$$
\begin{aligned}
& =f\left(0, x_{1}-, x_{n}\right) d x_{1}-d x_{n} \\
& (x, s+\Delta) \longleftrightarrow\left(s,\left.\Delta\right|_{s}\right) \\
& \text { (} x, \Delta+s \text {) }
\end{aligned}
$$

Different: S normal integral wail $z \leq S \leq X$ sit. $x \backslash z \geq S \backslash z$ divisor smooth cartier

$$
\Delta \cap s \leq Z
$$

S, Δ shave to components
I) $\quad R_{\text {s\z }}:\left.\omega_{x}(s)\right|_{\text {s\z }} \stackrel{\sim}{\Rightarrow} \omega_{\text {s\z }}$

$$
m\left(k_{x}+s+\Delta\right)
$$

cortier for same m>0

$$
R_{s z}^{m}:\left.\omega_{x}^{[m]}(m s+m s)\right|_{S} \stackrel{\sim}{\sim} \underset{s l z}{\omega_{s i z}^{[m]}}
$$

since S norenal, $S^{0} \leq S$ sit.
everytimg is a line bunde an 5° \& $\quad \operatorname{codim}\left(s \backslash s^{0}\right) \geqslant 2$
exterd to some is morphism

$$
R_{s^{0}}^{m}:\left.\omega_{x}^{[m]}(m s+m s)\right|_{S^{\circ}} \xrightarrow{\sim} \omega_{S^{0}}^{[m]}\left(A_{5}\right)
$$

$\Delta_{s} \quad$ cartier

$$
\begin{aligned}
& \Rightarrow R_{S}^{m}:\left.\omega_{x}^{[m]}(m S+m s)\right|_{S} \xrightarrow{\sim} \omega_{S}^{[m]}(\Delta) \\
& \Delta_{S}=i_{*} \Delta_{s} \quad i: s^{\circ} \hookrightarrow S \\
& \operatorname{Diff}_{S}(\Delta):=\frac{\Delta_{s}}{m} \in \omega_{D_{i v}}(x) \\
&\text { \# })\left.\left(K_{x}+s+\Delta\right)\right|_{S} \sim_{Q} K_{S}+\operatorname{Diff}_{s}(\Delta)
\end{aligned}
$$

II) $f: Y \rightarrow(x, s+\Delta) \quad \log$ resolution

$$
k_{y}+s_{y}+A_{y}=f^{*}\left(k_{x}+s+\Delta\right),
$$

$$
\begin{aligned}
& f_{y} S_{y}=s \\
& f_{x} \Delta_{y}=\Delta
\end{aligned}
$$

define s_{y}, or

$$
\begin{aligned}
& \left.\Delta_{Y}\right|_{S_{Y}}=\operatorname{Diff}_{S_{Y}}(\Delta Y) \\
& \binom{\operatorname{Diff}_{S}(\Delta)=\left.f_{*} \Delta_{Y}\right|_{S_{Y}}}{f_{I_{Y}}^{*}\left(K_{S}+\operatorname{Diff}_{S}(\Delta)\right)=K_{S_{Y}}+\widetilde{\Delta_{i} I_{S_{Y}}}}
\end{aligned}
$$

Ex
 cone over a conic

$$
\begin{aligned}
& f^{*} K_{x}=K_{y} \\
& f^{*} S=S_{y}+\frac{1}{2} E \\
& \Delta y=\frac{1}{2} E
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{Diff}_{S_{Y}}\left(X_{y}\right)=\frac{1}{2} p \\
& \operatorname{Diff}_{S}(O)=\frac{1}{2}(\text { cone point })
\end{aligned}
$$

