Types of models $f:(X, \Delta) \rightarrow B$ Le pair projouer B
Def
(X, S) is a log minimal model /B
if (x,b) has dlt singularities f Kxt b if f-nef
What should be culled the log min/can model of the pair (K,s)?
X
$\xi V E S = 2) \not p extracts no divisors \Delta \gamma = \not p_* \Delta$
e.g. if $\not = a$ morphism 3) $\alpha(E, X, \Delta) \leq \alpha(E, Y, \Delta Y)$
$K_{X} + \Delta = p^{*}(K_{Y} + \delta_{Y}) + \sum_{i \in I} for all p - e \times ceptional divisors E$ $3) = 2$ $\alpha_{i} > 0$ effective
ave at mak
$3' = 7 \alpha; 70 3) \alpha(E, x, s) < \alpha(E, Y, \Delta y)$ Sor $E \not= exc$
Def f: (X,S) -> B le pair proj/13
$\alpha pair (Y, \Delta Y = \not P_{x} \Delta)$

X.E...Y is a
F
$$V_{g}$$
 (3 I) weak by consider model
WL CM(X, 0/B) if it
Sotisfies 1+2+3 above
 L Ky + 4 Y is 9-net
II) (log) minimul model (log terminul model
if (X, 4) is dlt,
if satisfies (+2+3)
Ky+by is 9-n ef
ID) log cononical model if its a
WLCM(X, 4/B) L Ky+by is 9-ample
Prop $F:(X, 4) \rightarrow B$ as above,
(Y, Ay) = WL CM(X, 5/B) + than for ull
E hying over X, $\alpha(E, X, 4) \leq \alpha(E, Y, 4)$
Proof P W 4
X - -->Y S.t. Center W(E) is
B (9 a divisor

$$K w = P^{*} (K_{x} + \delta) + A_{x}$$

$$K w = P^{*} (K_{x} + \delta) + A_{x}$$

$$K w = Q^{*} (K_{y} + \delta_{y}) + A_{y}$$

$$B := P^{*} (K_{y} + \delta_{y}) - Q^{*} (K_{y} + \delta_{y}) = A_{y} - A_{x}$$

$$P^{*} B \quad is \quad \text{offective by assumption}$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta_{y}) - P^{*} (K_{x} + \delta)$$

$$P^{*} B = Q^{*} (K_{y} + \delta)$$

$$P^{*} B = Q^{$$

Abuidance = all minimal models are good LMMP conj let f: (x,s) ->B dl+ pair proj/B there we all sequence of (Kx+5)-flips + divisorial extremal contractions s.t. b) is a mori Fiber space J B L Kx+D not pseudo effective Thm (iniqueness of Cononical models) f: (x,s) -> B as before $(Y, \delta_Y) = LCM(X, \delta/B)$, then Proof

9- exceptionals

₩ ₹ × × × × $K_{W} + P^{-1}\Delta + \Sigma E_{i} = P^{*}(K_{+})$ Aw + P-exc effective $K_{W} + \delta_{W} = 2^{*}(K_{\gamma} + \delta_{\gamma}) + 2 - e_{XL}$ ç \ 1 / 3 by the against when by des as LCM $P_{x} \mathcal{O}_{w} (mk_{w} + Lm \mathcal{O}_{w}) = \mathcal{O}_{x} (mk_{x} + Lm \mathcal{O}_{y})$ $Q_{x} \mathcal{O}_{w} (mk_{w} + Lm \mathcal{O}_{w}) = \mathcal{O}_{y} (mk_{y} + Lm \mathcal{O}_{y})$ $Y = Proj \bigoplus_{B} \bigoplus_{MT_{iO}} \bigoplus_{Y} (mk_{i} + Lmd_{y})$ Kyt DY is grample 9, 9, 0 (mk, + Lmows) f*P+ Ow (mKw + LmSwl $F_{x} O_{X}(m K_{x} + Lm \Delta L)$ LCM(×,5/B) is asight if it exists Rmk exists $E = \left(f_* \partial_x (mk_x + Lmb) \right)$ **f.g.**

$$\frac{Cor}{X} \quad (Y; X' \rightarrow X \quad s.t. \quad (X', \delta') \ le} \\ K_{X} + \delta = Q^{*} (K_{X} + \delta) + eff \ Q - exc} \\ \implies LCM(X', \Delta'/B) = LCH(X, \delta') \\ \implies DCM(X', \Delta'/B) = LCH(X, \delta') \\ \implies DCM(X', \Delta'/B) = LCH(X, \delta') \\ \implies DCM(X', \Delta''B) = LCH(X, \delta') \\ \stackrel{(X, + \delta)}{=} - flipping \ contraction of an \\ le poir (X, \delta) + then \\ i) the flip f' : X' \rightarrow Y \quad if an \\ exists is the the LCM(X, \delta/Y) \\ = 2) the flip exists (=) \\ \bigoplus f_{X} O_{X}(mK_{X} + m\delta I) \quad f.g. \\ made flip are unique \\ froof \\ X = f_{X} + S^{*} \quad S^{*} = S^{*} A \\ f > Y = S^{*} \quad S \quad extraction and divisors \\ f = box no exceptionals \\ \end{cases}$$

ky + st is stample by set of x+ + flip
$\implies \chi^{+} = L CM(\chi, S/y) \qquad by \partial \mathcal{F}$
Inversion of adjunction
recull if sex contier divisor
$(K_{\chi} + 5) = K_{S} - R: W_{\chi}(s) - W_{S}$
$(k_{x} + S + \delta) \left[+ k_{s} + \delta \right]_{s} \stackrel{\text{summersum}}{R(\frac{s}{x_{6}} + \frac{s}{x_{6}})}$
(X, S+&) (S, C) (S, C) (X, -, X,) dX, -dX,
Different: S normal in tegral weil divisor ZSSX s.t. XXZ2SXZ
smooth cartier AnSEZ
S, B share no components

I) $R_{512}: \omega_{x}(s) \xrightarrow{m} w_{512}$
m(Kx+5+0) Cartier for some MOD
$R_{S,2}^{m}: \left. \begin{array}{c} \omega_{X}^{\text{Em}}(mS+m\delta) \right \xrightarrow{\nu} \omega_{S,2}^{\text{Em}} \\ S_{12} \\ S_{$
everyting is a line budle on s
extend to some isomorphism m [m3, [m3, [m3, [m3, [m3, [m3, [m3, [m3
$R_{s^{\circ}} : W_{x}^{Em3}(mS+ms) _{s^{\circ}} : W_{s^{\circ}}^{Em3}(A_{s^{\circ}})$
$ = 7 R_{S}^{m} : \omega_{X}^{[m]} (mS + mS) \Big _{S}^{-\infty} \omega_{S}^{[m]} (A) $
$D_{S} = i_{*} \Delta_{S} \qquad i: S^{\circ} \subset S$ $Diff_{S} (\Delta) := \Delta_{S} \in WDiv_{Q}^{(X)}$
$\#) (K_{x} + S + \Delta) _{s} \sim Q K_{s} + Diff_{s} (\Delta)$

虹) テ: イー (メ, S+ ろ) log resolution $k_{y} + s_{y} + a_{y} = S^{*} (k_{x} + s + s), f_{y} s_{y} = S$ $f_{\star} \delta_{Y} = \Delta$ define sy, by $\Delta_{Y}|_{S_{Y}} = Diff_{S_{Y}}(\Delta_{Y})$ $\int D_{i} ff_{s}(b) = F_{*} \Delta y |_{sy}$ Allsy $\int_{S_{v}}^{\infty} (K_{s} + Diff_{s}(\delta)) = K_{s_{y}} + Diff_{s_{y}}(\delta_{y})$ our a conic CUR s S S IP3 $F^*K_X = K_Y$ f"s = 54+1E = y 2 -<u>2</u> E

 $D:ff_{sy}(y) = \frac{1}{2}P$ Diffs (0) = 1 (cone point)