Inversion of adjunction
Recall
$$(x_{1}, s+a)$$
 is a log pair
S integral, normal divisor
there is a unique divisor
Diff₅ (d) s.t.
Diff₅ (d) s.t.
Diff₅ (d) s.t.
N $(K_{x} + s+b)|_{s} \sim Q K_{s} + Diff_{5} (d)$
S $f: (Y_{1}, s_{y} + d_{y}) \rightarrow (x_{5}, s+b)$
s.t. $S_{x}, s_{y} = s f_{x} \Delta y^{2} \Delta$
 $S^{*}(K_{x} + s+b) = K_{y} + s_{y} crepant$
 $f_{x}(\Delta y|_{s_{y}}) = Diff_{s} (d)$
 $f_{s}^{*}(K_{s} + Diff_{s} (\Delta)) = K_{sy} + \Delta y|_{sy}$
S) if Δ effective, then
 $Diff_{s}(\Delta)$ is effective
Normal: $\alpha: s^{\alpha} \rightarrow s$ the normalization
Correct by $K_{sy}^{\alpha} = \int_{a}^{a} \chi \cdot sy^{2} = p^{2}$

Prop let
$$(Y, d)$$
 be a dit
poirs then TFAE
1) (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
a disjoint rel
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad normal 3) Lad is
 (Y, d) plt 2) Lad is plt 2) the plt 2) the plt 2) Lad is plt 2) the plt 2) th

Prope let (X, S+B) log pair, 5 integral & normal. Then for every divisor Es lying over 3 then exists a divisor E lying over X s.t. $a(E_{s_j}, s_j, D_iff_{s_j}(d)) = a(E_j, X_j, S_id)$ More o un totul disc (S, Diffs(O)) = discrep (centerns) = discrep (centerns, X, sta) $F: (Y, S_Y + A_Y) \rightarrow (X, S + \delta) \qquad \text{creput} \\ \text{log resolution} \\ \text{log resolution} \\ \text{log resolution} \\ \text{creput} \\ \text{log resolution} \\ \text{log resolution} \\ \text{log resolution} \\ \text{creput} \\ \text{log resolution} \\ \text{log resolution} \\ \text{creput} \\ \text{log resolution} \\ \text{log resolution} \\ \text{creput} \\ \text{log resolution} \\ \text{creput} \\ \text{creput} \\ \text{log resolution} \\ \text{creput} \\ \text{log resolution} \\ \text{creput} \\ \text{creput} \\ \text{creput} \\ \text{creput} \\ \text{creput} \\ \text{cresolution} \\ \text{creput} \\ \text{crep$ $\mathcal{F}^{*}(K_{S} + D)\mathcal{F}(\Delta)) = K_{S} + (\Delta)$ Suppose that Sy is disjoint from $f_{*}^{-1}(\Delta)$, then all divisors we're dealing with one f-exc take a sequence of blowns of S s.t. Es appeors as a divisor on this blowup, blowup the same sequence of subs of 5 but in X, this gives

a diviar
$$E \in Y$$
 s.t. $E|_{S_{Y}} = E_{S_{Y}}$
s.t. Cenversion $(E) = E_{S_{Y}}$
discep = - coefficient for a livitar
appearing on Y
 $(K_{Y} + S_{Y} + A_{Y})|_{S_{Y}} = K_{S_{Y}} + (A_{Y})|_{S_{Y}}$
Cor (Easy adjunction)
i) if $(X_{j} + d)$ is plt in a number of s
 $(S_{j} D)PF_{S}(d))$ is kelt
2) if $(X_{j} + d)$ is let in a number of s
 $(S_{j} D)PF_{S}(d))$ is le
Thus (Inversion of adjunction) (Shokurov)
Kultic, Faunking
The inequalities of diverse appear
are =, therefore the statements
 DF the cor are (S)
MMP with scaling

(X, 0) let pair, H be sime ampk Kx + 0 + H pvF for tel K, #0 =0 NE t = net threshold $(K_{x} + \Delta + t_{i}H)$. R = 0for some extrement ray (Kx+3)-negative external ray t,70 41 ØR: X-72 the (K+15) - extremal contraction $(Z, b_2 + t_1 H_2) = WLCM(X, 4 + t_1 H_B)$ PR is small, X,= flip ;F if by is divisorial, X, = 2 a Mori filer space if φ_R is $(X_1, O_1 + +, H_1)$ WLCM so $K_{X_1} + O_1 + +, H_1$

is nef t, < t, ty=net threshold image of extremal $LCH(X_1, D_1 + t_2 H_1 / B) =$ cunt section of R, $(K_{X} + \delta_{1} + \epsilon_{2} H)R_{1}$ technical point: Need so me biguess of & to guarantee that R, & (Kx+4)-neg extreme my $X_2 = WLCM(X_1, S_1 + \epsilon_2H_1/B)$ $= ULCM(X, \Delta + \frac{1}{2}H/B)$ 0 <.... < t < t < 1 each step of MMP occurs and produces at coefficient tr, WCM(X, S+t;H/B)Finitess of Termination of MMP (=) WLC4 Pr with scaling (X & ++H (X &++H) os te [o, D

s))

MMP dim n-1 => existence of pl-flips Hacon - Mickernon MMP => pl-flipsn Shokwor MMP + pl-flip => flips Existence of minimal models for vorieties of log general type BCHM = Birkar - Cascini - Hacon_Mckernen Thm I F: (x, 0) → B Q-factorial Alt pair projective 1B, suppose A is f-big. Then ary MMP with scaling terminates. let F: (x, b) -> B as Thm II suppose sither & is big above, on) Fx+& is f-pseudo effective OR Ky+s 115-big, then 1) (x, Δ) has a good $LTM(x, \delta/g)$

2) if
$$k_{x} + \Delta$$
 is 5-big, then
(x, 0) fras a $L(M(x, A_{B}))$
3) $R(\pi, k_{x} + \delta) = \bigoplus \underbrace{\bigoplus}_{x} \underbrace{\bigotimes}_{x} (mk_{x} + Lm\delta)$
is $\underbrace{f}_{x} g$.

PF Sketch if Kx + S D f-big Kx + A ~ 5, Q D > 0 $S = \Delta + zD$, D' is big (x, J) is ket K, +b' = (1+2) (x+ b) $(K_{X}+b)-MMP = K_{X}+b' MMP$ but nows & is big so by that, MMP with scaling terminates X---> LTM(X, 6/B) be kx +s pseudo effective > b v 4

2) + 3) in the case Ky + 3 is vig is just the bpf in the case D is big 3) $k_x + 8 \equiv k_x + A + B$ A angle (x, B) kH $(K_{X}+\delta)-(F_{X}+B)=Ample$ in the GPF theorem, => bpf and its are Jood + Finik generation ป