Inversion of adjunction
Recall $(x, s+\Delta)$ is a log pair S integral, normal divisor there is a mique divisor $\operatorname{Diff}_{s}(\Delta)$ sit.

1) $\left.\left(K_{x}+s+\Delta\right)\right|_{s} \sim \mathcal{Q}_{Q} K_{s}+\operatorname{Diff}_{s}(\Delta)$
2) $f:\left(Y, S_{Y}+\Delta_{Y}\right) \rightarrow(x, S+\Delta)$

$$
\begin{aligned}
& \text { sit. } \quad f_{*} s_{Y}=s \quad f_{*} \Delta_{Y}=\Delta \\
& f^{*}\left(K_{x}+s+\Delta\right)=K_{Y}+s_{y}+s_{y} \quad \text { cepont } \\
& f_{*}\left(\left.\Delta_{Y}\right|_{s_{Y}}\right)=\operatorname{Diff}_{s}(\Delta) \\
& f_{s}^{*}\left(K_{s}+D_{i} f_{s}(\Delta)\right)=K_{s_{y}}+\left.\Delta_{Y}\right|_{s_{y}}
\end{aligned}
$$

3) if Δ effective, then Diff $_{s}(\Delta)$ is effective
4) generalize to the case s is not normal: $v: S^{n} \rightarrow s$ the no rmaliaitin Correct by $K _ { 5 n } \longdiv { \sim } \sim ^ { s } \alpha \subseteq \mathbb { P } ^ { 2 }$

Prop let (x, s) be a $d l t=K_{S^{n}}+2$ point pair, then TFAE
) $\left(x\right.$, s) p^{l+}
2) $\lfloor\Delta\rfloor$ normal

Pf

$$
1) \Rightarrow 21
$$

3) $[\Delta]$ is a disjoint incl union of comp
$F: Y \rightarrow X$ a log resolution

$$
\begin{aligned}
& R_{y}+\Delta_{y}=f^{+}\left(k_{x}+\Delta\right)+A \\
& \Delta y=f_{y}^{-1} \Delta \quad \text { by plot, } \quad \Gamma A T=E \\
& \\
& \quad \text { effective f-exc }
\end{aligned}
$$

$$
\begin{aligned}
& S=\lfloor\Delta\rfloor \quad S_{y}=\lfloor\Delta y \downarrow \\
& f_{*} S_{Y}=5 \\
& 0 \rightarrow \theta_{Y}\left(-S_{Y}+E\right) \rightarrow \theta_{Y}(E) \rightarrow \theta_{S_{Y}}\left(E{I_{Y}}_{Y}\right) \rightarrow 0 \\
& \text { Fractions } \\
& \text { part } \\
& \left.-S_{y}+E=-\left\lfloor\Delta_{y}\right\rfloor+\Gamma_{A}\right] \equiv_{f} K_{\gamma}+\left\{\Delta_{\gamma}\right\}+ \\
& \left.\Gamma_{A}\right]-A \\
& (y,\{\Delta y\}+[A T-A) \text { is kt }
\end{aligned}
$$

by $\quad G R$ vanishing, $R^{\prime} f_{*} \theta_{Y}\left(-S_{Y}+E\right)=0$

$$
\Rightarrow \quad f_{A} \delta_{y}(E) \rightarrow f_{*} o_{S_{Y}}\left(\left.E\right|_{S_{Y}}\right) \rightarrow 0
$$

θ_{X} blk E effective exc

$$
\theta_{x} \rightarrow 0_{s} \rightarrow f_{*} \theta_{S_{T}} \leftrightarrow f_{*} \theta_{s_{Y}}\left(E_{S_{K}}\right)
$$

$$
\Rightarrow \quad \theta_{s} \rightarrow f_{p} \theta_{s_{l}}
$$

sur jective
\Rightarrow isomorphisms \& $f_{*} \frac{\theta_{y}}{y_{4}}=\frac{\theta}{5}^{\theta_{n}}$
2) $\Rightarrow 3)$ by def
3) \Rightarrow 1) by computing dix

Cor suppose (x, Δ) is alt $S \subseteq\lfloor\Delta\rfloor$ if component, write $\Delta=S+\Delta_{1}$ then S is normal.

Pf $\quad S+(1-\varepsilon) \Delta_{1}+\varepsilon D$ is $d l t$ Lemma (2.43) not Q-cutter

$$
\begin{gathered}
\exists D \equiv \varepsilon s_{1}+H \\
\text { ample }
\end{gathered}
$$

so $\left(x, s+(1-\varepsilon) \Delta_{1}+\varepsilon D\right)$ is blt but $L S+(1-\varepsilon) D_{1}+\varepsilon D J=S$
$\Rightarrow S$ is normal by the previous pap.

Pron let $(x, s+\Delta)$ log pair, s integral \& noerul. Then for every divisor E_{s} lying over 3 there exists a divisor E lying over x st.

$$
a\left(E_{s}, s, D_{i} f f_{s}(s)\right)=a(E, x, s+s)
$$

More over
pf

$$
\text { total } \operatorname{disc}\left(s, \operatorname{Diff}_{5}(\Delta)\right) \geqslant \begin{array}{r}
\left.\operatorname{discrep} \begin{array}{r}
\text { center } \leq s \\
x, s+s) \\
\text { discrep }\left(\begin{array}{c}
\text { centerns } \\
x, s+\Delta)
\end{array}\right.
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& f:\left(Y, s_{Y}+\Delta_{Y}\right) \rightarrow(x, s+\Delta) \\
& f^{*}\left(K_{S}+\operatorname{Diff}_{S}(\Delta)\right)=K_{S_{Y}}+\left.\left(\Delta_{Y}\right)\right|_{S_{Y}}
\end{aligned}
$$

log resolution

Suppose that S_{y} is disjoint from
$f_{*}^{-1}(\Delta)$, then all divisors were dealing with are f-exc take a sequence of blows af S sot. E_{s} appears as a divisor on this blowup, blowup the sack sequence of subs of s out in x, this gives
a divisar $E \leqslant Y$ sct. $E l_{S_{y}}=E_{s_{\gamma}}$
s.t. Cenoer $s_{y}(E)=E_{s}$

$$
\begin{aligned}
& \text { discep }=-\begin{array}{c}
\text { coefficient for } \\
\text { appeoing a diviar } \\
\left.\left(K_{Y}+S_{Y}+\Delta_{Y}\right)\right|_{S_{Y}}=K_{S_{Y}}+\left.\left(\Delta_{Y}\right)\right|_{S_{Y}}
\end{array}, \quad l
\end{aligned}
$$

Cor (Easy adjmetion)

1) if $(x, s+\Delta)$ is plt in a nibhd of s (s, Diff $_{s}(\Delta)$) is lelt
2) if $(X, s+\Delta)$ is $l c$ in a ablid of s (s, Diff $_{s}(\Delta)$) is lc
Thm (Inversion of adjunction) (llathorw, Kavakital The inequalities of discrep aboue wre $=$, therefoce the statements of the cor are \Longleftrightarrow MMP with scaling
$(x, 0)$ lelt pair, H be some ampte

$$
K_{x}+\Delta+H
$$

pef
$K_{x}+s^{+}+t H=0$ for $t \leqslant 1$

for some extremal ray R
$\left(K_{x}+\Delta\right)$-negutive ray expemal if $\quad t_{1}>0$
$\phi_{R}: X \rightarrow z$ the $\left(K_{x}+\Delta\right)$-extremal cont raction

$$
\left(Z, \Delta_{z}+t_{1}, H_{z}\right)=\operatorname{WLCm}\left(X, \Delta+t_{1} H / B\right)
$$

if ϕ_{R} is small, $X_{1}=$ flip
if \mathscr{C}_{k} is diviocial, $x_{1}=Z$
if ϕ_{R} is a mositiber spece

$$
\left(x_{1}, \Delta_{1}+t_{1} H_{1}\right) \quad \omega L C M \text { so } K_{x_{1}}+\Delta_{1}+t_{1} H_{1}
$$

$$
\begin{aligned}
t_{2}<t_{1} \quad t_{2} & =\text { nef threshold } \\
\operatorname{LCM}\left(X_{1}, \Delta_{1}+t_{2} H_{1} / B\right) & =\begin{array}{l}
\text { inage of extrenal } \\
\\
\left(K_{x_{1}}+\Delta_{1}+t_{2} H_{1}\right) R_{1}
\end{array}
\end{aligned}
$$

technical point: Deed so me bighess of Δ to guarontee that $R_{1} \&\left(K_{x}+4\right)$-ney extreand ry

$$
\begin{gathered}
x_{2}=\omega L C M\left(x_{1}, \Delta_{1}+t_{2} H_{1} / B\right) \\
= \\
\vdots L<M\left(x, \Delta+t_{2} H / B\right) \\
\vdots \\
0<\ldots<t_{2}<t_{1}<1
\end{gathered}
$$

each seep of anMp ocluss at coefficient t_{i}, and poduces

$$
W C M\left(x, \Delta+t_{i}-H / B\right)
$$

Termination of MMP \Longleftrightarrow Finitess of with scaling

$$
(X, \Delta+t H)
$$

$\underline{P l-f l i p s}$ (pre-limiting, shokwou)
Def let (x, Δ) plt pair, $S=L \Delta\rfloor$ S is integral. a pl-flipping contraction is a $\left(k_{x}+s\right)$-Flipping contraction $\varnothing: x \rightarrow z$ s.t. -S is ϕ-ample.
suppose z is affine, existence of $f\left(i p s=R\left(x, K_{x}+s\right)\right.$

$$
\begin{aligned}
\Delta & =S+B \quad B
\end{aligned} \begin{aligned}
&\Delta \Delta\} \\
& 0 \rightarrow H^{0}\left(X, m\left(K_{x}+B\right)\right) \rightarrow H^{0}\left(X, m\left(K_{x}+s+B\right)\right) \\
& \rightarrow H^{0}\left(S, m\left(K_{s}+D i f_{s}(B)\right)\right. \\
& \text { Res }=R\left(X, K_{x}+\Delta\right)
\end{aligned}
$$

Shokwov
suffices to prove
image of Res is fag.

$$
R_{s}\left(x, K_{x}+\Delta\right)
$$

Hacon-Mkernan muMp dim $n-1$

$$
\begin{aligned}
& M M P \operatorname{dim} n-1 \\
& \Longrightarrow \text { exstare of } p l \text {-flips } \\
& M M P_{n-1} \Rightarrow p l-\text { flips }_{n}
\end{aligned}
$$

shokwov $M M P_{n-1}+p l-f l i p_{n} \Rightarrow$ flips ${ }_{n}$
Existence of minimal models for varieties of log general type BCHM $=$ Birkar-Cascini - Macon - Mc kerman

Thu $I \quad f:(x, \Delta) \rightarrow B \quad Q$-factorial Ret pair projective /B, suppose Δ is f-big. Then any MMP with scaling terminates.

Thin let $f:(x, s) \rightarrow B$ as above, suppose either Δ is big an) $F_{x}+\Delta$ is f-pe udo effective
$O R$

$$
K_{x}+\Delta \text { isf-big, }
$$

then

1) (x, Δ) has a good $\operatorname{LTM}(x, \Delta / B)$
2) if $K_{x}+\Delta$ is f-big, then (x, Δ) has a $\operatorname{LCM}(x, \Delta / B)$
3) $R\left(\pi, k_{x}+\Delta\right)=\oplus f_{m 20} \theta_{x}\left(m k_{x}+\lfloor m \Delta\rfloor\right)$ is fog.
PF sketch
if $K_{x}+s$ is f-big

$$
K_{x}+\Delta \sim_{F, Q} D \geqslant 0
$$

$\Delta^{\prime}=\Delta+\varepsilon D, \quad \Delta^{\prime}$ is big
(x, σ^{\prime}) is kelt

$$
\begin{gathered}
K_{x}+b^{\prime} \equiv(1+\varepsilon)\left(k_{x}+\Delta\right) \\
\left(K_{x}+\Delta\right)-M M P=K_{x}+\Delta^{\prime} M M P
\end{gathered}
$$

but now s S^{\prime} is big so by then I, MMP with scaling terminates

$$
\begin{array}{lll}
X \longrightarrow \rightarrow & L T M(x, \Delta / B) & \text { b/e } \\
K_{X}+\Delta \\
y_{B} V & \text { ir prendoeffectie }
\end{array}
$$

2) +31 in the case $k_{x}+\Delta$ is bis is just the bp
3) in the case Δ ir big

$$
\begin{aligned}
& \tilde{K}_{x}+s \equiv K_{x}+A+B \quad A \quad(x, B) \text { ample } \\
& \left(K_{x}+\Delta\right)-\left(k_{x}+B\right)=\text { Ample }
\end{aligned}
$$

in the spf theorem m, \Rightarrow bpf \Rightarrow models are good + finite sensation ■

