BCHM - Existence of minimal Models for varieties of log geneal type

Thu $f:(x, s) \rightarrow B$ is a \mathbb{Q}-factorial kit pair projective B. Suppose Δ is f-big. Then any MMP over B with scaling terminates.
Thu II In the some setup, suppose either a) Δ is f-big $f K_{x}+\Delta$ is f-psendo effective, or
b) $k_{x}+s$ is $f-b i g$, then

1) (x, s) has $a \operatorname{LTM}(x, \Delta / B)$
2) if $k_{x}+\Delta$ is f-big, then $\operatorname{LCM}(x, \Delta / B)$ exists
3) $\quad R\left(f, k_{x}+\Delta\right):=\oplus f_{x} \theta_{x}\left(m k_{x}+\lfloor m \Delta\rfloor\right\rfloor$ is finitely ${ }_{4}^{m>r o}$ generated
4) any $\operatorname{whcm}(x, \Delta / B)$ is good

Cor 1 let (x, s) is a pojective Wat pair. Then $R\left(K_{x}+\Delta\right)$ is finitely generated.

Rok no assumptions on Δ or $K_{x}+\Delta$ big.

Pf T_{m} II \Rightarrow in the case that $k_{x}+\Delta$ is big
Fuisino-Mori

take litter filtration pick divisors an Y st.

$$
\left(Y, \Delta_{Y}\right)
$$

s.t. 1) kit 2) $f^{*}\left(k_{k}+\Delta\right)$ $=k_{\psi}+A_{\psi}$

$$
R\left(K_{x}+S\right)
$$

$R\left(K_{y}+\Delta y\right)$
3) $f_{*} \Delta_{y}=\Delta$
4) ...

$$
\operatorname{dim} z=k\left(k_{x}+\Delta\right)
$$

ϕ is a " $(K+\Delta)$-trivial fibration"

Fuijino-Mori canonical bundle formula

$$
K_{y}+\Delta_{y} \sim \mathbb{Q} F^{*}\left(K_{z}+L+B\right)+B
$$

L. measwing the way fibers of f vary in moduli
B-mealsing singularities of

$$
\begin{aligned}
& \Longrightarrow \quad R\left(K_{y}+\Delta y\right)=R\left(K_{z}+L+B\right) * \text { fibers }_{\text {by }_{y}} \quad \begin{array}{l}
\text { sch } M
\end{array} \\
& \operatorname{dim} z=K\left(K_{x}+\Delta\right)=K\left(K_{y}+\Delta_{y}\right)=K\left(K_{z}+L+B\right)
\end{aligned}
$$

Cor $2 f:(x, s) \rightarrow B$ as above. suppose $K_{+}+\Delta$ is not psendoff. Then there exists an $\left(K_{x}+s\right)$-MAP relative to B that terminates in a Mori fiber space /B.
pf pick A an f-ample sit. $K_{x}+\Delta+A$ i f-ample, \& sot. $(x, \Delta+A)$ is $k l t$.

$$
K_{x}+\Delta+\varepsilon A \quad \text { for } 0<\varepsilon \ll 1
$$

not p sendo effective
$\Delta^{\prime}:=\Delta+\varepsilon \lambda$ is big
run a $k_{x}+s^{\prime}$ MMP with scaling bu A
temincates br than I
Since $K_{x}+g^{\prime}$ not psendoeffective
it terminates in a Mf
but $K_{x}+\Delta^{\prime}$ MMP ir also a $K_{x}+\Delta$ MM

Rok Case that open is when $K_{x}+\Delta$ is psendoeffective but neither Δ nor $K_{x}+\Delta$ are big.

Cor $(x, 1)$ Blt pair,
fl $x \rightarrow z$
contraction. exists.

PF If the flip exists, its equal to $\operatorname{LCM}(x, s / z)$
$-\left(k_{x}+\Delta\right)$ it f-ample
$\sim_{\mathbb{Q}_{f}} D \geqslant 0$

$$
\Delta^{\prime}=\Delta+\varepsilon D
$$

$$
K_{x}+\Delta^{\prime} \equiv(1-\varepsilon)\left(K_{x}+\Delta\right)
$$

$\operatorname{LCM}(x, s / z)=\operatorname{LCM}(x, \Delta / z)^{\text {axiti by }}$ Thn \mathbb{I}
ounline of muin induction

$$
\begin{aligned}
& x_{i o n} \\
& f:(x, s) \rightarrow B \\
& \text { i, }, \operatorname{Doj}_{j} / B
\end{aligned}
$$

A Existence of pl-flips
Sit poj /B

B Special finiteneess of models $\Delta=S+A+\Delta^{\prime} \quad S$ integral weil divisoe A anple
as $\Delta^{\prime} \geqslant 0$ varies over all diviors s.t. (X, Δ) as above,
there are finitely many biation al models of X s.t. any $\operatorname{LTM}(X, \Delta / B)$ is isomorphis to one of these firitely many in a nbud of S

C Existerce of $L T M$ over B When Δ is big/B
$D \quad K_{x}+\Delta \quad$ is psendarfective,
Δ big

$$
\Longrightarrow \quad K_{x}+\mathbb{R} \underset{\mathbb{R}, f}{\sim} D \geqslant 0
$$

E finiteness of models:

$$
\Delta=A+B^{\prime}
$$

A angle
then as Δ^{\prime} varies over all possible effective divisors sot. (x, y) is lt, there are finitely many $_{4} \operatorname{LCCM}(x, \Delta / B)$
F finite generation + Zariski, decomposition
(Finite gen ration) $n=(p l-f l i p s)_{n}$

$$
\begin{aligned}
& \text { (special finiteness) }{ }_{n}+(p l-f l i p s)_{n} \Rightarrow L T M_{n} \\
& \text { (Finiteness) }_{n-1} \Rightarrow \quad\left(\text { special finiteness }_{n}\right. \\
& \left(\text { non- vanishing }_{n-1}+\left(\text { special } \text { fin }_{n}+\operatorname{LTM}_{n}\right.\right. \\
& \Rightarrow(\text { non - vanishing })_{n}
\end{aligned}
$$

$L T M_{n}+\left(\text { non }_{n} v_{\text {anishing }}\right)_{n} \Rightarrow$ (finiteness) n
$L T M_{n}+(\text { hon }-v \text { vanishing })_{n}+(\text { finiteness })_{n} \Rightarrow\binom{\text { finite }}{\text { gen }}_{n}$

The case of non-normal varieties
Why? 1) apply induction arg umente to the log canonical case, then need to work with
non- normal S for the induction
2) to construct proper af modwi spaces of higher dimensional varieties

Divisor the or y
conciser
D such that
the generic point of D lies in the smooth locus of X

$$
\theta_{x, \eta} \quad d V R
$$

Weil divisors + linew equivalence Generalize as is

Need to assume that X is $S_{2} \leftarrow$ Serve's condition S_{2}
S_{n} : for each $x \in X$

$$
\operatorname{depth}\left(\theta_{x, x}\right) \geqslant \min \left\{n, \operatorname{din} \theta_{x, 2}\right\}
$$

Canonical she at
Gl - gorenstrin in cod in. 1 there exists an open set $u \stackrel{\stackrel{j}{c}}{\text { open }}$
St. () $x \backslash U$ has coding $\geqslant 2$
2) u is gonestied, ie. it has a canonical line bund ll ω_{u}
If X is reduced, 61,52

$$
\omega_{x}=j_{*} \omega_{y}=\theta_{x}\left(K_{x}\right)
$$

$\mathcal{L a}_{\text {a }}$ weill divisor class as above $v: X^{n} \rightarrow x \quad$ the normalization n conductor: $\quad 0 \rightarrow \theta_{x} \rightarrow \nu_{*} \theta_{x^{n}} \rightarrow F \rightarrow 0$

$$
\operatorname{con}(x)=\operatorname{ann}_{\theta_{x}}(\tau) \subseteq \theta_{x} \subseteq v_{*} \theta_{x^{n}}
$$

$\left\{a \in \theta_{x} \mid a f \in \theta_{x}\right.$ for all $\left.f \in \theta_{x}^{n}\right\}$
$D=V(\operatorname{con} \delta(x)) \leq x^{n}$

$$
v^{x} K_{x}=K_{x^{n}}+D
$$

Grotterieck duality
on the gocensteir
locus
Ex X surface, $D \subseteq X$ reduced diviber s.t. (X, D) is log cannical
$\Rightarrow D$ has at worst nooal sing ulwities

So in general,
D ceduced
$(x, D) \quad \operatorname{din} x \geqslant 2$
$(x, D) \log$ cracical.
$\Longrightarrow D$ is nodal in codim 1
from the pou af MMP, X at. i) preduced
2) nodal in coois I $\Leftrightarrow G 1)$
3) S_{2}

Compute collouctor

$$
\stackrel{\sim}{n}<
$$

$$
\mathbb{p}^{\prime} \quad w^{*} K_{c}=K_{p^{\prime}}+p_{1}+p_{2}
$$

in the nodal case, we call $D=r($ cons $) \lessdot$ double locus reduced divisor mo x^{n}
(x, Δ)

$$
K_{x}+\Delta \text { <ns } K_{2}+D+\Delta^{n}
$$

Def (x, Δ) is semi-log canonical if 1$) x$ is nola in codim 1 \& $\quad S_{2}$
2) $K_{x}+\Delta \quad Q$-cartier
3) $v^{*}\left(K_{x}+\Delta\right)=K_{x^{n}}+s^{n}+D$
$\left(x^{n}, \delta+D\right)$ is \log canonical

