BCHM - Existence of minimal Models for varieties of log general type
Thur I F: (X,S) -> B is a Q-factorial But puir projective /B. Suppose & Kx+S
is E-big. Then any MMP over B with scaling terminates.
Thm I In the same setur, suppose either a) & is f-big & K, + & is f-pseudo effective, or
b) Kx+15 is 5-big, then
1) (x, s) has a LTM $(x, 0/B)$
2) if Kx+0 is f-big, then
LCM $(x, d/B)$ exists 3) $R(f_1, k_x + d) := \bigoplus f_x O_x (mk_x + Lmd))$ is finitely generated
4) any when (x, s/B) is good

let (X, S) is a projective Cor 1 klt pair. Then R(K+1) is Finitely generated. on d or ass umptions **N**D Rmk big. K×+A in the case that PF Thm I => Kx+ S is big Fujino - Mori take litaka filmtion 41dKx+111 X ----> Z Pick divisors on f () 5.4. Y $(Y \Delta Y)$ s.t. i) with $2) \in (\mathbf{k} + \mathbf{0})$ R(K + S)= Ky + Áy 3) $f_{4} \Delta y = \Delta$ $R(\kappa_{Y}+\Delta_{Y})$ 4) _... $\dim Z = X(k_x + \Delta)$ fibration \$ is a "(K+S) - trivial

Fuijino - Hori condical buildle formula

$$K_{y} + \Delta y n_{Q} \quad S^{*}(K_{z} + L + B) + B^{(}$$

L. measuring the unw fibers of
 S uny in moduli
 B - measuring singularities of
Fibers
 $R(K_{y} + \Delta y) = R(K_{z} + L + B)^{er} \int_{M}^{S} B^{(H)H}$
 $\dim 2 = \kappa(K_{x} + \delta) = \kappa(K_{y} + \alpha_{y}) = \kappa(K_{z} + L + B)^{er}$
 $Singpose K_{y} + \delta = \kappa(K_{y} + \alpha_{y}) = \kappa(K_{z} + L + B)^{er}$
 $\int B^{(r)} S^{(r)} = K(K_{y} + \alpha_{y}) = \kappa(K_{z} + L + B)^{er}$
 $\dim 2 = \kappa(K_{x} + \delta) = \kappa(K_{y} + \alpha_{y}) = \kappa(K_{z} + L + B)^{er}$
 $\int B^{(r)} S^{(r)} = S = \alpha_{s}$ above.
 $Singpose K_{y} + \delta = \alpha_{s}$ above.
 $\int npp Se K_{y} + \delta = \alpha_{s}$ above.
 $\int np Se udeoff.$
Then there oxists an $(K_{x} + \delta) - HMA$
relutive to B that terminates
 $\ln \alpha$ Mori fiber Sp ace $/B$.
 $R = Pick A$ an S -comple sA .
 $K_{x} + \delta + A = \delta - S$ -comple sA .
 $K_{x} + \delta + A = \delta - S$ -comple sA .
 $(X, \delta + A) = is kAt.$
 $(X, \delta + A) = is kAt.$

not pseudo effective $\Delta' := \Delta + 2A$ is big run a Kx+13 MMp with scaling hy A teninates by them I Since Kx+5' not pseudoeffective it terminates in a Mfs but Kx+B' MMP is also a Kx+A MMP Rmk Case thats open i when Kx + A is pseudoeffective but neither & nor Ky + & one big. Cor (X,S) Alt pair, is a Kx+3 flipping F1 X -72 Contraction. Then the flip of f

CXists.

(F) IF the flip exists, its equal to LCM(X,3/2)

-(Kx+1) is f-ample
~Q5 D ~ O (×, 5) is kl+
$\Delta' = \Delta + \epsilon D \qquad \qquad X' is f-big$
$K_x + \delta' \equiv (1 - \varepsilon)(K_x + \delta)$
$L(M(x, \delta/2) = LCM(x, \delta/2)^{C} Th_m II $
$K_{x} + \delta' \equiv (1 - \epsilon)(K_{x} + \delta)$ $L(M(x, \delta/2) = LCM(x, \delta/2) \xrightarrow{c} Th_{n} = II$ $consline of muin ind uction F(x, \delta) \xrightarrow{c} B$ $A = Existence of pl - flips H = pi/B$
A Existence a produis
B Special finiteness at models A = StAtA' S integral veil divisor
$\Delta = S + A + \Delta$ S integral our of
as biso varies over all dividers
s.t. (X, D) as also ve,
there are finitely mony birts on al
models of X s.t. any
LTM(X, S/B) is isomorphic to
one of these finitely many in a number of S
in a nyhd of S
S Existence of LTM over B
when S is big/B

D K, + S is pseudooffective,
D K, to is pseudoeffective, blig => K, to ~ D >0 R,f
E finiteness of models:
$\lambda = A + \Lambda'$ A anple
then us d' varies over all
then as d' varies over all possible effective divisors s.t.
(X, 5) is kit, there are
Firitely many WLCM(X, S/B)
F finite generation + Zaristi decomposition
$(Finite generation) \implies (pl-flips)_n$
(special finiteness) + (pl - flips) => LIMn
(finiteness) - ("Porton") N-1
(Non-vanishing) + (special-fin) + LTMn
=> (non - Vanishing)n
LTMn + (non-vanishing)n =) (finiteness)n
LTMn + (non- vonishing) + (Finiteness) => (finite)

	X is always re	huo)
The	case of non-normal varieties	
Why?	1) apply induction ang umente	
	to the log cononical cases	
	to the log cononical case, then need to work with	
	non-normal S for	
	110 A - 110 Mar	
	the induction	
2) to	construct proper of moduli	
	spaces of higher dimensional	
	var ilties	
Divisor	the or y	
(00)	M N	
D	such that the generic point	nt
2	of D lies in the smooth	

D such that the generic point of D lies in the smooth point of X Jours of X Of the dvR X, M the dvR Weil divisors + linear echivalence Seneralize as is

Need to assume that
$$X$$
 is
 $S_2 \leftarrow Serrels condition S_2$
 $S_n : fr and x \in X_3$
 $depth (Q_{X_2}) \ge \min \sin din Q_1 din$

.

$$Cond (X) = ann (T) \in \partial_{X} \in v_{4} \partial_{X} n$$

$$\left\{a \in \partial_{X} \mid a \notin \in \partial_{X} \text{ for all } f \in \partial_{X} n\right\}$$

$$D = V(cond(X)) \leq X^{n} \text{ for the object duality}$$

$$v^{K} K_{X} = K_{x} n + D \text{ for the optical of the gave negative}$$

$$E_{X} \quad X \quad \text{surface}, \quad D \leq X \quad \text{reduced}$$

$$diview \quad s.t. \quad (X, D) \quad \text{is log cannical}$$

$$\implies D \quad has \quad at \quad worst nodel$$

$$\text{Singularities}$$

$$\text{So in generals} \quad (X, D) \quad \text{din, } X \geq 2$$

$$D \quad \text{reduces}, \quad (X, D) \quad \text{kg canonical}$$

$$\implies D \quad \text{is nodel in codim l}$$

$$firm \quad \text{the poly of } Mup,$$

$$X \quad \text{st. } 0 \quad \text{peduced}$$

$$e_{1} \quad \text{model} \quad \text{in codim l} (\Rightarrow G1)$$

3) S₂ normalization k[x,y] (×y) (×y) J+ (ompute conductor ~ (/ $P' N^*K_c = K_{P'} + P_1 + P_2$ in the hodal case, we call D = V(cond) a double hours reduced divisor on Xⁿ (x, δ) $k_x + \delta \quad cons \quad k_x + b + \delta^n$ (X, S) is seni-log comonical Def 1) X is noted in codim l L C ίf 2) Kx + 1 Q - Cartier 3) $N^{*}(K_{x}+J) = K_{x}+J^{*}+D$ (X, S+D) is log anonial