s1: Surfaces ω / K_{x} is not nef

Thum (rationdity)

$$
r:=\sup _{t}\left\{t K_{x}+A \text { is nef }\right\} \in \mathbb{Q}
$$

Thm (base point free theorem)
if $L=r K_{x}+A \quad r \in \mathbb{Q}$
\& L is nof $\Rightarrow L$ is semianple

Pick A st. $\{L=0\} \cap \overline{N E}(X)$

$$
=R=\mathbb{R}_{30} N
$$

if $\quad N_{1}+v_{2} \in R \Rightarrow \quad v_{i} \in R$
$\frac{\pi}{N E}(x)$
by $b_{p} F$

$$
y:=\varphi_{|l L|}: x \rightarrow z
$$

C contracted by $\varphi \Leftrightarrow[c] \in R$
$\Rightarrow C$ have to be irreducible

C_{1}, C_{2} cont be numerically en to $r C$

by extremality of R

$$
\begin{array}{ll}
\Rightarrow & p(x)=1 \\
\Rightarrow & x=\mathbb{P}^{2}
\end{array}
$$

Thu: X smooth projective surface st.

$$
x=x_{0} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{m}^{\mathcal{E} \text { minimal }}
$$

$k_{x_{m}}$ not nerf.
Then either is $X_{m} \rightarrow C$ is ruled
Moreover,
2) $X_{n}=\mathbb{P}^{2}$

$$
\begin{aligned}
K(x) & =k\left(x_{m}\right) \\
& =-\infty
\end{aligned}
$$

Pf)

$$
x_{0} \rightarrow \ldots \rightarrow x_{m}
$$

since $k_{x_{m}}$ not nev, $\quad \varphi: x_{m} \rightarrow z$
$\varphi: x_{m} \rightarrow z$ either a \mathbb{P}^{\prime} bundle or X_{m} Fang

Case 1
$z=$ smooth carve,$\quad k=\sqrt{k}$
Tens theorem $\Rightarrow\left(X_{n}\right)_{n} \rightarrow k(z)$

Wart for each point $p \in Z$ $p \in U \leq z$ open

$$
X \supseteq \varphi^{-1}(u) \rightarrow \mathbb{P}^{\prime} \times u
$$

$\varphi \downarrow \stackrel{\downarrow}{\downarrow} \frac{\downarrow}{}=u \ni p$

$$
F=\varphi^{-1}(p)
$$

$$
0 \rightarrow \theta_{x}(D+(r-1) F) \rightarrow \theta_{x}(D+F F) \rightarrow \theta_{P_{11}}(D) \rightarrow 0
$$

$$
\begin{aligned}
& \Rightarrow\left(X_{m}\right)_{n}=\mathbb{P}_{k(z)}^{\prime} \\
& \Rightarrow x_{m}^{\stackrel{s}{\varphi}} z \\
& \downarrow \\
& \text { ide. } D \text { is } \\
& \text { horizontal }
\end{aligned}
$$

Claim for $r \gg 0$

$$
\operatorname{laim}_{V \leq H^{0}\left(\theta_{x}(D+r F)\right) \rightarrow 0} H^{0}\left(\theta_{F}(D)\right)=H^{0}\left(\theta_{\mathbb{P}}(n)\right.
$$

Exc
Pick V 2-dimensional
mapping isomurphically $x H^{\circ}\left(\theta_{\mathbb{p}^{\prime}}(1)\right)$

$$
\begin{aligned}
& \varphi_{|V|}: x \cdots \mathbb{P}^{\prime} \\
& \left.V\right|_{F}=H^{\prime}\left(\theta_{\left.\mathbb{P}^{\prime}(1)\right)}{ }^{(s \text { s bpf on } F}\right.
\end{aligned}
$$

$\Rightarrow \exists \varphi^{-1}(U) \supseteq F \quad$ up to shrinking s.t. $\left.\varphi^{\varphi}|V|\right|_{\varphi^{-1}(u)}$ is a morphism

$$
\begin{gathered}
\varphi^{-1}(u) \xrightarrow{\varphi_{\mid k 1}} \rightarrow \mathbb{P}^{\prime} \\
u \\
F \underset{u_{u}}{\sim} \times \mathbb{R}^{\sim} \times u
\end{gathered}
$$

$\Rightarrow \varphi_{(v)} \times \varphi$ is an somophism on a nbld of F

Case 2
$\varphi: x \rightarrow p t \quad-K_{x}$ anple φ contracted an extremal ray

$$
1) \Rightarrow p(x)=\operatorname{dim} N^{\prime}(x)_{\mathbb{R}}=1
$$

2)

$$
\begin{aligned}
H^{i}\left(x, \theta_{x}\right) & =H^{i}\left(x, \theta_{x}\left(K_{x}+\left(K_{x}\right)\right)\right) \\
i>0 & =0 \quad \text { by } K V
\end{aligned}
$$

Kobaira Vaishing the oren

$$
H^{i}\left(x, K_{x}+A\right)=0 \quad i>0
$$

for A anple

$$
0 \rightarrow \mathbb{Z} \rightarrow \theta_{x} \xrightarrow{\exp (2 \pi i)} \theta_{x}^{*} \rightarrow 0
$$

So $\quad P_{i c}(x) \xrightarrow{\sim} H^{2}(x, \mathbb{Z})$

$$
P_{i c}(x) \rightarrow N^{\prime}(x) \otimes \mathbb{Q} \xrightarrow{\sim} H^{2}(x, \mathbb{Q})
$$

So $\mathbb{Z} \oplus \not \subset$ tors $\begin{gathered}\text { numerical equivarter }\end{gathered}$

$$
\begin{aligned}
& \Leftrightarrow P_{i c}(x) / \text { tors } \\
& N^{\prime}(x)_{\mathbb{Z}}=\operatorname{Pic}(x) / \text { tors }=\mathbb{Z}
\end{aligned}
$$

$\Rightarrow 7 \mathrm{H}$ ample which

$$
\text { gherates } P_{i c}(x) / \text { tors } \cong H^{2}(x, 3)
$$

$-K_{x}=r H \quad$ for some r
Fact since H generates $H^{2}(x, z)$ /tors

$$
\Rightarrow \quad H^{2}=1
$$

$r>1$

$$
\begin{aligned}
h^{0}\left(\theta_{x}(H)\right) & \geqslant \frac{1+r}{2}+1 \geqslant 2 \\
h^{\prime}\left(\theta_{x}(H)\right) & =0 \\
h^{2}\left(\theta_{x}(H)\right) & =h^{0}\left(\theta_{x}\left(k_{x}-H\right)\right) \\
& =h^{0}\left(\theta_{x}\left(d k_{x}\right)\right)=0
\end{aligned}
$$

since $-k_{x}$ is auple
$D \in|H|$ a section
b_{y} adjunction, $\quad h^{\prime}\left(D, \Theta_{D}\right)=\frac{1}{2}(1-r)+1$

$$
\begin{aligned}
& <l \\
= & 0
\end{aligned}
$$

So $D \cong \mathbb{P}^{\prime} \Rightarrow r=3$

$$
\begin{aligned}
& H^{0}\left(x, \theta_{x}(D)\right) \rightarrow H^{0}\left(D, \theta_{x}^{\prime \prime}(D) / D\right) \rightarrow H^{\prime}\left(x_{0}^{0}\right) \\
& \left.\omega \rightarrow \theta_{x} \rightarrow \theta_{x}(D) \rightarrow \theta_{x}(D)\right|_{D} \rightarrow 0 \\
& \Longrightarrow|H| \text { is } b_{p} f
\end{aligned}
$$

so we have

$$
\varphi_{|H|}: X \rightarrow \mathbb{P}(|H|)=\mathbb{P}^{2} \quad h^{0}=3
$$

$$
\begin{aligned}
& \varphi^{*} \theta_{\mathbb{P}^{2}}(1)=H \\
& \left(\varphi^{*} \theta_{\mathbb{P}^{2}}(1)\right)^{2}=H^{2}=1
\end{aligned}
$$

So φ is degree one
$\Rightarrow \varphi$ is as isomorphism by $Z M T$
$r=1 \quad-K_{x}=H$

$$
H^{2}=1
$$

Use Noether's for null
(computation of RR wily tabbian inv)

$$
e_{t p}(x)=3
$$

$$
x\left(\theta_{x}\right)=\frac{1}{12}\left(\left(-k_{x}^{\prime \prime}\right)^{\prime}+e^{\prime \prime}(x)\right)=\frac{1}{3}
$$

gives contradiction
Finally, use that $k\left(\mathbb{P}^{2}\right)=-\infty$
and that $k\left(Z \times \mathbb{P}^{1}\right)=\cdots$

+ binational invariance of K.

Cor (Castelnuovo's Rationality Criteria)

$$
\begin{aligned}
x \text { is rational } \Leftrightarrow & h^{\prime \prime}\left(x, \theta_{x}\right)=h^{0,1} \\
\text { binational } & h^{0}\left(x, \theta_{x}(2 k\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{c}
\text { binational } \\
\text { to } \mathbb{P}^{2}
\end{array} & =h^{0}\left(x, v_{x}^{\theta}\left(2 k_{x}\right)\right) \\
\rho=H^{0}\left(x, \theta_{y}(n k x)\right) & =0
\end{array}
$$

Plurigerus
Pf sketch
$\Longrightarrow h^{0,1} \& P_{2}$ are binational invariants:
exercise

$$
\begin{aligned}
& h^{0,1}(x)=h^{0,1}(y) \text { for } x_{\bullet \rightarrow y} \\
& P_{2}(x)=P_{2}(y) \quad \text { For Smooth pins } \\
& Y=\mathbb{P}^{2} \text { the } \begin{array}{c}
v_{s} \text { are binational } \\
\text { zero } \\
\text { surfaces }
\end{array}
\end{aligned}
$$

Steal K_{x} is sot nee

$$
\begin{gathered}
x\left(\theta_{x}\right)=h^{0}\left(\theta_{x}\right)-h^{\prime}\left(\theta_{x}\right)+h^{2}\left(\theta_{x}\right) \\
=1 \quad 0 \quad h^{\prime \prime} \quad h^{\prime}\left(\theta_{x}^{\prime}\left(k_{x}\right)\right) \\
0
\end{gathered}
$$

Lemma if D is nef

$$
\begin{aligned}
\Rightarrow \quad & D^{2} \geqslant 0 \\
& D \cdot A \geqslant 0 \quad A \text { auple }
\end{aligned}
$$

PF $D . A \geqslant 0$ since A ofective $\varepsilon \in \mathbb{R}$ Kleimen $(D+\varepsilon A)$ anple

$$
\begin{gathered}
(D+\varepsilon A)^{2}>0 \\
D^{2}=\lim _{\varepsilon \rightarrow 0}(D+\varepsilon A)^{2} \geqslant 0
\end{gathered}
$$

Suppose k_{x} is net so $k_{x}^{2} \geqslant 0$ then $\quad h^{0}\left(\theta_{x}\left(-k_{x}\right)\right) \geqslant 1$

$$
\text { so } \quad D \in\left|-k_{x}\right|
$$

$$
0<A \cdot\left(-k_{x}\right)=-A \cdot k_{x} \leqslant 0
$$

cont rudiction
Run MMP

$$
x=x_{0} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{m} \xrightarrow{\varphi} z
$$

contract (-1) corves X_{m} still satisfies

$$
h^{0,1}=P_{2}=0 \Rightarrow k_{m} \text { not not }
$$

$$
\begin{aligned}
& \Rightarrow x_{m}=\mathbb{P}^{2} \\
& \text { or } \varphi: x_{m} \rightarrow z \quad \text { nuled } \\
& x_{m} \simeq z \times \mathbb{R}^{\prime} \\
& 0=h^{\prime}\left(x_{m}, \theta_{x_{m}}\right)=h^{\prime}\left(z \times \mathbb{P}^{\prime} \theta_{z \times \mathbb{P}^{\prime}}\right) \\
& \Rightarrow x_{m} \simeq \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}\left(z, \theta_{z}\right)=0
\end{aligned}
$$

