Sufa	ces with	Kx	nef		
gl: Dep	a v	ninimal	nodel	د -	œ.
	Smooth	project	ive	surface	×
	with	κ_{χ}	۸.£_		
コ	minim	al saf	aces		
Thm (Non vonis	hing)			
Supp	052	<_×	ic net	?	
then	for	Som	e M	70,	
	H° (x	$\partial_{x}(m)$	××>>) ≠	Ø	
Cor	;f k	×	nf	then	¥(X) ≥0
<u>Ser</u> ((oarse c	class ifi	action)		
every	surfc	ece	X	is b	irational
t 0	ninin	nd su	rf ace	K	where
_ X	in ji	Þ	minimut	model	

(=) K(x) 20 . X_m is ruled or P² $(=) \quad H(X) = -\infty$ Thin (Abundance) IF K_x is nef, then K_x semiample lunky bpffer Some m Ryk Norvanishing + abudance => classification of surfaces by todaira dimension Essentially need to classify to prove these theorems \$2: Background Big divisor, Iitaka dimension (Positivity in 261) by Lazonsfeld L is a Contier Jiviton on K $K(x, L) := \max \{ \dim \beta (x) \} \leq \dim (x)$ $M \in M(L)$

N(L) ::	= z m [m-1 ≠	øz num	of L
K (x, 1	< [×]) = K(×)		
Prop	- hus	Vitaka	dim K
<⇒ th for	ere exist all m	a, À e N(L)	s.t. longe
۵	$m^{k} \in h^{\circ}(x)$	5, 8 (mL) X) < A "K
Def L	→ big	`f K() 2 (mL]) ≥	SL) = d in X C m d in X
	for	x me N(L	.)
K Dairas	Lemma		
Suppose	D îs	big K	E offective
then	$H^{(x)} O_{x} (n)$	-d -e)) ≠	0
şr	$m \in N(L)$	lorge	

Cor	TFAE				
Ŋ]	D ic big				
2)	3 as o	mple	A	5.+.	
	$\mathcal{D} = A + N$,	との	fective	
(or	Suppose	Dì	nef đim	+he	٨
	D is bi	g =>	D	^>0	
(or	χ ίς	a min Ky	i mal ik n	vadel in	dim 2
th	ien K(x	() = 2	$\langle = \rangle$	k, >0	
All	banese mor	phism	,		
Thu	n let	×	smooth	projectiv	e
the	• Э	abeli an	Vari	ety Al	b(X)
k	a m	orp hism			
	κ. X	-> All	6(X1		
J; (j	€ 6:X->7	- h	jith 7	- delion	· "

X PST a >Ab(x) $\checkmark^*: H^{\circ}(Alb(x), \mathcal{D}'_{Alb}(x)) \xrightarrow{\sim} H^{\circ}(X, \mathcal{Q}'_{X})$ 2) a ionorphism dim Alb(x) = dim H°(x, Sx) = h's = 2(x) ~ irregubrity 3) Alb(x) is generated by q(x) 4) if $x \xrightarrow{f} y$ f is surjective ⇒ a(f) swjective $d_{x} \downarrow \qquad j d_{y}$ $Alb(x) \xrightarrow{q(f)} Alb(y)$ 5) $\alpha: X \rightarrow C = \alpha(x) \rightarrow A!b(x)$ if a factors through a smooth arve C, then Alb(x) = Jac(c) $\sigma(c) = h'(x, x'_x) = \varrho(x)$

Sketch of constructi	<u></u>
T = V/	V C-vector space 2 complex
· /٢	1 integer lattice / prus
	Polarization - to make it projective
Fact ony	$\mathcal{U}: T_1 \rightarrow T_2$
is up to	translation is induced by
$a: V_1 \rightarrow V_2$	l'insur muß
s.t. $a(r_i)$	
\implies $u^*: H$	$(T_2, \mathcal{R}_{T_2}) \rightarrow H'(T_1, \mathcal{R}_{T_1})$
	$V_2^* \xrightarrow{a^*} V_4^!$
$AM_{0}(X) = H^{0}$	(X, SX) + Polorization (X, SX) + Comes from Hage theory
H = im(H, (X))	$2) \rightarrow H^{0}(X, l_{X})^{\dagger})$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$$

then $\chi(\mathcal{O}_{\chi}) > 0$

 $\frac{P_{f}}{K_{x}} = 0$ $K_{x}^{2} = 0$ Noether's formula

$$12 \chi(\mathfrak{G}) = \int_{X}^{\chi} + \mathfrak{e}(X) \quad \text{left} \quad \forall s$$

$$= \mathfrak{e}(X) = \mathfrak{b}_{\mathfrak{G}} - \mathfrak{b}_{\mathfrak{f}} + \mathfrak{b}_{\mathfrak{F}} - \mathfrak{b}_{\mathfrak{f}} + \mathfrak{b}_{\mathfrak{f}}$$

$$+ \mathfrak{opological Euler} \quad = 2(\mathfrak{i} - \mathfrak{b}_{\mathfrak{f}}) + \mathfrak{b}_{\mathfrak{F}} \quad (\mathfrak{G})$$

$$\chi(\mathfrak{G}) = \int_{\mathfrak{h}}^{\mathfrak{G}}(\mathfrak{G}) - \int_{\mathfrak{h}}^{\mathfrak{f}}(\mathfrak{G}) + \mathfrak{h}^{2}(\mathfrak{G}) \quad (\mathfrak{f})$$

$$= 2 h^{2}(\mathfrak{S}, \mathfrak{G}) + h^{2}(\mathfrak{S}, \mathfrak{I}) + h^{2}(\mathfrak{G}) \quad (\mathfrak{f})$$

$$= 2 h^{2}(\mathfrak{S}, \mathfrak{G}) + h^{2}(\mathfrak{S}, \mathfrak{I}) + h^{2}(\mathfrak{G}) \quad (\mathfrak{f})$$

$$\chi(\mathfrak{G}) \leq 2 - h^{2}(\mathfrak{G}) \quad (\mathfrak{f})$$

$$\chi(\mathfrak{G}) \leq 2 - h^{2}(\mathfrak{G}) \quad (\mathfrak{f})$$

$$\chi(\mathfrak{G}) = 2 - 2 h^{2}(\mathfrak{S}, \mathfrak{G}) + \mathfrak{b}_{\mathfrak{I}}$$

$$= 2 + 4 h^{2}(\mathfrak{G}) - 8 + \mathfrak{b}_{\mathfrak{I}}$$

$$= -6 + 4 \chi(\mathfrak{G}) + \mathfrak{b}_{\mathfrak{I}}$$

 $8 \times (\partial_x) = -6 + b_2 = -6$

 $\mathcal{X}(\mathcal{O}_{X}) \geq - \mathcal{O}_{\mathcal{B}}$ 20

foot wh WonVonishing Suppose Kx in not but $K(x) = -\infty$ then by Lemma aboves $\chi(O_X) = 0$ $=) - h'(x, o_{x}) + h'(x, o_{x})$ $(-h'(x, \partial_x) \ge 0$ シ Also know $P_m = H^o(X, O(mk_x)) = O$ in particular, $P_2 = 0$ (ast-Invovo's criteria: $P_2 = h(x, \partial_x) = 0$ => × rutional

cen't huppen ble Ky is net $\Rightarrow h'(x, o_x) > 0 \Rightarrow h'(x, o_x) = 1$ h (x, 2) d': X → Alb(x) = E. & elliptic J curve a surjective + connected fibers → flat FEX a general fiber is a smarther curve g(F)=9 $\frac{(k_{iim})}{F^2 = 0} \quad g(F) \geq 1 \quad \text{since } k_x$ $F^2 = 0 \quad f^2 = 0$ $k_F = (k_X + F) = > 0$ but if $\deg k_{\mp} > 0 \Rightarrow g(F) \ge 1$ i.e. fibers Smaoth Chaim 2 d'is are smooth

Step1 suppose
$$d^{-1}(p) = F_1 + F_2$$
 F_2
let H be an ample, f_1
H, F_1 , F_2 are line only independent
Mu marical classes
 $\Rightarrow 3 \leq p(x) \leq \dim H^2(x, R) = b_2$
 $0 = e(x) = 2 - 4h'(x, R) = b_2$
 $0 = e(x) = 2 - 4h'(x, R) = b_2$
 $b_2 = 2$ contradiction
 $\Rightarrow d^{-1}(p)$ is irred acidate
Step2 $d^{-1}(p) = F_p \leq 1$ (creducidate
 $d^{-1}(p) = M_p F_p = F$
Lemma $e(F_p) \geq 2\chi(Q_p)$
with equality $\Leftrightarrow F_p$ smooth
 $2 - 2g = 2\chi(Q_p)$ by $Rp(f_p)$

 $g(F) \ge 2 \qquad & m_p = l$ $f) \quad e(F_p) = 2 \times (O_{F_p})$ $s \quad F_p \quad snooth$ 2) Thu (Koduira's Canonical bundle Formula) let f: X->C be a genus 1 fibration S(F)=1 minimal No (-I) curves, in the fiber m, Fp, ..., m, Fp are norreduced fibers n v/ m: >1 ~/ m; 7($\omega_{\mathbf{X}} = \mathcal{F}^{*}(\omega_{\mathcal{C}} \otimes (R \mathcal{F}_{\mathcal{F}} \otimes \mathcal{F})) \otimes \mathcal{O}(\mathbb{Z}^{(m_{i}-1)\mathcal{F}_{\mathcal{F}}})$ deg $(R' \mathcal{F}_{*} \mathcal{O}_{\times}) = \mathcal{T}(\mathcal{O}_{\times})$ are if $m_{i} \neq \mathcal{I}(\mathcal{O}_{\times})$ For us, $\chi(\partial_{\chi}) = 0$ $NF_{p} = mF$ C = E so $\omega_{E} = 0$ $nf_{p} = mF$ $W_{\chi} = \alpha^{*}(\log 0 + \log 70)$ me $W_{\chi} = hus$ a lot of suctions

Contradiction \implies $M_p = 1$ even in g=1 Core 50 d is smooth $\frac{5+ep^3}{X}$ d is a smooth $\frac{5}{X}$ fourily of genus $\Rightarrow 1$ $\alpha \downarrow$ $\alpha \cup ess$ E g(E) = 1Thum: If $\alpha \colon X \rightarrow E$ is a smooth + proper morphism $\omega / g(E) \leq 1$ β general fiber F

 $\begin{array}{cccc} \underline{g(F) \neq 2} \\ \underline{g(F) \neq 2} \\ FxF' \cong X' \longrightarrow X \\ d' \int & Jd' \\ F' & Jd' \\ F' & F' & frite \\ f' & f' & f' \\ F' & f' \\ F' & F' & f' \\ F' & f' \\$