Swfaces with $k_{x}$ nef
sI: Def a minimal model is a Smooth projective surface $X$ with $K_{x}$ ref.
$\Rightarrow$ minimal safaces
Thu (Nonvarishing)
Suppose $K_{x}$ is ref,
then for some $m>0$,

$$
H^{0}\left(x, \theta_{x}\left(m k_{x}\right)\right) \neq 0
$$

Cor if $k_{x}$ nef, then $k(x) \geqslant 0$
Cor (Coarse classification) every swface $x$ is birational to a minimal sur ace $X_{m}$ where

- $X_{m}$ is o minimal model

$$
\Leftrightarrow \quad k(x) \geq 0
$$

- $X_{m}$ is ruled or $\mathbb{P}^{2}$

$$
\Leftrightarrow R(x)=-\infty
$$

Thm (Aboudance)
If $K_{x}$ is nef, then $K_{x}$ semiample $\left|m k_{x}\right|$ bpf for

Rnk Norvarshing + abudance
$\Rightarrow$ classification of surfaces by kodaira dimension
Essentially need to classify to pove these the orems
\$2: Background
Big divisor, Iitaka dimension ( $\left(\begin{array}{c}\text { Positivity in AG } \\ \text { by } \\ \text { Lazarsfald }\end{array}\right)$ $L$ is a Catier Jivison on $x$

$$
K(x, L):=\max _{m \in M(L)}\left\{\operatorname{dim} \phi_{\mid m L I}(x)\right\} \leqslant \operatorname{dim}(x)
$$

$N(L):=\{m| | m L \mid \neq \phi\}$ numerical semigroup of $L$

$$
K\left(x, K_{x}\right)=K(x)
$$

Pop $L$ has liraka dim $K$
$\Leftrightarrow$ there exist a, A sit. for all $m \in N(L)$ longe

$$
a m^{k} \leqslant h^{0}\left(x, \theta_{x}(m L)\right) \leqslant A_{m}^{k}
$$

Def $L$ is big if $K(x, L)=\operatorname{din} x$

$$
\leftrightarrow \quad h^{0}\left(x, \partial_{x}^{0}(m L)\right) \geqslant c_{m}^{\operatorname{din} x}
$$

for $m \in N(L)$
K dairás Lemma
Suppose $D$ is big \& $E$ effective, then $H^{P}\left(x, \theta_{x}(m D-E)\right) \neq 0$
for $m \in N(L)$ large

Cor TFAE

1) $D$ is big
2) 3 as anple $A$ s.t.

$$
D=A+N \quad N \text { effective }
$$

Cor Suppose $D$ is nef, then

$$
D \text { is big } \Longleftrightarrow D^{\operatorname{din} x}>0
$$

Cor $X$ is a minimal andel ir dim2 $k_{x}$ is nef
then $k(x)=2 \Longleftrightarrow k_{x}^{2}>0$
Albanese morphism
Thm let $X$ snooth projective then $\exists$ abelias variety Alb $(X)$ \& a morphism

$$
\alpha: x \rightarrow A \mid b(x)
$$

i) if $\beta: x \rightarrow T \quad$ with $T$ dolia,
$\exists$

$$
\underset{\alpha \xrightarrow{x} \underset{\sim}{x} \underset{\sim}{\beta}(x)}{T}
$$

2) $\quad \alpha^{*}: H^{0}\left(A l b(x), \Omega_{A b(x)}^{\prime}\right) \stackrel{\sim}{\rightarrow} H^{0}\left(x, g_{x}^{\prime}\right)$
is as ino morphism

$$
\begin{aligned}
\operatorname{dim} \operatorname{Alb}(x) & =\operatorname{dim} H^{0}\left(x, \Omega^{\prime} x\right) \\
& =h^{1,0}=q(x) \leftarrow \text { iregubaits } \\
& =h^{\infty, 1}
\end{aligned}
$$

3) $A 1 b(x)$ is gen eruted by $\alpha(x)$
4) if
$f$ is surjective $\Rightarrow \alpha(f)$ swjective

$$
\text { 5) } \alpha: x \rightarrow C=\alpha(x)^{n o m m} \alpha l b(x)
$$

if $\alpha$ factors through a smooth carve $c$, then $A \ell b(x)=J_{a c}(c)$

$$
g(c)=h^{0}\left(x, \Omega_{x}^{1}\right)=q(x)
$$

Sketch of construction

$$
\left.T=V / \rho \quad \begin{array}{ll}
V & \mathbb{C} \text {-vecter space } \\
\Gamma & \text { integer lattice }
\end{array}\right\} \begin{aligned}
& \text { cupplex } \\
& \text { wrus }
\end{aligned}
$$

Fact any

$$
v: T_{1} \rightarrow T_{2}
$$

is upe to translation is induced by
a: $V_{1} \rightarrow V_{2}$ linew map
s.t. $a\left(\Gamma_{1}\right) \leq \Gamma_{2}$

$$
\begin{aligned}
& \Longrightarrow u^{*}: H^{0}\left(\underset{T_{2}}{T_{2}}, \Omega_{T_{2}}^{\prime}\right) \rightarrow H_{a_{1}}^{0}\left(T_{1}, \Omega_{T_{1}}^{\prime}\right) \\
& V_{2}^{*} \xrightarrow{a^{*}} V_{*}^{\prime} \\
& A H_{b}(x)=H^{0}\left(x, \Omega_{x}^{1}\right)^{*} / H \quad \begin{array}{l}
\text { polarization } \\
\text { comes foon } \\
H \text { Hoge }
\end{array} \text { ther } \\
& H=\operatorname{in}\left(H,(x, \mathbb{Z}) \rightarrow H^{0}\left(x, \Omega_{x}^{1}\right)^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma \longmapsto\left(\omega \rightsquigarrow f_{\omega} \in \mathbb{C}\right) \\
& \alpha_{x} x \rightarrow A I b(x) \quad \alpha(x)=\left(\omega \mapsto \mathcal{L}_{C_{x}}\right) \\
& \left\{\begin{array}{l}
4 \\
\int_{4} 7_{x}^{\prime} \\
c_{x}^{\prime} \\
\end{array}\right. \\
& c_{x}^{-1} \circ c_{x}^{\prime} \in H_{1}(x, \mathbb{Z})
\end{aligned}
$$

$\xi: 3:$ Nonv anis hing
$X$ is a ninimal nodel in $\operatorname{dim} 2$ then $\left.\quad H^{0}(x,)_{x}\left(w k_{x}\right)\right) \neq 0$

Lemua $K_{x}$ is nef \& $K(x) \leqslant 0$ then $x\left(\theta_{x}\right) \geqslant 0$

Pf $K_{x}$ nef but not big so

$$
k_{x}^{2}=0
$$

Norther's formula

$$
\begin{aligned}
& =e(x)=b_{0}-b_{1}+b_{2}-b_{3}+b_{4} \\
& e(x)=e_{\text {too }}(x)=2\left(1-b_{1}\right)+b_{2} \quad(* *) \\
& x\left(\theta_{x}\right)=h^{0}\left(\theta_{x}\right)-h^{1}\left(\theta_{x}\right)+h^{2}\left(\theta_{x}\right)(*) \\
& \begin{array}{c}
h^{0}\left(\begin{array}{l}
0 \\
x \\
x
\end{array}\left(k_{1}\right)\right) \\
\hline 1
\end{array} \\
& b_{1}=h^{\prime}\left(x, \theta_{x}\right)+h^{0}\left(x, r_{x}^{\prime}\right) \\
& =2 h^{\prime}\left(x, \theta_{x}\right) \text { Have theory } \\
& x\left(\theta_{x}\right) \leqslant 2-h^{\prime}\left(\theta_{x}\right) \text { by }(x) \\
& 12 x\left(\theta_{x}\right)=2-2 h^{\prime}\left(x, \theta_{x}\right)+b_{2} \\
& =2-4 h^{\prime}\left(x, \theta_{x}\right)+b_{2} \\
& \geqslant 2+4 x\left(\theta_{x}\right)-8+b_{2} \\
& =-6+4 x\left(\theta_{x}\right)+b_{2}
\end{aligned}
$$

$$
\begin{gathered}
8 x\left(\theta_{x}\right) \geqslant-6+b_{2} \geqslant-6 \\
x\left(\theta_{x}\right) \geqslant-6 / 8 \\
\geqslant 0
\end{gathered}
$$

Prop of nonvomibing
Suppare $K_{x}$ ir nef
but $\quad k(x)=-\infty$
then by Lemua aboves $x\left(\theta_{x}\right) \geqslant 0$

$$
\begin{array}{r}
\text { Then by Lemina above } x\left(\theta_{x}\right) \geqslant 0 \\
=1-h^{\prime}\left(x, \theta_{x}\right)+h^{0}\left(x, \theta_{0}(k)\right) \\
\Rightarrow 1-h^{\prime}\left(x, \theta_{x}\right) \geqslant 0 \quad p_{1}^{1}
\end{array}
$$

Ako know $P_{m}=h^{0}\left(x, \theta_{x}\left(m k_{x}\right)\right)=0$
in particulos, $P_{2}=0$
Costinuovo's vitsia: $P_{2}=h^{\prime}\left(x, \theta_{x}\right)=0$

$$
\Rightarrow \quad x \text { rutional }
$$

con't happen boa $K_{x}$ is ref

$$
\begin{aligned}
& \Rightarrow h^{\prime}\left(x, \theta_{x}\right)>0 \Rightarrow \\
& h^{\prime}\left(x, \theta_{x} \mid=1\right. \\
& \\
& \alpha_{1}^{\prime \prime}
\end{aligned} h^{0}\left(x, e_{x}^{\prime}\right)
$$

$F \subseteq X$ a general fiber is a smooth carve $g(F)=9$

Chain) $\quad g(F) \geqslant 1$
Since $k_{x}$

$$
\begin{gathered}
F^{2}=0 \\
K_{F}=\left.\left(K_{x}+F\right)\right|_{F} \geqslant 0
\end{gathered}
$$

but if $\operatorname{deg} K_{F} \geqslant 0 \Rightarrow g(F) \geqslant 1$
Claim $2 \alpha$ is smooth i.e. fibers are smooth
step suppose $\alpha^{-1}(p)=F_{1}+F_{2}$ let $H$ be an ample,
$H, F_{1}, F_{2}$ are line carly independent nu metrical classes

$$
\begin{gathered}
\Rightarrow \quad 3 \leq \rho(x) \leq \operatorname{dim} H^{2}(x, R)=b_{2} \\
0=e(x)=2-4 h^{\prime}\left(x \delta_{x}\right)+b_{2} \\
b_{2}=2 \quad \text { contradiction }
\end{gathered}
$$

$\Rightarrow \quad \alpha^{-1}(p)$ is irred ucible
Step 2

$$
\begin{aligned}
& \alpha^{-1}(p)_{\text {red }}=F_{p} \text { s irreducible } \\
& \alpha^{-1}(p)=m_{p} F_{p} \equiv F
\end{aligned}
$$

Lemma $e\left(F_{p}\right) \geqslant 2 \mu\left(\theta_{F_{p}}\right)$ with equality $\Leftrightarrow F_{p}$ smooth

$$
2-2 g=2 x\left(\theta_{F}\right) \text { by } \underset{\text { snath }}{\operatorname{RR}^{(59} \text { in }} \text { case }
$$

Use $n: x^{n} \rightarrow x \quad$ normalization
Compute w/ adjunction:

$$
\begin{gathered}
e\left(F_{P}\right) \geqslant 2 x\left(\theta_{F_{p}}\right)=2 \frac{1}{m_{p}} x\left(\theta_{F}\right) \\
=\frac{1}{m_{p}} e(F) \geqslant e(F) \\
g(F) \geqslant 1 \\
\Rightarrow e(F) \leqslant 0 \quad e(x)=e(F) e(E \backslash \Delta)+\sum_{P \in \Delta}^{\text {dicriminesut }}< \\
0=e\left(F_{p}\right) \\
=e(F) e d(E)+\sum_{P \in \Delta}\left(e\left(F_{p}\right)-e(F)\right) \\
00
\end{gathered}
$$

E elliptic cave

$$
\begin{aligned}
\Longrightarrow e\left(F_{p}\right) & =e(F) \text { for all } p \\
& =\frac{1}{m_{p}} e(F)
\end{aligned}
$$

so either

1) $e(F)=0$
and mp witray $g(F)=1$
2) 

$$
\begin{aligned}
& g(F) \geqslant 2 \quad \& \quad m_{p}=1 \\
& \Rightarrow \quad e\left(F_{p}\right)=2 \chi\left(\theta_{F_{p}}\right) \\
& \text { so } \quad F_{p} \quad \text { sne00th }
\end{aligned}
$$

Thu. (Kodairci's canonical bundle Forme)
let $f: x \rightarrow C$ be a minimally
genus 1 fibration

$$
\begin{aligned}
& \text { no }{ }^{\top}(-1) \text { in } \\
& \begin{array}{l}
\text { curvesin } \\
\text { the Fiver }
\end{array}
\end{aligned}
$$

$$
g(F)=1
$$

$m_{1} F_{p_{1}}, \ldots, m_{n} F_{p_{n}}$ ane nor reduced fibers

$$
\begin{aligned}
& \omega_{x}=f^{*}\left(\omega_{c} \otimes\left(R^{\prime} f_{*} \theta_{x}\right)^{v}\right) \otimes \theta_{x}^{\theta}\left(\sum_{\operatorname{din}}^{\left.\left(m_{i}\right) f_{i}\right)}\right. \\
& \left.\operatorname{deg}\left(R^{\prime} f_{*} \theta_{x}\right)^{v}=x^{\operatorname{deg}=\theta_{x}}\right)^{\text {in }} \text { ar s case if } m_{i}^{-1}
\end{aligned}
$$

For us, $\quad x\left(\theta_{x}\right)=0$ $\qquad$

$$
C=E \text { so } \omega_{E}=\theta_{X}
$$

$$
\Rightarrow \omega_{x}^{D N}=\alpha^{*}(\underset{\operatorname{deg} O+\operatorname{deg}>0}{ })^{x} \text { ample }
$$

$\Longrightarrow$ hus a lot of sections
contradiction $\Longrightarrow \quad m_{p}=1$ even in $g=1$
Step 3

| 33 | $\alpha$ is a smosth |
| :--- | :--- |
| $\alpha \downarrow$ | fonily of genus $\geqslant 1$ |
| $E$ | cwues, |
| $g(E)=1$ |  |

Thm: If $\alpha: x \rightarrow E$ is a
smooth + poper mophisn $\omega / g(E) \leqslant 1$ \& general fiber $F$
$g(F) \geqslant 2 \quad \alpha$ is isotrivial:

$$
\begin{aligned}
& F_{x E^{\prime}} \cong x^{\prime} \rightarrow x \\
& \alpha^{\prime} \downarrow^{\rho}+\underset{J}{\downarrow} \alpha \quad t \text { firite } \\
& \text { étale }
\end{aligned}
$$

$\underline{9=1} \quad \alpha_{*} \omega_{K / E}$ is a tosion line $t$ firite
$t: E^{\prime} \rightarrow E \quad$ s.t. étale

$$
\theta_{E^{\prime}}=t^{*} \alpha_{*} \omega_{x / E}=\alpha_{*}^{\prime} \omega_{x^{\prime} / E^{\prime}}
$$

