Minimal Models in dim 2
Def X sit. k_{x} is nf
The (Nonvorishing)
If x is a minimal model, then $H^{0}\left(x, m k_{x}\right) \neq 0$ for some $u>0$

If Suppose we had a minimal $\bmod e l$ but w) $B(x)=-\infty$
$\Rightarrow \alpha: X \rightarrow E *$ elliptic carve
α is smooth \& $g(F) \geqslant 1$
Thu $\alpha: x \rightarrow E$ smooth proper w) fibers $g(F) \geqslant 1, \quad g(E) \leq 1$ then α is isotrivial:
$9 \geqslant 2$
$E^{\prime} \times F \cong x^{\prime} \xrightarrow{t^{\prime}} x \quad$ where t $\alpha^{\prime} \downarrow \underset{E^{\prime}}{\downarrow}{ }^{\downarrow} \alpha$ is étale $E^{\prime} \xrightarrow{t} E$

$$
9=1
$$

$\alpha_{*} \omega_{X / E}$
this is a torsion line bundle

$$
\begin{array}{ll}
\sim & t: E^{\prime} \rightarrow E \quad \\
t \text { étale } & \theta^{\prime} \cong t^{*} \alpha_{*} \omega_{x / E} \cong \alpha_{*}^{\prime} \omega^{\prime} / x^{\prime} \\
&
\end{array}
$$

Pf sketch
holomorphic sounded

$$
\begin{aligned}
& 9 \geqslant 2
\end{aligned}
$$

$$
\begin{aligned}
& E \longrightarrow \mu_{g} \cong \mathcal{H g}_{g}
\end{aligned}
$$

Since t_{g} is bounded, this lift is constant $\Rightarrow \tilde{X}=\tilde{E}_{E} \times \xrightarrow{\tilde{\alpha}} \underset{E}{\hat{E}}$ is a podenct "

$$
F \times E
$$

but Ant (F) finite \Rightarrow factor through a finite cove E^{\prime}

$$
9=1
$$

$$
x
$$

$$
E \longrightarrow " \mu_{g_{1}}=\begin{gathered}
\text { space of } \\
\text { gen nus } 1 \text { carve } \\
\text { wo a point }
\end{gathered}
$$

$x \xrightarrow{\alpha} E \quad$ might not have a section

$$
J_{a r}(x) \xrightarrow{J(x)} E
$$

Ruk Start of a beautiful stry about hyperbolility of moduli; positivity of $\alpha_{*} \omega_{\times / E}$
∞ Ii taka's conjecture on subadditivity of Kodaira dinensions

Thm (Iitaka)
suppose $h: x^{\prime} \rightarrow x$ finite urarnified

$$
\Rightarrow \quad k\left(x^{\prime}\right)=k(x)
$$

$$
\begin{aligned}
& 9 \geqslant 2 \quad k(x)=k\left(x^{\prime}\right)=k\left(F \times E^{\prime}\right) \geqslant 1 \\
& g(F) \geqslant 2 \quad \text { Costradiction! } \\
& g\left(E^{\prime}\right) \geqslant 1 \\
& 9=1 \\
& \alpha^{\prime} \underset{E^{\prime}}{\stackrel{\downarrow}{\downarrow} \rightarrow \underset{E}{\downarrow} \rightarrow \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& t^{*} \alpha_{*} \omega_{x / E}=\alpha_{k}^{\prime} \omega_{x^{\prime} / E}=v_{E} \\
& \alpha_{*}^{\prime} \omega_{x^{\prime}}=\alpha_{*}^{\prime}\left(\left(\alpha^{\prime}\right)^{*} \omega_{E^{\prime}} \otimes \omega_{x^{\prime} /\left.\right|^{\prime}}\right) \\
& \xlongequal{\cong} \omega_{E^{\prime}} \otimes \alpha_{A_{x}^{\prime}}^{\prime} \omega_{X^{\prime}}=\omega_{E^{\prime}} \\
& \text { formula } \quad g\left(E^{\prime}\right) \geqslant 1 \\
& \Rightarrow \quad H^{0}\left(x^{\prime}, \theta_{x}\left(K_{x}\right)\right)=H^{0}\left(E^{\prime}, \omega_{E^{\prime}}\right)=g(k) \\
& \Longrightarrow \quad k(x)=k\left(x^{\prime}\right) \geqslant 0
\end{aligned}
$$

Contrudiction!
§2: Abundance in dim 2
Thn If x is a minimal nodel in $\operatorname{dim} 2$ then K_{x} is sexiauple $m k_{x}$ is bpf K_{x} nef $\Rightarrow K_{x}$ semiample

Proof by nonvaiishing $k(x) \geqslant 0$
$K=2$ (general type)
It's a corollary of the full base point free theorem

Thu X smooth poi variety

$$
D=\sum d_{i} D_{i} \quad 0<d_{i}<1
$$

+ Singularities of rational
D are "nice"
$\left.(x,)^{2}\right)$ has k kit
If L nef cartier divisor such that $a L-\left(K_{x}+D\right)$ is ample for some $a>0$
$\Rightarrow \mathrm{mL}$ bp for some $m \gg 0$
$k=1$

$$
\left.k_{x}^{2}=0, \quad K_{x} \neq 0 \quad \text { (} \begin{array}{l}
\text { numerical } \\
\text { Kodaica din }
\end{array}\right)
$$

nee but not bis

$$
\underset{x}{m} \underset{\sim}{m_{x}} \mid=\underset{\substack{\text { moving } \\ \text { port af } \\ m k_{x}}}{|M|+F \Leftarrow \text { fixed }}
$$

$$
\begin{aligned}
& 0 \leq M^{2} \leq M \cdot(M+F) \leq(M+F)^{2}=\left(m k_{x}\right)^{2}=0 \\
& \Rightarrow M^{2}=M \cdot F=F^{2}=0
\end{aligned}
$$

moving divisor M w/ $M^{2}=0$
$\Rightarrow|M|$ is base point free

$$
b / c \quad \cap \mu^{\prime}=\varnothing
$$

$M^{\prime} \in(M)$
$\varnothing_{|M|}: X \rightarrow Z \ll$ curve
F sutisfifing 1) $F . M=0$
$\Rightarrow F \subseteq$ fiber of \varnothing
2) $F^{2}=0$

Hodge $ノ \Rightarrow F=\sum m_{i} F_{i}$
index
F_{i} are fibers of ϕ

$$
\begin{aligned}
m K_{x}=M+F & =\phi_{m 1}^{*} H_{z}+\sum m_{i} \phi^{*} p_{i} \\
& =\phi^{*}\left(H_{Z}+\sum m_{i} p_{i}\right)
\end{aligned}
$$

pull back of apple
by a morphism

$$
k=0
$$

$$
h^{0}\left(x, \theta\left(m k_{x}\right)\right) \leq 1 \quad \text { for amy }
$$

$x\left(\theta_{x}\right) \geqslant 0 \quad P_{1}=\rho_{y}$ ereonetric genus

$$
1-h^{\prime \prime}\left(\theta_{x}\right)+h^{0}\left(\theta_{x}^{\prime \prime}\left(k_{x}\right)\right) \geqslant 0
$$

irpegtherits $b^{0 \prime \prime}=h^{1,0}=q(x) \leqslant 1$
Cases
i) $p_{g}=q=0 \quad 2 k \sim 0$ Enriques
ii) $p_{g}=0, q=1 \quad m k_{x} \sim 0 m>0$ bielliptic
iii) $p_{g}=1, q=0 \quad k_{x} \sim 0 \quad k 3$ surface
iv) $p=q=1$
v) $p_{g}=1 \quad q=2$ desist exist abulias surface

Need to check that
$m k_{x} \sim 0$ for some $m>0$
i) $P_{g}=q=0, \quad x\left(\theta_{x}\right)=1$

Casted nuovis Rutioculity

$$
\text { if } P_{2}=H\left(x, \theta_{x}\left(2 k_{x}\right)\right)=0
$$

$\Rightarrow x$ rutional, con't happer

$$
\Rightarrow \quad H^{0}\left(x, \theta_{x}\left(2 k_{x}\right)\right) \neq 0
$$

want $h^{0}\left(x, \theta_{x}\left(-2 k_{x}\right)\right) \geqslant 1$

$$
\begin{aligned}
& \Longrightarrow 2 k_{x} \sim 0 \\
& h^{0}\left(\partial_{x}\left(3 k_{x}\right)\right) \leqslant 1 \\
& h^{0}\left(x, \theta_{x}\left(-2 k_{x}\right)\right)+h^{2}\left(x, \theta_{x}\left(-2 k_{x}\right)\right)^{h} \\
& \geqslant \frac{1}{2} \frac{\left(-2 k_{x}\right)\left(-2 k_{x}-k_{x}\right)}{0^{\prime \prime} b c k_{x}^{2}=0}+x\left(\phi_{x}\right)
\end{aligned}
$$

Ex if $h^{0}\left(x, \theta_{x}\left(2 k_{x}\right)\right)=1=h^{0}\left(x, \theta_{x}\left(3 k_{x}\right)\right)$

$$
\Longrightarrow h^{2}\left(x, \theta_{x}\left(3 k_{x}\right)\right)=0
$$

ii) $p_{y}=0 \quad q=1 \quad x\left(\theta_{x}\right)=0$
$\alpha: x \rightarrow E \&$ elliphic ewve
riu the same argunent as in nonvarishing proof
$\Rightarrow \quad \alpha$ smosth fibution

$$
g(F) \geqslant 1
$$

922 $\quad X^{\prime}=E^{\prime} \times F \rightarrow X$

$$
X^{\prime}=E^{\prime} \times F \rightarrow \underset{\text { etal }}{\rightarrow} \quad k\left(x^{\prime}\right)=
$$

$g(F) \geqslant 2$ etak

$$
k\left(E^{\prime} \times F\right) \geqslant 1
$$

can't bupper
$g=1$

$$
\begin{aligned}
& =1 \quad \omega_{x}=\alpha^{*} \phi_{E}^{0} \otimes \omega_{x / E} \stackrel{\sim}{=}=\alpha^{*}\left(R^{\prime} \alpha_{*} \theta_{x}\right)^{v} \\
& \alpha_{x} \omega_{x / E} \cong\left(R^{\prime} \alpha_{\alpha_{*}} \theta_{x}\right)^{r} \quad \alpha_{*} \omega_{x / E}
\end{aligned}
$$

relative
duality \quad but $\alpha_{*} \omega_{x} / E$ dual ity torsion landle on E

$$
\begin{aligned}
& \Rightarrow\left(\alpha_{\alpha} \omega_{x / E}\right)^{\otimes m}=\theta_{E} \\
& \Rightarrow \omega_{x}^{\otimes m}=\alpha^{*}\left(\alpha_{*} \omega_{x / E}\right)^{\otimes m}=\alpha^{*} \theta_{E}=\theta_{x} \\
& m>1 \quad b / c \quad P_{P_{y}=0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \quad p_{y}=1 \quad g=0 \quad x\left(\theta_{x}\right)=2 \\
& h^{0}\left(\theta_{x}\left(-k_{x}\right)\right)+h^{0}\left(\theta_{x}\left(2 k_{x}\right)\right) \\
& \geqslant 0+x\left(\theta_{x}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
& h^{0}\left(\theta_{x}\left(2 k_{x}\right)\right) \leq 1 \quad b_{y} \quad k(x)=0 \\
& \Rightarrow \quad h^{0}\left(\theta_{x}\left(-k_{x}\right)\right) \geqslant 1 \\
& \Rightarrow k_{x} \sim 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { iv) } P_{g}=q=1 \quad x\left(\theta_{x}\right)=1 \\
& h^{\prime}\left(x, \theta_{x}\right)=\operatorname{dim} \operatorname{Pic}_{i c}(x) \neq 0 \\
& P_{i c}{ }^{0}(x)=H^{\prime}\left(x, \theta_{x}\right) / H_{i m}\left(H^{\prime}(x, z)\right) \\
& 0 \rightarrow \mathbb{Z} \rightarrow 0_{x} \rightarrow \theta_{x}^{*} \rightarrow 1
\end{aligned}
$$

Pick some $M \in$ Pic $^{\circ}(x)$
2- torsion but not trivial

$$
\begin{aligned}
& h^{0}\left(\theta_{x}(m)\right)=0 \\
& h^{2}\left(\theta_{x}(m)\right)=h^{0}\left(\theta_{x}\left(k_{x}-m\right)\right) 0 \\
& \geqslant \frac{1}{2} M\left(m^{(M-k)}+\mu\left(\theta_{x}\right)=1\right.
\end{aligned}
$$

$$
\begin{aligned}
& G \in\left|K_{x}-M\right| \quad \Rightarrow 2 G \in\left|2 k_{x}-2 M\right| \\
& =\left|2 k_{x}\right| \\
& D \in\left|K_{x}\right| \\
& L^{0}\left(\theta_{x}\left(2 k_{x}\right)|\leqslant 1 \quad| 2 k_{x} \mid \ni 2 D=26\right. \\
& =1
\end{aligned} \quad \begin{aligned}
K_{x} \sim D=6 & \sim K_{x}-M \\
& \Rightarrow M \sim 0 \quad \text { contradiction }
\end{aligned}
$$

v)

$$
\begin{aligned}
& P_{y}=1 \quad q=2 \quad x\left(\theta_{x}\right)=0 \\
& \alpha: X \rightarrow A l_{b}(X)=A \quad \operatorname{dim} A=2
\end{aligned}
$$

abelias surface
Claim 1
α does not factor through a

$$
\xrightarrow[\substack{x \rightarrow c \rightarrow A \\ g(c)=2}]{\substack{\text { curve }}}+J_{\text {ac }}(c)
$$

Pick some $t^{\prime}: c^{\prime} \rightarrow c \quad \begin{gathered}\text { finite } \\ \text { Stale cover }\end{gathered}$ wish $g\left(c^{\prime}\right)>2$

$$
x^{\prime} \rightarrow c^{\prime} \rightarrow J_{a c}\left(c^{\prime}\right)=A M b\left(x^{\prime}\right)
$$

$$
K\left(x^{\prime}\right)=K(x)=0
$$

$q\left(x^{\prime}\right) \geq 3$ not possible
So α is surjective
Rieman-Hwwitz

$$
K_{x}=\alpha^{*} K_{A}+E
$$

Use intersection paructs + that 7 component of E wt hey ne y to conclude E contain g a $g(c)=1$ $\Rightarrow \begin{gathered}\text { have an elliptic cave curve } \\ \text { an }\end{gathered}$ Complete reducibility theorem

