Classification of surfaces
Thum (Abundance for surfaces)
let X be a minimul model in dim 2
smooth projective surface w/
$$K_x$$
 net
Then K_x is semianple.
PF $K(x)=0$, $R_g=1$ $Q(x)=2$ $\mathcal{X}(Q_x)=0$
 $\alpha': X \rightarrow Alb(x) = A = 2^{-dimensional}$
abelian variety
Claim α' is subjective, \mathcal{R} in particular
generically finite.
Will conclude that α' is étale
Riemany-Hurwitz effective divisor
 $K_x = \alpha^* K_A + E = E$
 $K_A = 0$ since A abelian $TF = E^{\pm 0}$
 $Hor = K_x^2 = E^2 = 3$ $Q \in E$ an irreducible curve
s.t. $\alpha(Q) \neq Pt$

if $\alpha(E)$ is zero diversional, then
by Hodge index E ² <0
$E = n_0 D_0 + \sum_{i \ge 1} n_i D_i + n_0 > 1$
$0 = K_{x}^{2} = K_{x} \cdot E \ge K_{x} \cdot n_{s} p_{o} = E \cdot n_{o} p \ge n_{o}^{2} p_{o}^{2}$
$ = \int_{0}^{2} \leq O \qquad \frac{\text{Adjunction}}{(k_{x} + D_{0})} \cdot D_{0} \leq O $
=> Do is rational or deg Ko 50 ellipsic
if Do is votional, then Impossible
$D_0 \rightarrow X \xrightarrow{\propto} A$ but D_0 is chosen $\longrightarrow J_{ac}(D_0) = p_t$ to a point
=> Do is on elliptic curve
$X \xrightarrow{\sim} A$ up to translating by $X \xrightarrow{\sim} A$ some element of A, $\downarrow \qquad \qquad$
$D_0 \subseteq \beta^{-1}(0)$ but $D_0^2 = 0 \implies m D_0 = \beta^{-1}(0)$ m Hodge Index

 $o = K(x) = K(x, K_x) > k(x, P_0) = 1$ TR fiber of W2 Contradiction a map to a curve has empty => E mramified K $O = x^* K_A = K_X = O$ 4 an abelian voriety =) × is also Ø Thm (Classification of Surfaces) $X^{min} = X$ $q(x) = P_g(x)$ K(X) P 0 0 - 00 P_(E) g(c)=q P'× (70 0 -00 K3 Surfaces 0 ١ O Ky NO Enfiques soutaces O 0 O 2 Kz~0, K3/involution a) Abelian surfaces 2 ۱ D bielliptic surfaces 1 D 0 mkx~0 m>1 6) ExE/G IGI = m Elliptic surface >0 20 ۱ د)

2
$$\overline{20}$$
 $\overline{20}$ $\overline{20}$
d)
 $y = \frac{1}{20}$
 $y = \frac{1}{20}$

b) bielliptic case

$$\begin{array}{l} Q(\vec{X}) \neq Q(\mathbf{x}) + h'(\mathbf{x}, \mathcal{O}_{\mathbf{x}}(-(\mathbf{m}\cdot\mathbf{n})\mathbf{k}_{\mathbf{x}})) \\ h'(\mathbf{x}, \mathcal{O}_{\mathbf{x}}(-(\mathbf{m}\cdot\mathbf{n})\mathbf{k}_{\mathbf{x}})) = h'(\mathbf{x}, \mathcal{O}_{\mathbf{x}}(\mathbf{m}\mathbf{k}_{\mathbf{x}})) \\ = h'(\mathbf{x}, \mathcal{O}_{\mathbf{x}}) = 1 \\ q(\vec{\mathbf{x}}) \neq 2 \\ \Rightarrow q(\vec{\mathbf{x}}) \neq 2 \\ \Rightarrow q(\vec{\mathbf{x}}) = 2 \\ \overrightarrow{\mathbf{x}} \quad abelian \quad surface \\ \overrightarrow{\mathbf{x}} \longrightarrow \overrightarrow{\mathbf{x}} \quad \overrightarrow{\mathbf{x}} \quad abelian \quad surface \\ \overrightarrow{\mathbf{x}} \longrightarrow \overrightarrow{\mathbf{x}} \quad \overrightarrow{\mathbf{x}} \quad (\mathbf{x}) = \mathbf{x} \\ \mathbf{x} = (\mathbf{x} \in \mathbf{x}) \\ \mathbf{x} = \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \\ \mathbf{x} = (\mathbf{x} \in \mathbf{x}) \\ \mathbf{x} \quad \mathbf{x} \\ \mathbf{x} \quad \mathbf{x} \quad$$

F = A + u	$nE + n_{1}D_{1}$	$+n_2D_2+n_3$, D ₂
F.C = O	$C^2 = (-2)$	for an	Component
multiple Fib	در ،		
mIn	N70	m72	nocil curves
Thm (Canonic	al bundle	formula)	Atively minimal
w/ multiple	fibers	m, F.,,	m _k Fk `
then $W_{\rm X} = 0$	* (wc @(R'a		$X \left(\frac{F}{2(m_i - 1)F_i} \right)$
$k_{x} \sim_{Q}$	$q^{*}(K_{c}+L$	+ B)	
$B = \sum \frac{m_i}{m_i}$ deg (R'o	$\frac{-1}{1} P_{i} \qquad m_{i}$ $\frac{1}{1} Q_{x} \qquad = 7$	$F_{i} = \alpha^{-1}(P_{i})$	
<u>Rmk</u> . buse is	of ov a poir (K - trivial (C) L+B) 	fib ration
Proj R(Kx)=	C = Poj R($K_{c}+L+B)$	

geometry of X, R(Kx) is ecoded in $(R(E_c + L+B))$ measured the "variation" of a $(R'\alpha_{x}O_{x})' = \alpha_{x}\omega_{x}$ measures singularities B