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Bose–Einstein condensation in an external potential
at zero temperature: Solitary-wave theory
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For a trapped, dilute atomic gas of short-range, repulsive interactions at extremely
low temperatures, when Bose–Einstein condensation is nearly complete, some spe-
cial forms of the time-dependent condensate wave function and the pair-excitation
function, the latter being responsible for phonon creation, are investigated. Specifi-
cally, ~i! a class of external potentialsVe(r ,t) that allow for localized, shape-
preserving solutions to the nonlinear Schro¨dinger equation for the condensate wave
function, each recognized as a solitary wave moving along an arbitrary trajectory, is
derived and analyzed in any number of space dimensions; and~ii ! for any such
external potential and condensate wave function, the nonlinear integro-differential
equation for the pair-excitation function is shown to admit solutions of the same
nature. Approximate analytical results are presented for a sufficiently slowly vary-
ing trapping potential. Numerical results are obtained for the condensate wave
function whenVe is a time-independent, spherically symmetric harmonic potential.
© 1999 American Institute of Physics.@S0022-2488~99!03211-9#

I. INTRODUCTION

The first successful experiments on Bose–Einstein condensation in dilute atomic gase
reported recently by the groups at JILA,1 Rice University,2 and MIT.3 In their respective experi-
ments, vapors of87Rb, 7Li, and 23Na atoms were confined by traps of inhomogeneous magn
fields acting on the spin of the unpaired electron of each atom. A combination of lase
evaporative cooling techniques were employed to cool each gas below the phase transition
Many similar experiments followed soon after these pioneering works. These experimental
vations have, in turn, stimulated theoretical interest, with emphasis on the study of the eff
condensation of parameters that can be controlled externally, aiming at new predictions or d
of future experiments. Major problems related to Bose–Einstein condensation in a trap in
equilibrium and nonequilibrium properties of the boson gas, such as collective excitation
vortices, and description of time evolution under the influence of time-dependent trapping p
tials.

An entirely quantum mechanical treatment of Bose–Einstein condensation in dilute sy
of hard spheres lacking translational symmetry at extremely low temperatures, when conde
into a single-particle state is nearly complete, was given in 1961 by Wu.4 In his approach, the two
crucial quantities for the minimal description of the Bose system are:~i! the condensate wav
functionF(r ,t), which, to the lowest approximation in the particle density, satisfies a Schro¨dinger
equation with a self-coupling term of third order, also derived by Gross5 and Pitaevskii6 by other
methods, and~ii ! the pair-excitation functionK0(r ,r 8;t), which describes the scattering of tw
atoms from the condensate to other states at positionsr and r 8, offers a systematic treatment o
physical effects such as sound vibrations, and provides corrections to higher orders in the p
density;K0(r ,r 8;t) was shown to satisfy a nonlinear integro-differential equation. To the low
approximation, this analysis has recently been extended both for zero and finite temperat
incorporate the effect of a sufficiently smooth external potential that increases rapidly at

a!Electronic mail: dmarget@fas.harvard.edu
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distances.7–9 Of particular significance is the underlying ansatz for the many-body Schro¨dinger
state vector at zero temperature:4,7,8

C~ t !5N~ t !eP~ t !~N! !21/2a0* ~ t !Nuvac&, ~1.1!

whereP(t) describes the creation of pairs from the condensate

P~ t !5~2N!21E dr dr 8c1* ~r ,t !c1* ~r 8,t !K0~r ,r 8;t !a0~ t !2, ~1.2!

N(t) is the normalization constant, which is immaterial for present purposes,N is the total number
of atoms,a0* (t) anda0(t) are the creation and annihilation operators for the condensate, re
tively, andc1* (r ,t) is the boson creation field operator corresponding to the space orthogo
the condensate wave function. Formula~1.1!, being combined with a consistent approximation
the N-body Hamiltonian, is a nontrivial generalization of the many-body wave function of L
Huang, and Yang10 for the case with translational invariance and periodic boundary conditi
where the main effect of particle interactions is the creation and annihilation of pairs of opp
momenta. The inclusion of pair excitation according to Eq.~1.1! necessarily modifies the equatio
of motion for F(r ,t). Some physically interesting implications of this second-order approxi
tion without any external potential, such as the difference between a compressional wave
phonon, are discussed in Ref. 4.

Recent numerical or analytical studies of properties of nonuniform atomic gases unde
Bose–Einstein condensation at extremely low temperatures have focused on the nonlinear¨-
dinger equation for the condensate wave function either in its time-independent8,11–14or its time-
dependent form.15 A different approach by Benjamin, Quiroga, and Johnson16 deals with the
relative motion of the atoms in a hyperspherical coordinate system, with application to
dimensional harmonic traps. In other contexts, several types of nonlinear Schro¨dinger equations
are examined in the light of soliton theory,17 often with emphasis on the description and conditio
of existence of a pulselike solution—from now on referred to as a solitary wave—whose
feature is the preservation of its shape during propagation. A summary and discussion of s
these approaches can be found in the very recent comprehensive paper by Morganet al.,18 whose
terminology is mainly adopted here.

Soliton theory usually describes nonlinear waves that interact like classical elastic partic
the sense that the initial shape and velocity of the waves are regained asymptotically, yet p
with a phase shift. Studies of such a behavior are believed to have been motivated from
unusual findings in a computation by Fermi, Pasta, and Ulam in 1955.19,20 Significant advances
toward the understanding of solutions to the underlying Korteweg–deVries~or KdV! equation
were made ten years later by Zabusky and Kruskal,21 followed by systematic investigations o
Gardneret al.22 A good list of references and exposition of methods or concepts german
widely known types of evolution equations are given in Ref. 23. It has been realized that a c
role in soliton theory is played by the ‘‘Ba¨cklund transformations,’’ which have provided a test f
solitonic behavior and led to higher soliton solutions to some equations.~For a review of the
mathematically advanced theory, see Ref. 19 and the references therein.!

It is well-known that the Schro¨dinger equation with a self-coupling term of third order a
zero external potential admits soliton solutions in the sense of Ref. 24. In general, the inclus
a term accounting for an external potential modifies the nature of the associated solutions
pointed out in Ref. 18. Specifically, Morganet al.18 examine conditions on nonlinear terms a
accompanying external potentials that allow for localized solitary-wave solutions, and prov
physical interpretation of their results. They justifiably conclude that~i! such nonlinearities should
not explicitly depend on the space variablex in ~111! dimensions, and~ii ! the change in the
potential experienced by the wave must be linear inx. They subsequently attempt to extend th
results to higher dimensions, with restriction to motion along fixed axes in space. This in
imposes conditions on the external potential, which they briefly describe. Notably,
dimensional motion of shape-preserving pulses of the condensate wave function is also stu
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Refs. 25 and 26 for positive and negative scattering lengths, respectively, with restricti
time-independent parabolic potentials of weak confinement along one specified axis~cigar-shaped
traps!.

It should be emphasized, however, that, although it simplifies the treatment, the assump
rectilinear motion in a space of dimensions higher than one is not necessary for the existe
solitary-wave solutions: motion of the solitary wave along an arbitrary trajectory in any numb
space dimensions is possible, provided the external potential is consistently chosen. Furth
in Refs. 18, 25, and 26 the effects of scattering processes due to atomic interactions are i
Such a simplified approach, though adequate for some cases of experimental relevance
tainly physically incomplete and needs improvement. It has been argued by others, for ins
that predictions based on the usual nonlinear Schro¨dinger equation become, in general, questio
able for time-dependent systems, when the number of noncondensed particles may grow in27

In the present paper, scattering processes are minimally taken into account through thjoint
consideration of the condensate wave function and the pair-excitation function.4,7–9 The purpose
of this work is to study solitary-wave motion by addressing the aforementioned issues in
detail, complementing, therefore, the analysis in Ref. 18, as a step toward an understan
more complicated nonequilibrium properties of the trapped Bose gas. An outline of the pa
provided below.

In Sec. II, external potentialsVe(r ,t) in (d11) dimensions (d>1) are analyzed under th
assumption that they sustain a condensate wave function identified with a single pulse th
serves its shape while moving along an arbitrarily prescribed trajectory in thed-dimensional
Euclidean space. Focus is on the Schro¨dinger equation containing a cubic self-coupling term a
positive scattering lengtha. The analysis starts withd51, but with a perspective different from
Ref. 18, and proceeds to generalizing tod>2. Given a consistentVe , the initial condition for the
condensate wave function, when the nonlinearity plays an important role, is discussed. An
ment is sketched to verify that, as a consequence of the requisite decomposition for the po
the harmonic potentials constitute the sole class of admissible time-independent potentia
allow for solitary-wave solutions.28 Furthermore, the assumption of nonuniqueness of the der
decomposition for the potential furnishes a class of time-dependent harmonic potentials. I
III, it is demonstrated that the corresponding lowest-order nonlinear integro-differential equ
for the pair-excitation function admits solitary waves in (2d11) dimensions. Section IV proceed
to determine approximately the initial amplitudes for the condensate wave function and the
excitation function corresponding to the lowest state of the condensate in a case of experi
interest, namely, when the trapping potential is slowly varying in space. In Sec. V, both ana
and numerical results are obtained for the lowest-energy condensate wave function under
dimensional, spherically symmetric harmonic potential.

II. THE CONDENSATE WAVE FUNCTION

The time-dependent nonlinear Schro¨dinger equation for the condensate wave functionF(r ,t)
in an external potentialVe(r ,t) is (\52m51)7,8

i ~]/]t !F~r ,t !5@2¹21Ve~r ,t !18paNV21uF~r ,t !u224paNV21z~ t !#F~r ,t !, ~2.1!

where

V21E dr uF~r ,t !u251, ~2.2!

z~ t !5V21E dr uF~r ,t !u4, ~2.3!

a is the scattering length, assumed to be positive,N is the number of particles, andV is the volume
of the system.
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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For mathematical convenience, Eq.~2.1! is cast in the form

i ~]/]t !F~r ,t !5@2¹21Ve~r ,t !1uF~r ,t !u2#F~r ,t !, ~2.4!

where

F~r ,t !5~8par0!1/2e2 i4par0s~ t !F~r ,t !, r05N/V, ~2.5!

provided that

s~ t !5E t

dtz~ t !1const, ~2.6!

where* t denotes an indefinite integral. The normalization condition~2.2! now reads

E dr uF~r ,t !u258paN. ~2.7!

A. The one-dimensional nonlinear Schro ¨ dinger equation

In the one-dimensional case, both the external potential and the condensate wave fu
depend on one space variable, sayx. Equation~2.4! then becomes

i
]F~x,t !

]t
5F2

]2

]x2 1Ve~x,t !1uF~x,t !u2GF~x,t !. ~2.8!

For Ve50, this reduces to the more or less standard form of the nonlinear Schro¨dinger equation.24

Solitary-wave solutions of this equation are assumed to be of the form~see the Appendix!:

F~x,t !5 f ~x2a~ t !!e2 iu~x,t !, ~2.9!

wheref (x) andu(x,t) are real functions, sufficiently smooth inx andt, anda(t) is a continuously
differentiable function of time. Under the assumption of a potentialVe(x,t) increasing sufficiently
rapidly for x→6`, it is necessary to require that

f ~x!→0 rapidly asuxu→`. ~2.10!

The example of the one-dimensional harmonic oscillator~briefly reviewed in the Appendix! sug-
gests thatf should decrease faster than exponentially inuxu for large values ofuxu. The same
conclusion can be reached by employing the Wentzel–Kramers–Brillouin method.

The substitution of Eq.~2.9! into Eq. ~2.8!, and separation of real and imaginary parts, yie
a system of coupled differential equations forf andu:

f ~x2a~ t !!
]2u

]x2 12 f 8~x2a~ t !!
]u

]x
52a8~ t ! f 8~x2a~ t !!, ~2.11!

2 f 9~x2a~ t !!1S ]u

]xD 2

f ~x2a~ t !!1@Ve~x,t !1 f ~x2a~ t !!2# f ~x2a~ t !!5
]u

]t
f ~x2a~ t !!,

~2.12!

where the prime denotes differentiation with respect to argument. Equation~2.11! can be rewritten
as

]

]x F f ~x2a~ t !!2
]u

]x G52a8~ t ! f 8~x2a~ t !! f ~x2a~ t !!. ~2.13!
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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This is explicitly integrated to give

]u

]x
52

1

2
a8~ t !1

A1~ t !

f ~x2a~ t !!2 , ~2.14!

except at pointsx5x(t) where f (x2a(t)) vanishes. It immediately follows that

u~x,t !5Ex

dx
]u

]x
1A~ t !52

1

2
a8~ t !x1Ex

dx
A1~ t !

f ~x2a~ t !!2 1A~ t !, ~2.15!

wherex lies between consecutive zeros off (x2a(t)), calling for the possible use of differen
correspondingA1’s and A’s. Consider the simplest case wheref has no zeros. According to th
preceding formula, for nonzeroA1(t), the limiting behavior off at large distancesx and fixed time
t gives rise to increasingly rapid oscillations inx of the real and imaginary parts of the condens
wave function. This in turn implies an infinite expectation value of the kinetic energy
2]2/]x2 in the Hamiltonian of the system. To eliminate this unphysical possibility, it is neces
to setA1(t) equal to zero:

A1~ t ![0. ~2.16!

To put this argument on a firm foundation, it is expedient to invoke the following conditi

~i! Normalizability of F(x,t) from Eq. ~2.7!, viz.

E dxuF~x,t !u25E dx f~x2a~ t !!2,`. ~2.17!

~ii ! Finite kinetic energy of the condensate, viz.

E dx F* ~x,t !S 2
]2

]x2DF~x,t !5E dxU]F

]xU
2

,`. ~2.18!

The last condition entails

E dx f8~x2a~t!!2,`, ~2.19a!

E dxS ]u

]xD 2

f ~x2a~ t !!2,`. ~2.19b!

The use of Eqs.~2.14! and ~2.17! in Eq. ~2.19b! gives

E dx A1~ t !F2a8~ t !1
A1~ t !

f ~x2a~ t !!2G,`, ~2.20!

which is impossible unless identity~2.16! holds. A similar argument can be applied to the ca
wheref has any number of zeros.

For smooth realf, the resulting phaseu(x,t) is

u~x,t !52 1
2a8~ t !x1A~ t !, ~2.21!

in agreement with Eq.~9! of Ref. 18. The substitution of Eq.~2.21! into Eq. ~2.12! yields a
consistency equation forVe(x,t):

f 9~x2a~ t !!5@Ve~x,t !1 f ~x2a~ t !!21 1
2a9~ t !x1 1

4a8~ t !22A8~ t !# f ~x2a~ t !!. ~2.22!
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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It is inferred thatVe(x,t) must be expressed as

Ve~x,t !5V1~x2a~ t !!1xV2~ t !1V3~ t !, ~2.23!

where

V1~x!5
f 9~x!

f ~x!
2 f ~x!2, ~2.24!

V2~ t !52 1
2a9~ t !, ~2.25!

V3~ t !52 1
4a8~ t !21A8~ t !. ~2.26!

Equation~2.23! gives the requisite form of potentials for givenf (x), a(t), andA(t). Note that
some of the inflection points off (x) need to coincide with its zeros. By close examination of E
~2.23!–~2.26!, the following should be pointed out.

~1! Given aV1(x), the differential equation~2.24! suggests, in some sense, an eigenva
problem. More particularly, whenuxu is sufficiently large, condition~2.10! becomes effective,
indicating thatf 2!u f 9/ f u. Under this approximation, Eq.~2.24! becomes

f 9~x!;V1~x! f ~x!, ~2.27a!

which is a linear equation. Hence, only discrete shiftsem of V1(x)5V1m(x) are permissible,
corresponding to ‘‘eigenfunctions’’f 5 f m ~m5non-negative integer!. These shifts in turn induce
discrete amounts of shift inA8(t) through Eqs.~2.23! and~2.26!. Accordingly,F(x,t) exhibits a
behavior of the forme2 i emt f m(x2a(t)) in the fixed trapping potential

Ve~x!5V1m~x!1 (
l<m21

e l1C0 ~2.27b!

experienced by the pulse, whereC0 is a constant.29

~2! For a(t) different from a constant, the only class of time-independent poten
Ve(x,t)5Ve(x) of the form~2.23! consists of the harmonic potentials. Indeed, differentiation ix
of both sides of Eq.~2.23! twice yields

Ve9~x!5V l9~x2a~ t !!5K5const.0. ~2.28!

Hence,

Ve~x!5 1
2Kx21K̄x1C. ~2.29!

~3! If Ve(x,t) admits a second decomposition

Ve~x,t !5U1~x2b~ t !!1xU2~ t !1U3~ t !, ~2.30!

where

U1~x!5
f̆ 9~x!

f̆ ~x!
2 f̆ ~x!2, ~2.31!

U2~ t !52 1
2b9~ t !, ~2.32!

U3~ t !52 1
4b8~ t !21B8~ t !, ~2.33!

andU1(x)ÞV1(x), U3(t)ÞV3(t), two cases fora(t) andb(t) need to be distinguished.
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~i! a(t)2b(t)Þconst. Differentiation of Eqs.~2.23! and~2.30! with respect tox twice yields

V 19~x2a~ t !!5U 19~x2b~ t !!5K. ~2.34!

Therefore,

Ve~x,t !5 1
2K@x2a~ t !#21K1@x2a~ t !#1K21xV2~ t !1V3~ t ! ~2.35a!

5 1
2K@x2b~ t !#21M1@x2b~ t !#1M21xU2~ t !1U3~ t !, ~2.35b!

i.e., Ve(x,t) is the time-dependentharmonic potential

Ve~x,t !5 1
2Kx21K̄~ t !x1C~ t ! ~K.0!. ~2.36!

A comparison of Eqs.~2.35a! and ~2.35b! furnishes the consistency equations

2Ka~ t !1K11V2~ t !52Kb~ t !1M11U2~ t !, ~2.37a!

1
2Ka~ t !22K1a~ t !1K21V3~ t !5 1

2Kb~ t !22M1b~ t !1M21U3~ t !. ~2.37b!

~ii ! a(t)2b(t)5C15const. From Eqs.~2.25! and ~2.32!,

V2~ t !5U2~ t !. ~2.38!

Equations~2.23! and ~2.30! combined give

V3~ t !2U3~ t !5U1~x2C1!2V1~x!5e5const. ~2.39!

In view of ~2.26! and ~2.33!,

A~ t !5B~ t !1et1const. ~2.40!

The meaning of thise becomes apparent from Eqs.~2.27!: it is the discrete amount of shift in
V1(x) corresponding to a shift from the ‘‘eigenfunction’’f (x) to another ‘‘eigenfunction’’f̆ (x)
under the same trapping potentialVe experienced by the solitary wave.

B. The nonlinear Schro ¨ dinger equation in d space dimensions, d>2

The foregoing analysis in one dimension can be extended to higher dimensions. For de
ness, considerd53. In accord with the conditions in the recent experiments,1–3 it is assumed that

Ve~r ,t !→1`, uniformly in r̂5r /ur u as r 5ur u→`. ~2.41!

Instead of assuming motion of the solitary wave along a fixed axis, as is the case in Ref.

F~r ,t !5 f ~r2a~ t !!e2 iu~r ,t !, ~2.42!

wherea(t) is a twice differentiable vector function of time,f (r ) and u(r ,t) are real and suffi-
ciently smooth, and from Eq.~2.7!,

E dr f ~r 2a~ t !!258paN. ~2.43!

In view of condition~2.41!, it is reasonable to assume that

f→0 rapidly, uniformly in r̂5r /ur u as r→`, ~2.44!
 28 Dec 2004 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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ensuring that the condensate is localized and has a finite kinetic energy, as indicated
Appendix. The substitution of Eq.~2.42! in Eq. ~2.4! gives

2 i a8~ t !•¹ f ~r2a~ t !!1 f ~r2a~ t !!
]u~r ,t !

]t
52¹2f ~r2a~ t !!12i¹ f ~r2a~ t !!•¹u~r ,t !

1 i f ~r2a~ t !!¹2u~r ,t !1 f ~r2a~ t !!u¹u~r ,t !u2

1@Ve~r ,t !1 f ~r2a~ t !!2# f ~r2a~ t !!. ~2.45!

Upon separation of real and imaginary parts, the preceding equation decomposes into

2a8~ t !•¹ f ~r2a~ t !!52¹ f ~r2a~ t !!•¹u~r ,t !1 f ~r2a~ t !!¹2u~r ,t !, ~2.46!

f ~r2a~ t !!
]u~r ,t !

]t
52¹2f ~r2a~ t !!1u¹u~r ,t !u2f ~r2a~ t !!

1@Ve~r ,t !1 f ~r2a~ t !!2# f ~r2a~ t !!. ~2.47!

Equation~2.46! is recast in the form

¹•~ f 2¹u!52 f a8~ t !•¹ f , f 5 f ~r2a~ t !!, ~2.48!

which holds regardless of the specific form for the shapef 5 f (r ,t) of F(r ,t). A particular solution
to this equation is

up~r ,t !52 1
2a8~ t !•r1A~ t !. ~2.49!

With u5up1u1 , u1(r ,t) satisfies the homogeneous equation

¹•~ f 2¹u1!50. ~2.50!

Integration by parts over a finite regionR bounded by a surfaceS yields

05E dr u1¹•~ f 2¹u1!5 R
S
dS f 2u1n̂•¹u12E dr f 2u¹u1u2, ~2.51!

wheren̂ is the unit vector normal toS pointing outward. WhenR extends to infinity, the surface
integral becomes arbitrarily small because of the condition~2.44!, in analogy with the one-
dimensional case. Consequently,

f 2u¹u1u250 almost everywhere, ~2.52!

i.e., except for a set of points of measure zero. Whenf Þ0, this in turn entails

u1~r ,t !5C1~ t ! almost everywhere. ~2.53!

At the zeros off, u¹u1u seems to be indeterminate, calling for the use of differentC1’s in Eq.
~2.53!. However, for a sufficiently smoothu(r ,t), C1(t) can be taken to be zero everywhe
without loss of generality. Accordingly,u(r ,t) reads

u~r ,t !5up~r ,t !52 1
2a8~ t !•r1A~ t !, ~2.54!

which is a generalization of Eq.~2.21!.
The external potential consistent with Eqs.~2.47! and ~2.54! is

Ve~r ,t !5V1~r2a~ t !!1V2~ t !•r1V3~ t !, ~2.55!
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where

V1~r !5
¹2f ~r !

f ~r !
2 f ~r !2, ~2.56!

V2~ t !52 1
2a9~ t !, ~2.57!

V3~ t !52 1
4ua8~ t !u21A8~ t !. ~2.58!

Notably,¹2f (r ) needs to vanish at any surface wheref „r ) vanishes.
A few important remarks are in order.
~1! For an external potential increasing inur u, Eq. ~2.56! bears the features of an eigenval

problem. Specifically, forur u→`, a linear equation is recovered approximately:

¹2f ~r !;V1~r ! f ~r !. ~2.59!

Analogies with the one-dimensional case are easily drawn from this equation.
~2! Whena(t) is not a constant, the only time-independent potential of the form~2.55! that

satisfies condition~2.41! is the d-dimensional harmonic potential. The justification for this
somewhat more demanding than for the one-dimensional case. WithVe(r ,t)5Ve(r ), the applica-
tion of the Laplacian to both sides of Eq.~2.55! gives

¹2Ve~r !5¹2V1~r2a~ t !!5K5const.0. ~2.60!

In three dimensions, a solution to Eq.~2.60! for Ve(r ) is:

Vp~r !5
1

2 (
i , j 51,2,3

Ki j xixj1 (
j 51,2,3

K̄ jxj1C, ~2.61!

where (x1 ,x2 ,x3)5r5(x,y,z),

Tr@Ki j #5K, ~2.62!

and the matrix@Ki j # is symmetric and positive definite. Every admissible solution to Eq.~2.60!
can be written as

Ve~r !5Vp~r !1V1~r !, ~2.63!

whereV1(r ) is a smooth function satisfying Laplace’s equation:

¹2V1~r !50 everywhere. ~2.64!

If S is now a spherical surface with centerr and radiusR, then according to Gauss’ mean valu
theorem30

V1~r !5
1

4pR2 R
S
dS8 V1~r 8!. ~2.65!

SinceR can be taken to be arbitrarily large, it follows thatV1 cannot be forced to comply with
condition ~2.41!. Consequently,V1(r ) is equal to a constant. Without loss of generality,

V1~r ![0. ~2.66!

~3! Let Ve(r ,t) admit an alternative decomposition,

Ve~r ,t !5U1~r2b~ t !!1r•U2~ t !1U3~ t !, ~2.67!
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where

U1~r !5
¹2 f̆ ~r !

f̆ ~r !
2 f̆ ~r !2, ~2.68!

U2~ t !52 1
2b9~ t !, ~2.69!

U3~ t !52 1
4ub8~ t !u21B8~ t !, ~2.70!

andU1(r )ÞV1(r ), U3(t)ÞV3(t). In analogy with the one-dimensional case, there are two dist
possibilities.

~i! a(t)2b(t)Þconst. Then,

¹2V1~r2a~ t !!5¹2U1~r2b~ t !!5K, ~2.71!

which in turn implies that

Ve~r ,t !5
1

2 (
i , j 51,2,3

Ki j @xi2a i~ t !#@xj2a j~ t !#1@r2a~ t !#•K11K21r•V2~ t !1V3~ t !

5
1

2 (
i , j 51,2,3

Mi j @xi2b i~ t !#@xj2b j~ t !#1@r2b~ t !#•M11M21r•U2~ t !1U3~ t !,

~2.72!

where

Tr@Ki j #5Tr@Mi j #5K, ~2.73!

andK2 , M2 are immaterial constants. Therefore,Ve(r ,t) is the time-dependent harmonic pote
tial

Ve~r ,t !5
1

2 (
i , j 51,2,3

Ki j xixj1r•K̄ ~ t !1C~ t !. ~2.74!

~ii ! a(t)2b(t)5C15const. Without loss of generality,C150. It is easily found that

V2~ t !5U2~ t !, ~2.75!

V3~ t !2U3~ t !5U1~r !2V1~r !5e5const. ~2.76!

Equation~2.76! implies that

A~ t !5B~ t !1et1const. ~2.77!

Therefore,f̆ (r ) is just another ‘‘eigenfunction’’ of Eq.~2.56! under the same trapping potentialVe

seen by the pulse.

III. THE PAIR-EXCITATION FUNCTION

The pair-excitation functionK0(r ,r 8;t) satisfies the integro-differential equation8
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F i
]

]t
22E~ t !GK0~r ,r 8;t !52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !18par0F~r ,t !2d~r2r 8!

1$22z̄~ t !216par0z~ t !22ze~ t !1Ve~r ,t !1Ve~r 8,t !

116par0@ uF~r ,t !u21uF~r 8,t !u2#%K0~r ,r 8;t !

18par0E dr 9 F* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !

28par0V21HF~r ,t !F~r 8,t !@ uF~r ,t !u21uF~r 8,t !u22z~ t !#

1F~r ,t !E dr 9 K0~r 8,r 9;t !uF~r 9,t !u2F* ~r 9,t !

1F~r 8,t !E dr 9 K0~r ,r 9;t !uF~r 9,t !u2F* ~r 9,t !J , ~3.1!

where

E~ t !5 iV21E dr
]F~r ,t !

]t
F* ~r ,t !, ~3.2!

z̄~ t !5V21E dr u¹F~r ,t !u2, ze~ t !5V21E dr Ve~r ,t !uF~r ,t !u2, ~3.3!

and¹[¹ r , ¹8[¹ r8 . Without loss of generality,K0(r ,r 8;t) has been chosen to satisfy

K0~r ,r 8;t !5K0~r 8,r ;t !, ~3.4!

E dr F* ~r ,t !K0~r ,r 8;t !50. ~3.5!

In order to investigate the possibility for solitary-wave solutions to Eq.~3.1!, the following
preliminary steps are taken:

~i! By virtue of Eq.~2.5!, F(r ,t) is replaced by (8par0)21/2ei4par0s(t)F(r ,t).
~ii ! To balance out the exponential factor introduced above,K0(r ,r 8;t) is written as

K0~r ,r 8;t !5ei8par0s~ t !K0~r ,r 8;t !. ~3.6!

The resulting equation for thisK0(r ,r 8;t) is

i
]K0~r ,r 8;t !

]t
52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !1F~r ,t !2d~r2r 8!1$Ve~r ,t !1Ve~r 8,t !

12@ uF~r ,t !u21uF~r 8,t !u2#%K0~r ,r 8;t !1E dr 9 F* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !

2~8paN!21HF~r ,t !F~r 8,t !@ uF~r ,t !u21uF~r 8,t !u22 ẑ~ t !#

1F~r ,t !E dr 9 K0~r 8,r 9;t !uF~r 9,t !u2F* ~r 9,t !

1F~r 8,t !E dr 9 K0~r ,r 9;t !uF~r 9,t !u2F* ~r 9,t !J , ~3.7!
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where

ẑ~ t !58par0z~ t !, ~3.8!

andE(t) was replaced by

E~ t !5 z̄~ t !1ze~ t !14par0z~ t !, ~3.9!

by employing Eq.~2.1!.
Given Eqs.~2.42! and ~3.4!, solitary-wave solutions are sought in the form

K0~r ,r 8;t !5k0~r2g~ t !,r 82g~ t !!e2 ix~r ,r8;t !, ~3.10!

wherek0(r ,r 8), x(r ,r 8;t), andg(t) are sufficiently smooth real functions satisfying

k0~r ,r 8!5k0~r 8,r !, x~r ,r 8;t !5x~r 8,r ;t !, ~3.11!

E dr f ~r2a~ t !!k0~r2g~ t !,r 82g~ t !!ei @u~r ,t !2x~r ,r8;t !#50. ~3.12!

The substitution of Eq.~3.10! into Eq. ~3.7! by virtue of Eqs.~2.42! and ~2.55! yields

2 i g8~ t !•~¹k01¹8k0!1k0~r2g~ t !,r 82g~ t !!
]x~r ,r 8;t !

]t

52¹2k02¹82k012i ~¹k0•¹x1¹8k0•¹8x!1 ik0~r2g~ t !,r 82g~ t !!~¹2x1¹82x!

1k0~r2g~ t !,r 82g~ t !!~ u¹xu21u¹8xu2!1 f ~r2a~ t !!2d~r2r 8!eix~r ,r8;t !2 i2u~r ,t !

1$V1~r2a~ t !!1V1~r 82a~ t !!1~r1r 8!•V2~ t !12V3~ t !

12@ f ~r2a~ t !!21 f ~r 82a~ t !!2#%k0~r2g~ t !,r 82g~ t !!

1E dr 9 f ~r 92a~ t !!2k0~r2g~ t !,r 92g~ t !!k0~r 82g~ t !,r 92g~ t !!

3exp$2iu~r 9,t !2 i @x~r ,r 9;t !1x~r 8,r 9;t !2x~r ,r 8;t !#%

2~8paN!21H f ~r2a~ t !! f ~r 82a~ t !!@ f ~r2a~ t !!21 f ~r 82a~ t !!22 ẑ #

3exp$ ix~r ,r 8;t !2 i @u~r ,t !1u~r 8,t !#%

1 f ~r2a~ t !!E dr 9 k0~r 82g~ t !,r 92g~ t !! f ~r 92a~ t !!3

3exp$ i @u~r 9,t !2u~r ,t !#1 i @x~r ,r 8;t !2x~r 8,r 9;t !#%

1 f ~r 82a~ t !!E dr 9 k0~r2g~ t !!,r 92g~ t !) f ~r 92a~ t !!3

3exp$ i @u~r 9,t !2u~r 8,t !#1 i @x~r ,r 8;t !2x~r ,r 9;t !#%J , ~3.13!

where it is understood thatk05k0(r2g(t),r 82g(t)) and x5x(r ,r 8;t), and ẑ is now time
independent. Elimination of the above phase factors succeeds ifx is taken equal to
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x~r ,r 8;t !5u~r ,t !1u~r 8,t !52 1
2a8~ t !•~r1r 8!12A~ t !. ~3.14!

In view of Eq. ~3.14!, separation of the real and imaginary parts in Eq.~3.13! leads to

2g8~ t !•~¹k01¹8k0!52~¹k0•¹x1¹8k0•¹8x!1k0~r2g~ t !,r 82g~ t !!~¹2x1¹82x!,

~3.15!

2 1
2k0~r2g~ t !,r 82g~ t !!a9~ t !•~r1r 8!12k0~r2g~ t !,r 82g~ t !!A8~ t !

52¹2k02¹82k01 1
2k0~r2g~ t !,r 82g~ t !!ua8~ t !u21 f ~r2a~ t !!2d~r2r 8!

1$V1~r2a~ t !!1V1~r 82a~ t !!1~r1r 8!•V2~ t !12V3~ t !

12@ f ~r2a~ t !!21 f ~r 82a~ t !!2#%k0~r2g~ t !,r 82g~ t !!

1E dr 9 f ~r 92a~ t !!2k0~r2g~ t !!,r 92g~ t !)k0~r 82g~ t !,r 92g~ t !!

2~8paN!21H f ~r2a~ t !! f ~r 82a~ t !!@ f ~r2a~ t !!21 f ~r 82a~ t !!22 ẑ #

1 f ~r2a~ t !!E dr 9 k0~r 82g~ t !,r 92g~ t !! f ~r 92a~ t !!3

1 f ~r 82a~ t !!E dr 9 k0~r2g~ t !,r 92g~ t !! f ~r 92a~ t !!3J , ~3.16!

of which the first one is satisfied if

g~ t !5a~ t !1a0 , ~3.17!

wherea0 is a vector constant. Without loss of generality, thisa0 is set equal to zero.
In Eq. ~3.16!, V2(t) andV3(t) are replaced by2 1

2a9(t) and 2 1
4ua8(t)u21A8(t) from Eqs.

~2.57! and~2.58!, respectively. With a subsequent shift both ofr andr 8 by a(t), all time depen-
dencies are eliminated and an equation fork0(r ,r 8) is obtained:

2¹2k0~r ,r 8!2¹82k0~r ,r 8!1 f ~r !2d~r2r 8!1$V1~r !1V1~r 8!12@ f ~r !21 f ~r 8!2#%k0~r ,r 8!

1E dr 9 f ~r 9!2k0~r ,r 9!k0~r 8,r 9!2~8paN!21H f ~r ! f ~r 8!@ f ~r !21 f ~r 8!22 ẑ #

1 f ~r !E dr 9 k0~r 8,r 9! f ~r 9!31 f ~r 8!E dr 9 k0~r ,r 9! f ~r 9!3J 50, ~3.18!

where

E dr f ~r !k0~r ,r 8!50. ~3.19!

When the number of particles,N, is sufficiently large, Eq.~3.18! is approximated by

2¹2k0~r ,r 8!2¹82k0~r ,r 8!1 f ~r !2d~r2r 8!1$V1~r !1V1~r 8!12@ f ~r !21 f ~r 8!2#%k0~r ,r 8!

1E dr 9 f ~r 9!2k0~r ,r 9!k0~r 8,r 9!50. ~3.20!
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IV. SLOWLY VARYING TRAPPING POTENTIAL

In order to elucidate the dependence on the physical parameters of the problem, let

F̃~r ,t !5Ar0F~r ,t !, r05N/V. ~4.1!

F̃(r ,t) satisfies

i ~]/]t !F̃~r ,t !5@2¹21Ve~r ,t !18pauF̃~r ,t !u224paz̃~ t !#F̃~r ,t !, ~4.2!

and the normalization condition

N21E dr uF̃~r ,t !u251. ~4.3!

In the above,

z̃~ t !5N21E dr uF̃~r ,t !u4. ~4.4!

Equation~2.42! reads

F̃~r ,t !5 f̃ ~r2a~ t !!exp$ i 1
2a8~ t !•r2 iA~ t !%, ~4.5!

where

N21E dr f̃ ~r !251. ~4.6!

The external potential is

Ve~r ,t !5Ṽ1~r2a~ t !!1r•Ṽ2~ t !1Ṽ3~ t !, ~4.7!

where

Ṽ1~r !5
¹2 f̃ ~r !

f̃ ~r !
28pa f̃~r !214paz̃, z̃5N21E dr f̃ ~r !4, ~4.8a!

and Ṽ2(t), Ṽ3(t) are given by equations similar to Eqs.~2.57! and ~2.58!. Therefore, f̃ (r )
5 f̃ m(r )(m50,1,...,) correspond to states of the condensate with energiesEm under the externa
potential

Ve5Ṽ1m1Em ~ Ṽ15Ṽ1m!. ~4.8b!

Given aVe(r ), Eq. ~4.2! can be solved approximately for the lowest state of the conden
when Ve(r ) is sufficiently slowly varying. This is the case in the recent experiments on Bo
Einstein condensation, where the trap is of macroscopic dimensions. By applying the proced
Refs. 8 and 13, neglect of the Laplacian furnishes

@Ve~r !18pa f̃~r !224paz̃2E# f̃ ~r !50, ~4.9!

whereE5E0 , or,

f̃ ~r !;H ~8pa!21/2@E14paz̃2Ve~r !#1/2, r inside R0

0, r outside R0
, ~4.10!
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since f̃ (r ) can be chosen to be non-negative. The regionR0 is determined by

Ve~r !,E14paz̃, rPR0 . ~4.11!

At the boundary]R0 of R0 ,

E14paz̃5Ve~r !, rP]R0 . ~4.12!

Under this approximation, an expression forE is obtained via multiplication of Eq.~4.9! by f̃ (r )
and integration overr :

E;4paz̃1 z̃e , ~4.13!

where

z̃e5N21E dr Ve~r !u f̃ ~r !u2. ~4.14!

Formula~4.10! breaks down in the vicinity of]R0 . A remedy to this problem is provided in Ref
8 and 13.

It remains to discuss the pair-excitation functionK0(r ,r 8;t). With

K0~r ,r 8;t !5k̃0~r2a~ t !,r 82a~ t !!e2 ix~r ,r8;t !, ~4.15!

and use of Eq.~3.14!, k̃0(r ,r 8) should satisfy

2¹2k̃0~r ,r 8!2¹82k̃0~r ,r 8!18pa f̃~r !2d~r2r 8!1$22ž216paz̃22z̃e1Ve~r !1Ve~r 8!

116pa@ f̃ ~r !21 f̃ ~r 8!2#%k̃0~r ,r 8!18paE dr 9 f̃ ~r 9!2k̃0~r ,r 9!k̃0~r 8,r 9!50, ~4.16!

where

ž5N21E dr u¹ f̃ ~r !u2. ~4.17!

Note that shiftingVe by a constant does not affect the equation of motion.
Following Ref. 8, let

p0~R,r !5k̃0~r1 ,r2!, ~4.18!

where

R5 1
2~r11r2!, r5r12r2 . ~4.19!

Hence,

p0~R,2r !5p0~R,r !. ~4.20!

The integro-differential equation forp0(R,r ) reads

2 1
2¹R

2 p0~R,r !22¹ r
2p0~R,r !18pa f̃~R!2d~r !1$22ž216paz̃22z̃e1Ve~R1 1

2r !

1Ve~R2 1
2r !116pa@ f̃ ~R1 1

2r !21 f̃ ~R2 1
2r !2#%p0~R,r !

18paE dr 8 f̃ ~R1r 8!2p0~R1 1
4r1 1

2r 8,
1
2r2r 8!p0~R2 1

4r1 1
2r 8,2

1
2r2r 8!50. ~4.21!
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In the spirit of Eq.~4.9!, ¹R
2 is neglected, while

Ve~R1 1
2r !;Ve~R!;Ve~R2 1

2r !, ~4.22!

f̃ ~R1 1
2r !; f̃ ~R!; f̃ ~R2 1

2r !, ~4.23!

p0~R1 1
4r1 1

2r 8,
1
2r2r 8!;p0~R, 1

2r2r 8!, ~4.24a!

p0~R2 1
4r1 1

2r 8,2
1
2r2r 8!;p0~R,2 1

2r2r 8!. ~4.24b!

Equation~4.21! then reduces to

2¹ r
2p0~R,r !14pa f̃~R!2d~r !1$2 ž28paz̃2 z̃e1Ve~R!116pa f̃~R!2%p0~R,r !

14pa f̃~R!2E dr 8 p0~R,r 8!p0~R,r2r 8!50. ~4.25!

Because the nonlinear term is a convolution integral, the equation of motion can be s
exactlywith recourse to the Fourier transform inr of p0(R,r ):

p̄0~R,k!5E dreik•rp0~R,r !, ~4.26!

which transforms Eq.~4.25! into

4pa f̃~R!2p̄0~R,k!21@k21k0~R!2# p̄0~R,k!14pa f̃~R!250, ~4.27!

where

k0~R!252 ž28paz̃2 z̃e1Ve~R!116pa f̃~R!2. ~4.28!

Equation~4.27! is solved explicitly to give

p̄0~R,k!5@8pa f̃~R!2#21$2k22k0~R!21A@k21k0~R!2#22~8pa!2 f̃ ~R!4%. ~4.29!

In view of formula ~4.10!,

p̄0~R,k!;H 2k0~R!22$k21k0~R!22k@k212k0~R!2#1/2%, R inside R0

0, R outside R0
, ~4.30!

by neglectingž sinceu¹ f̃ (r )u.0 unlessr is sufficiently close to]R0 , so that

k0~R!258pa f̃~R!2. ~4.31!

Inversion ofp̄0(R,k) is carried out as follows. ForR outsideR0 ,

p0~R,r !50. ~4.32!

If R lies insideR0 ,
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p0~R,r !5
1

~2p!3 lim
d→01

E dk e2 ik•re2dkp̄0~R,k!

52
1
k0

2
1

~2p!3 lim
d→01

E
0

2p

dfE
0

p

du sinuE
0

`

dk k2e2 ikur ucosue2dk

3@k21k0
22k~k212k0

2!1/2#

5
2

k0
2ur u

1
~2p!2 lim

d→01
Im E

0

`

dk eikur ue2dkk2~k212k0
2!1/2 ~k5A2k0 sinht !

5
k0

2

2p2ur u
lim

d→01
Im E

0

`

dt eiA2k0ur usinh te2dA2k0 sinh t~sinh 2t !2

5p22~4pa!3/2f̃ ~R!3 Im$S0,4~ iw !2S0,0~ iw !%
w

, ~4.33!

wherek05k0(R) and

w5~16pa!1/2f̃ ~R!ur u, ~4.34!

andS0,4 andS0,0 are Lommel’s functions.31

V. f̃ „r… IN A THREE-DIMENSIONAL SPHERICALLY SYMMETRIC HARMONIC
POTENTIAL

In the actual experiments on Bose–Einstein condensation, the trapping potential is of
plicated form. This is usually modeled as an anisotropic harmonic potential. In this sectionf̃ (r )
for the lowest state of the condensate is examined in some detail in the simplifying cas
spherically symmetric harmonic potential. A similar task is undertaken in Ref. 12, where
nonlinear Schro¨dinger equation is given in terms of the chemical potential.

With an external potentialVe(r ,t)5 1
4v0

2r 2, Ṽ1(r ) is taken to be

Ṽ1~r !5 1
4v0

2r 22E, ~5.1!

as is suggested by the eigenvalue problem associated with Eq.~2.56!. Terms linear inx, y, andz
are omitted. It follows that

Ṽ2~ t !5 1
2v0

2a~ t !, Ṽ3~ t !5E2 1
4v0

2ua~ t !u2, ~5.2!

yielding

a~ t !5r0 cosv0t1
v0

v0
sinv0t, ~5.3!

A~ t !5Et1
1

8 S uv0u22v0
2ur0u2

v0
sin 2v0t12v0•r0 cos 2v0t D 1const, ~5.4!

wherer0 andv0 are determined by the initial conditions and the constant is real.
For the state of lowest energyE5E0 , f̃ (r )5 f̃ 0(r ) is spherically symmetric.32 Let

q~j!5~4p!1/2~N2v0/2!21/4r f̃ 0~r !, j5~v0/2!1/2r . ~5.5!

From Eq.~4.8a!, this q(j) satisfies
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2
d2q~j!

dj2 1j2q~j!1L2
q~j!3

j2 5l2q~j! ~j.0!, ~5.6!

supplemented with the boundary conditions

q~0!50, ~5.7!

lim
j→`

q~j!50, ~5.8!

and the normalization condition

E
0

`

dj q~j!251. ~5.9!

In the above,

L5~2a2N2v0!1/4, ~5.10!

l25
2E
v0

1
1

2
L2E

0

` dj

j2 q~j!4, l.0. ~5.11!

Note that, forj→`, the nonlinear term in Eq.~5.6! can be neglected, and the asymptotic behav
of q(j) is found via the direct application of the Wentzel–Kramers–Brillouin method:

q~j!;C~j22l2!21/4exp$2~l2/2!@~j/l!A~j/l!2212cosh21~j/l!#%, ~5.12!

whereC is independent ofj. Compare with Ref. 12. For a discussion on the determination of
C see Ref. 33.

Some insight into the solution to Eqs.~5.6!–~5.9! can be obtained by considering the follow
ing cases.

~i! L@1. To leading order inL, neglect of the second derivative ofq(j) results in

q~j!;q~0!~j !5H ~j/L!Al22j2, 0<j,l

0, j.l,
~5.13!

which trivially satisfies Eqs.~5.7! and ~5.8!. q(0)(j) satisfies Eq.~5.9! provided thatl is

l;l~0!5~ 15
2 L2!1/5. ~5.14!

A similar calculation for an anisotropic potential can be found in Ref. 14, where the chem
potential is employed. From Eq.~5.11!,

E~0!5 5
14 ~ 15

2 !2/5~2a2N2v0!1/5v05 5
21 ~ 15

2 !2/5L4/5e0
ho, ~5.15!

wheree0
ho5 3

2v0 is the ground-state energy of the three-dimensional harmonic oscillator. App
mation~5.13! starts to break down at a distance of the order ofL22/15 from inside the ‘‘boundary’’
j5l, and then needs to be modified according to the procedure in Refs. 8 and 13. This pro
provides a smooth connection to asymptotic formula~5.12! when 0,j2l!1 while j2l
@O(L22/15).33

~ii ! L!1. To zeroth order inL, the known solution for the ground-state wave function of
three-dimensional harmonic oscillator is obtained:

q~0!~j !52p21/4je2j2/2, ~5.16!

with energy E(0)5(v0/2)l (0)25e0
ho. The first-order energy correctionE(1) can be obtained
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through the standard perturbation methods, by treatingV(0)(j)5L2j22q(0)(j)2 as the perturbing
potential. Therefore,l (1)2 equals the matrix element

l~1!2
5E

0

`

dj q~0!~j !V~0!~j !q~0!~j !. ~5.17!

By virtue of Eq.~5.11!,

E~1!5
v0L2

4 E
0

` dj

j2 q~0!~j !45A2

p

v0L2

4
, L!1, ~5.18!

or

E;E~0!1E~1!5
3

2
v01A2

p

v0L2

4
. ~5.19!

FIG. 1. Solution to Eqs.~5.6!–~5.9! for L2512.1 (87Rb atoms,a.110a0 , N5103, and v05(2p3120)/A8 rad/s).
Numerically computed eigenvalue isl256.8.

FIG. 2. Solution to Eqs.~5.6!–~5.9! for L25121 (87Rb atoms,N5104, andv05(2p3120)/A8 rad/s). Eigenvalue is
l2515.6.
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Numerical results. In order to make some contact with recent experimental situations, plo
q(j) are presented in Figs. 1 and 2 for two different values ofL, in close relation to the JILA
experiments, where87Rb atoms were used (a5110a0 , a0 : the Bohr radius!.1 Specifically, in Fig.
1, L2512.1, corresponding, for instance, toN5103 andv05(2p3120)/A8 rad/s. The numeri-
cally computed eigenvalue there isl256.8, givingE51.8e0

ho. Compare withE(0)51.45e0
ho pro-

vided by Eq.~5.15!. In Fig. 2,L25121. The corresponding eigenvalue is found to bel2515.6,
giving E53.8e0

ho. Compare withE(0)53.63e0
ho from Eq. ~5.15!.

VI. CONCLUSIONS AND DISCUSSION

In the theoretical treatment of Bose–Einstein condensation in dilute atomic gases with
sive interactions, the trap is replaced by a sufficiently smooth external potentialVe(r ,t) that acts
simultaneously on each atom and increases sufficiently rapidly at large distances. As a
quence, the boson system is no longer translationally invariant. Work carried out 38 year4

turns out to be a suitable starting point. An important element introduced there was the syst
consideration of scattering processes, such as pair creation, with a study of some of their p
consequences. In the presence of a trapping potential, pair creation plays a significant role
described mathematically by the pair-excitation functionK0(r ,r 8;t). On the basis of the ansat
~1.1!, a nonlinear integro-differential equation is satisfied byK0(r ,r 8;t).

Solitary-wave solutions to the nonlinear evolution equations for the condensate wave fu
F(r ,t) and the pair-excitation function are uncovered in any number of space dimensio
Ve(r ,t) can properly be decomposed into~i! a trapping potentialVe translated by the position
vector r (t)5a(t) of the pulse ‘‘center of mass,’’ and~ii ! a potential linear in the space coord
nates, according to~2.55!–~2.58!. It is somewhat tempting to put these statements in the langu
of classical mechanics, recognizing, for instance, the second term mentioned above as the p
associated with a uniform force. The conclusions here are the natural generalization of
obtained for the one-dimensional case, without any restriction to motion along fixed ax
space.18 Given an external potential that meets the aforementioned conditions, the initial a
tudes are obtained by solving a nonlinear ‘‘eigenvalue problem’’ forF(r ,t50) underVe , and a
nonlinear integro-differential equation forK0(r ,r 8;t50). The motion of the solitary wave in
space, i.e., the vectora(t), is determined by the uniform force. In this sense, the solitary wav
expected to behave like a classical particle. Conversely, given an admissibleF(r ,t50), i.e.,
sufficiently smooth and rapidly decreasing to zero asr→`, it is possible to construct an extern
potential that permits solitary-wave behavior for bothF(r ,t.0) andK0(r ,r 8;t.0). Of course, in
real experimental situations, the form of the external potential may deviate from the one giv
Eq. ~2.55!. The question of the stability of the solitary-wave solutions under variations ofVe(r ,t)
is not addressed in this paper.

As is also pointed out in Ref. 8, the approximate Hamiltonian that furnishes the equati
motion for K0 does not include, for instance, the scattering of phonons and the decay of a
phonon into two or three phonons. In other words, under the present approximation, the ph
have infinite lifetimes and remain stable. This in turn implies that the ansatz~1.1! and the existing
equations of motion are of rather special forms, being valid only over some moderate time
The problem of shorter or longer time scales is not touched upon in this paper; this time limi
may depend on the higher-order terms in the Hamiltonian or the initial condition for the con
sate wave function. It is believed that the ansatz for the many-body wave function can be
alized. A challenging open problem is to obtain such generalizations, which must satisfy
consistency conditions.
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APPENDIX

Consider the one-dimensional linear Schro¨dinger equation in a harmonic-oscillator potent
~\52m51, v052):

i
]w~x,t !

]t
5S 2

]2

]x2 1x2Dw~x,t !. ~A1!

It is well known34 that an initial displacement of the ground-state wave functionw0(x)
5p21/4e2x2/2 at t50 by x5x0 produces the wave packet

w~x,t !5w0~x2x0e22i t !e2 in~ t !, t.0, ~A2!

where, for definiteness,n(t50)50. Substitution into Eq.~A1! furnishes

n~ t !5t1
ix0

2

4
e2 i4t2

ix0
2

4
. ~A3!

w(x,t) is subsequently recast in a form where magnitude and phase are separated:

w~x,t !5p21/4expH 2
1

2
~x2x0e22i t !22 i t 1

x0
2

4
e2 i4t2

x0
2

4 J
5p21/4expF2

1

2
~x2x0 cos 2t !2GexpF2 i S t1x0x sin 2t2

x0
2

4
sin 4t D G , ~A4!

which is a one-dimensional solitary wave. Note that with the units of Eq.~A1! the eigenvalue
corresponding tow0(x) is equal to 1.

The preceding analysis can be extended to thed-dimensional Schro¨dinger equation

i
]w~r ,t !

]t
5S 2¹21(

j 51

d

xj
2Dw~r ,t !, ~A5!

where r5(x1 ,...,xd), d>2. With an initial displacement of the ground-state wave funct
w0„r …5p2d/4e2r•r /2 by r5r0 , at later timesw(r ,t) becomes

w~r ,t !5w0~r2r0e22i t !e2 in~ t !, t.0. ~A6!

After some straightforward algebra,

n~ t !5d•t1
i ur0u2

4
e2 i4t2

i ur0u2

4
, ~A7!

w~r ,t !5p2d/4S )
j 51

d

expF2
1

2
~xj2xj 0 cos 2t !2G D expF2 i S d•t1r0•r sin 2t2

ur0u2

4
sin 4t D G

5w0~r2r0 cos 2t !expF2 i S d•t1r0•r sin 2t2
ur0u2

4
sin 4t D G . ~A8!

This is a solitary wave ind space dimensions.
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