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Bose—Einstein condensation in an external potential
at zero temperature: Solitary-wave theory
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For a trapped, dilute atomic gas of short-range, repulsive interactions at extremely
low temperatures, when Bose—Einstein condensation is nearly complete, some spe-
cial forms of the time-dependent condensate wave function and the pair-excitation
function, the latter being responsible for phonon creation, are investigated. Specifi-
cally, (i) a class of external potentialé.(r,t) that allow for localized, shape-
preserving solutions to the nonlinear Safirger equation for the condensate wave
function, each recognized as a solitary wave moving along an arbitrary trajectory, is
derived and analyzed in any number of space dimensionsjignfbr any such
external potential and condensate wave function, the nonlinear integro-differential
equation for the pair-excitation function is shown to admit solutions of the same
nature. Approximate analytical results are presented for a sufficiently slowly vary-
ing trapping potential. Numerical results are obtained for the condensate wave
function whenV, is a time-independent, spherically symmetric harmonic potential.
© 1999 American Institute of Physidss0022-24889)03211-9

[. INTRODUCTION

The first successful experiments on Bose—Einstein condensation in dilute atomic gases were
reported recently by the groups at JIEARice University? and MIT2 In their respective experi-
ments, vapors of'Rb, ’Li, and >>Na atoms were confined by traps of inhomogeneous magnetic
fields acting on the spin of the unpaired electron of each atom. A combination of laser and
evaporative cooling techniques were employed to cool each gas below the phase transition point.
Many similar experiments followed soon after these pioneering works. These experimental obser-
vations have, in turn, stimulated theoretical interest, with emphasis on the study of the effect on
condensation of parameters that can be controlled externally, aiming at new predictions or designs
of future experiments. Major problems related to Bose—Einstein condensation in a trap include
equilibrium and nonequilibrium properties of the boson gas, such as collective excitations and
vortices, and description of time evolution under the influence of time-dependent trapping poten-
tials.

An entirely quantum mechanical treatment of Bose—Einstein condensation in dilute systems
of hard spheres lacking translational symmetry at extremely low temperatures, when condensation
into a single-particle state is nearly complete, was given in 1961 by Wihis approach, the two
crucial quantities for the minimal description of the Bose system @reghe condensate wave
function®(r,t), which, to the lowest approximation in the particle density, satisfies a Siciyer
equation with a self-coupling term of third order, also derived by Grass Pitaevskfi by other
methods, andii) the pair-excitation functiorKy(r,r’;t), which describes the scattering of two
atoms from the condensate to other states at positiarsdr’, offers a systematic treatment of
physical effects such as sound vibrations, and provides corrections to higher orders in the particle
density;Kq(r,r’;t) was shown to satisfy a nonlinear integro-differential equation. To the lowest
approximation, this analysis has recently been extended both for zero and finite temperatures to
incorporate the effect of a sufficiently smooth external potential that increases rapidly at large
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distances° Of particular significance is the underlying ansatz for the many-body Sitger
state vector at zero temperatdre®

W(t)=Nt)ePV(NI) Y2 (t)N|vao, (1.

whereP(t) describes the creation of pairs from the condensate

P<t>=<2N>*lf dr dr’ g2 (r D9 (1 DKot 1) ag(1)2, 12

MN(t) is the normalization constant, which is immaterial for present purpdsissthe total number

of atoms,af (t) anday(t) are the creation and annihilation operators for the condensate, respec-
tively, and ¢ (r,t) is the boson creation field operator corresponding to the space orthogonal to
the condensate wave function. Form(al), being combined with a consistent approximation for
the N-body Hamiltonian, is a nontrivial generalization of the many-body wave function of Lee,
Huang, and Yany for the case with translational invariance and periodic boundary conditions,
where the main effect of particle interactions is the creation and annihilation of pairs of opposite
momenta. The inclusion of pair excitation according to @ql) necessarily modifies the equation

of motion for ®(r,t). Some physically interesting implications of this second-order approxima-
tion without any external potential, such as the difference between a compressional wave and a
phonon, are discussed in Ref. 4.

Recent numerical or analytical studies of properties of nonuniform atomic gases undergoing
Bose—Einstein condensation at extremely low temperatures have focused on the nonlinear Schro
dinger equation for the condensate wave function either in its time-indep&ndiéfor its time-
dependent form® A different approach by Benjamin, Quiroga, and JohAS8ateals with the
relative motion of the atoms in a hyperspherical coordinate system, with application to two-
dimensional harmonic traps. In other contexts, several types of nonlineard8aep equations
are examined in the light of soliton theot{often with emphasis on the description and conditions
of existence of a pulselike solution—from now on referred to as a solitary wave—whose main
feature is the preservation of its shape during propagation. A summary and discussion of some of
these approaches can be found in the very recent comprehensive paper by btaagadhwhose
terminology is mainly adopted here.

Soliton theory usually describes nonlinear waves that interact like classical elastic particles, in
the sense that the initial shape and velocity of the waves are regained asymptotically, yet possibly
with a phase shift. Studies of such a behavior are believed to have been motivated from some
unusual findings in a computation by Fermi, Pasta, and Ulam in 13¥%Significant advances
toward the understanding of solutions to the underlying Korteweg—deVoire&dV) equation
were made ten years later by Zabusky and Kruskébllowed by systematic investigations of
Gardneret al?> A good list of references and exposition of methods or concepts germane to
widely known types of evolution equations are given in Ref. 23. It has been realized that a central
role in soliton theory is played by the “B&lund transformations,” which have provided a test for
solitonic behavior and led to higher soliton solutions to some equatiéis. a review of the
mathematically advanced theory, see Ref. 19 and the references therein.

It is well-known that the Schidinger equation with a self-coupling term of third order and
zero external potential admits soliton solutions in the sense of Ref. 24. In general, the inclusion of
a term accounting for an external potential modifies the nature of the associated solutions, as is
pointed out in Ref. 18. Specifically, Morgaet al1® examine conditions on nonlinear terms and
accompanying external potentials that allow for localized solitary-wave solutions, and provide a
physical interpretation of their results. They justifiably conclude thatuch nonlinearities should
not explicitly depend on the space varialden (1+1) dimensions, andii) the change in the
potential experienced by the wave must be lineax.ifihey subsequently attempt to extend their
results to higher dimensions, with restriction to motion along fixed axes in space. This in turn
imposes conditions on the external potential, which they briefly describe. Notably, one-
dimensional motion of shape-preserving pulses of the condensate wave function is also studied in
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Refs. 25 and 26 for positive and negative scattering lengths, respectively, with restriction to
time-independent parabolic potentials of weak confinement along one specifiddigarsshaped
traps.

It should be emphasized, however, that, although it simplifies the treatment, the assumption of
rectilinear motion in a space of dimensions higher than one is not necessary for the existence of
solitary-wave solutions: motion of the solitary wave along an arbitrary trajectory in any number of
space dimensions is possible, provided the external potential is consistently chosen. Furthermore,
in Refs. 18, 25, and 26 the effects of scattering processes due to atomic interactions are ignored.
Such a simplified approach, though adequate for some cases of experimental relevance, is cer-
tainly physically incomplete and needs improvement. It has been argued by others, for instance,
that predictions based on the usual nonlinear Siihger equation become, in general, question-
able for time-dependent systems, when the number of noncondensed particles may grovin time.
In the present paper, scattering processes are minimally taken into account throuygmtthe
consideration of the condensate wave function and the pair-excitation fuf¢tidithe purpose
of this work is to study solitary-wave motion by addressing the aforementioned issues in some
detail, complementing, therefore, the analysis in Ref. 18, as a step toward an understanding of
more complicated nonequilibrium properties of the trapped Bose gas. An outline of the paper is
provided below.

In Sec. Il, external potentialg(r,t) in (d+1) dimensions §=1) are analyzed under the
assumption that they sustain a condensate wave function identified with a single pulse that pre-
serves its shape while moving along an arbitrarily prescribed trajectory ird-timmensional
Euclidean space. Focus is on the Sclinger equation containing a cubic self-coupling term and
positive scattering length. The analysis starts witd=1, but with a perspective different from
Ref. 18, and proceeds to generalizingdte 2. Given a consistent, the initial condition for the
condensate wave function, when the nonlinearity plays an important role, is discussed. An argu-
ment is sketched to verify that, as a consequence of the requisite decomposition for the potential,
the harmonic potentials constitute the sole class of admissible time-independent potentials that
allow for solitary-wave solution&€ Furthermore, the assumption of nonuniqueness of the derived
decomposition for the potential furnishes a class of time-dependent harmonic potentials. In Sec.
I, it is demonstrated that the corresponding lowest-order nonlinear integro-differential equation
for the pair-excitation function admits solitary waves ird(21) dimensions. Section IV proceeds
to determine approximately the initial amplitudes for the condensate wave function and the pair-
excitation function corresponding to the lowest state of the condensate in a case of experimental
interest, namely, when the trapping potential is slowly varying in space. In Sec. V, both analytical
and numerical results are obtained for the lowest-energy condensate wave function under a three-
dimensional, spherically symmetric harmonic potential.

IIl. THE CONDENSATE WAVE FUNCTION

The time-dependent nonlinear ScHimger equation for the condensate wave functle(m,t)
in an external potentiaV(r,t) is (z=2m=1)"8

i(alat)D(r,t)=[—V2+V(r,t)+87aNQ Y d(r,t)|2—47aNQ ~1z(t)]P(r,t), (2.2

where
Q’lf dr|®(r,1)|?=1, (2.2
g(t)=Q—1f dr|d(r,t)|4, (2.3

ais the scattering length, assumed to be positiis, the number of particles, arfdlis the volume
of the system.
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For mathematical convenience, EQ.1) is cast in the form

(9l at)F(r,t)=[—V2+Vq(r,t)+|F(r,t)[2]F(r,1), (2.9
where
F(r.t)=(8mapg) 2 4m*o"Wd(r,t), pe=N/Q, (2.5
provided that
o(t)= ftdtg(t)+const, (2.6)

where [t denotes an indefinite integral. The normalization condit@:2) now reads
f dr|F(r,t)|>=8maN. 2.7

A. The one-dimensional nonlinear Schro “dinger equation

In the one-dimensional case, both the external potential and the condensate wave function
depend on one space variable, safquation(2.4) then becomes

CIF(X,1) [ 72
| p—

=] 22 Ve HFGD2 | F (). (2.8

For V=0, this reduces to the more or less standard form of the nonlinear®obes equatior?
Solitary-wave solutions of this equation are assumed to be of the ®emthe Appendijx

F(x,t)=f(x—a(t))e ?xD, (2.9

wheref(x) and 6(x,t) are real functions, sufficiently smoothxrandt, and«(t) is a continuously
differentiable function of time. Under the assumption of a poteMigk,t) increasing sufficiently
rapidly for x— * o, it is necessary to require that

f(x)—0 rapidly agx|—c. (2.10

The example of the one-dimensional harmonic oscill@boiefly reviewed in the Appendjxsug-
gests thaff should decrease faster than exponentiallyxhfor large values ofx|. The same
conclusion can be reached by employing the Wentzel-Kramers—Brillouin method.
The substitution of Eq(2.9) into Eq.(2.8), and separation of real and imaginary parts, yield
a system of coupled differential equations fand 6:
926 a0
f(x—a(t)) W+2f’(x—a(t))5: —a' () (x—a(t)), (2.11

2

a0 a0
—f"(X—a(t))+ (5 f(x—a(t)) +[Ve(x,t) + f(x— a(1))?]f(x— a(t))= Ef(x— a(t)),

(2.12
where the prime denotes differentiation with respect to argument. Equatibh can be rewritten
as

i t 200\ _ t)f’ t))f t 2.1
| T a®)’— = —a' (O (x— a(t) f(x— a(t)). (2.13
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This is explicitly integrated to give

0 1 Aq(t)
2% W i x—am)? (214

except at pointx=x(t) wheref(x— «(t)) vanishes. It inmediately follows that
—fxd 2 A=z fxd AU A 2.1
o(x,t)= X&‘F (t)—_za (t)x+ XW+ (1), (2.15

wherex lies between consecutive zeros fdik — «(t)), calling for the possible use of different
correspondingd;’s and A’'s. Consider the simplest case whdrbas no zeros. According to the
preceding formula, for nonzem, (t), the limiting behavior of at large distancesand fixed time

t gives rise to increasingly rapid oscillationsxrof the real and imaginary parts of the condensate
wave function. This in turn implies an infinite expectation value of the kinetic energy term
— 9%/ 9x? in the Hamiltonian of the system. To eliminate this unphysical possibility, it is necessary
to setA,(t) equal to zero:

A (t)=0. (2.19
To put this argument on a firm foundation, it is expedient to invoke the following conditions.

(i) Normalizability of F(x,t) from Eq.(2.7), viz.

fdx|F(x,t)|2=fdxf(x—a(t))2<oo. (2.17

(i) Finite kinetic energy of the condensate, viz.

f 52 9F|2
dx F*(x,t)( — a_xf)F(X’t):f dxa—x <oo, (2.18
The last condition entails

f dx ' (x— a(t))?<oe, (2.193

Jd (ae)zf 2 2

X x (X—a(t)) <o, (2.19n

The use of Eqs(2.14) and(2.17) in Eq. (2.19b gives
, Aq(t)
fdx Al(t) —a (t)‘l‘m <o, (22@

which is impossible unless identi{2.16) holds. A similar argument can be applied to the case
wheref has any number of zeros.
For smooth reaf, the resulting phasé(x,t) is

O(x,t)=—2a' ()X+A(), (2.21)

in agreement with Eq(9) of Ref. 18. The substitution of Eq2.21) into Eq. (2.12 yields a
consistency equation for(x,t):

f7(x— a(t)) =[Ve(X,t) + f(Xx— a(t)2+ 3" () x+ o' (1) 2= A" (1) f (x—a(t). (2.22
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It is inferred thatVq(x,t) must be expressed as

Vo(X,1) = V3 (X— a(t)) +XVy(t) + Vs(t), (2.23
where
f”
V0= 1007, (2.24
Vy(t)=—3a"(1), (2.25
Vy(t)=—2a' (t)2+A’(1). (2.26

Equation(2.23 gives the requisite form of potentials for givé(x), «(t), andA(t). Note that
some of the inflection points df(x) need to coincide with its zeros. By close examination of Egs.
(2.23—(2.26), the following should be pointed out.

(1) Given aV,(x), the differential equatiori2.24) suggests, in some sense, an eigenvalue
problem. More particularly, wheifx| is sufficiently large, condition(2.10 becomes effective,
indicating thatf2<|f"/f|. Under this approximation, E¢2.24 becomes

f"(x)~Vi(x) F(x), (2.27a

which is a linear equation. Hence, only discrete shétsof V;(x)=V;y(X) are permissible,
corresponding to “eigenfunctionsf= f,, (m=non-negative integer These shifts in turn induce
discrete amounts of shift iA’(t) through Egs(2.23 and(2.26. Accordingly, F(x,t) exhibits a
behavior of the forme™'“m'f _(x— «(t)) in the fixed trapping potential

Ve(x)zvlm(x)+l > ) €+Co (2.27H

=m-

experienced by the pulse, wheBg is a constant®

(2) For «(t) different from a constant, the only class of time-independent potentials
Ve(X,t) =V(x) of the form(2.23 consists of the harmonic potentials. Indeed, differentiatiox in
of both sides of Eq(2.23 twice yields

Vi(x)=V/(x—a(t))=K=const-0. (2.28
Hence,
Vo(X) = 2KX2+Kx+C. (2.29

(3) If V(x,t) admits a second decomposition

Ve(X,1) =Up(X— B(1)) +XU(1) +Us(1), (2.30
where
_ ?”(X)_w 2
Ml(X)—W f(x)*, (2.30)
Up(t)=—3B"(1), (2.32
Us(t)=—3B"(1)2+B' (1), (2.33

andi (X)) #WV1(X), Us(t)#Vs(t), two cases fowr(t) and B(t) need to be distinguished.
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(i) a(t)— B(t)#const. Differentiation of Eqg2.23 and(2.30 with respect tox twice yields

Vi(x—a(t)=U1(x— (1)) =K. (2.39

Therefore,
Ve(X,1) = 3K[x— a(t) ]+ K [ x— a(t) ]+ Ko+ XVy(t) + V5(t) (2.353
= 3K[x— B(1) 12+ M [x— B(1) ]+ Mo+ xUy(1) +Us(1), (2.350

i.e., Vg(x,t) is thetime-dependentarmonic potential
Vo(x,1) = K2+ K()x+C(t)  (K>0). (2.36
A comparison of Eqs(2.359 and(2.35b furnishes the consistency equations
—Ka(t)+ K+ V()= —KB(t) + M+ Us(1), (2.373
Ka(t)?—Kya(t) + Kyt Va(t) = 3K B(1)* = M1 (1) + Mo+ Us(t). (2.37b
(i) a(t)—pB(t)=Cy=const. From Eqs(2.295 and(2.32,
Vo() =Uy(1). (2.38
Equations(2.23 and(2.30 combined give
Va(t) —Uz(t) =Uy(X—Cq1) — V1(X) = e=const. (2.39
In view of (2.26) and(2.33),
A(t)=B(t)+ et+const. (2.40

The meaning of this becomes apparent from Eq.27): it is the discrete amount of shift in

V1(x) corresponding to a shift from the “eigenfunctiorf{x) to another “eigenfunction”?(x)
under the same trapping potentidl experienced by the solitary wave.

B. The nonlinear Schro “dinger equation in d space dimensions, d=2

The foregoing analysis in one dimension can be extended to higher dimensions. For definite-
ness, consided=3. In accord with the conditions in the recent experiméntst is assumed that

Ve(r,t)—+o, uniformly in f=r/|r| asr=|r|—c. (2.4
Instead of assuming motion of the solitary wave along a fixed axis, as is the case in Ref. 18, let
F(r,t)=f(r—a(t))e %Y, (2.42

where a(t) is a twice differentiable vector function of timé&(r) and 6(r,t) are real and suffi-
ciently smooth, and from Ed2.7),

fdr f(r— a(t))>=8maN. (2.43

In view of condition(2.41), it is reasonable to assume that

f—0 rapidly, uniformly inr=r/|r|] asr—o, (2.44
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ensuring that the condensate is localized and has a finite kinetic energy, as indicated in the
Appendix. The substitution of Eq2.42 in Eq. (2.4) gives

ao(r,t)
ot

—ia/ (t)-VI(r—a(t))+f(r—a(t)) =—V2f(r—a(t))+2iVi(r—a(t))-Vo(r,t)
+if (r—a(t))V20(r,t)+f(r—a(t))|Vo(r,1)|?
+[Ve(r,t)+f(r—a(t))?]f(r— a(t)). (2.45

Upon separation of real and imaginary parts, the preceding equation decomposes into

—a/ (1) VH(r—a(t))=2Vf(r—a(t))- Vo(r,t) + f(r— a(t)) V26(r 1), (2.46
f(r—a(t)) M(&;’t) == V2(r—a(t)) +|Vo(r,0)]*f(r— e(t))
+H[Ve(r,t) +f(r—a(t)?1f(r — a(t)). (2.47)
Equation(2.46) is recast in the form
V-(f2Ve)=—fa'(t)- VI, f=f(r—a(t)), (2.48

which holds regardless of the specific form for the shiapd(r,t) of F(r,t). A particular solution
to this equation is

Op(r,t)=—3a'(t)- T +A(1). (2.49
With 6=6,+ 61, 6,(r,t) satisfies the homogeneous equation
V- (f2V6,)=0. (2.50

Integration by parts over a finite regidd bounded by a surfac§ yields
O=f dr 0,V-(f2Ve,) = %dezalﬁ-Val—f dr £2|V 6,)2, (2.51
S

wheren is the unit vector normal t& pointing outward. WherR extends to infinity, the surface
integral becomes arbitrarily small because of the condit®d4), in analogy with the one-
dimensional case. Consequently,

f2|V6,|2=0 almost everywhere, (2.52
i.e., except for a set of points of measure zero. Whem, this in turn entails
04,(r,t)=C4(t) almost everywhere. (2.53

At the zeros off, |V 8;| seems to be indeterminate, calling for the use of diffe@(is in Eq.
(2.53. However, for a sufficiently smootid(r,t), C,(t) can be taken to be zero everywhere
without loss of generality. Accordinghyg(r,t) reads

6(r,t)=0,(r,t)=—3a’ (1) T +A(1), (2.54

which is a generalization of E@2.21).
The external potential consistent with E¢8.47) and (2.54) is

Ve(r,t)=Vi(r—a(t))+ Vs(t) -r+Vs(t), (2.595
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where
V2£(r)
Vi(r)= f(—r)—f(r)Z, (2.5
V,(t)=—3d(1), (2.57)
Va(t)=—3la’ (1)[>+A'(1). (2.58

Notably, V?f(r) needs to vanish at any surface whé(e) vanishes.

A few important remarks are in order.

(1) For an external potential increasing|im, Eq. (2.56) bears the features of an eigenvalue
problem. Specifically, fofr|—w, a linear equation is recovered approximately:

V2£(r)~Vy(r)f(r). (2.59

Analogies with the one-dimensional case are easily drawn from this equation.

(2) When a(t) is not a constant, the only time-independent potential of the @3 that
satisfies condition2.41) is the d-dimensional harmonic potential. The justification for this is
somewhat more demanding than for the one-dimensional case Mj(itlt) =V(r), the applica-
tion of the Laplacian to both sides of E(.55 gives

V2Vo(r)=V2V(r— a(t))=K=const-0. (2.60

In three dimensions, a solution to E®.60 for V(r) is:

1 —
Ve(N=5 2 Kyxxp+ 2 Kpx+C, (2.6
i,j=1,2,3 j=123

where K;,X5,X3) =r=(X,Y,2),
THK; 1=K, (2.62

and the matri{Kj;] is symmetric and positive definite. Every admissible solution to (Bd0
can be written as

Ve(r)=V,(r)+Vq(r), (2.63
whereV,(r) is a smooth function satisfying Laplace’s equation:
V2V,(r)=0 everywhere. (2.64

If Sis now a spherical surface with centeand radiusR, then according to Gauss’ mean value
theoreni®

1
Vi =4-m2 ﬁdS’ Vi(r'). (2.65

SinceR can be taken to be arbitrarily large, it follows that cannot be forced to comply with
condition(2.41). Consequentlyy/4(r) is equal to a constant. Without loss of generality,

V4(r)=0. (2.66
(3) Let Vq(r,t) admit an alternative decomposition,

Ve(r,t)=Uy(r—B(t)) +1-Up(t) +Us(1), (2.67
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where
V2F(r) . ,
Up(r)=— ) —f(r)?, (2.68
Uy(t)=—3p"(1), (2.69
Us(t)=—3| B (D]?+B' (1), (2.70

anduf(r) #Vq(r), Us(t) #Vs(t). In analogy with the one-dimensional case, there are two distinct
possibilities.
(i) a(t)— B(t)+#const. Then,
V2V(r— a(t)) = VU, (r— B(t)) =K, (2.7

which in turn implies that

1
Ver)=3 2 KD — @i (D10 = @ (D] + 1= a(t)]- Ko+ Kot Wy(t) + Va(t)
1
=52, Ml B4 Bi(D1FIT = BOT- Myt Mot 1-Up(0) +2Us(1),
(2.72
where
andK,, M, are immaterial constants. Therefokg(r,t) is the time-dependent harmonic poten-
tial
Ve(r.t) =5 2 Kkt K(t)+C(t). (2.74
ij=

(i) a(t)— B(t)=C;=const. Without loss of generalit{z;=0. It is easily found that

V(1) =U,(1), (2.79
Vs(t) —Us(t)=U,(r)—Vy(r)= e=const. (2.79

Equation(2.76 implies that
A(t)=B(t)+ et + const. (2.77

Therefore,f(r) is just another “eigenfunction” of Eq.2.56) under the same trapping potential
seen by the pulse.

lll. THE PAIR-EXCITATION FUNCTION

The pair-excitation functiofq(r,r’;t) satisfies the integro-differential equatfon
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J
[i E—ZE(t)}KO(r,r’;tF —V2Ko(r,r":t)=V'?Ko(r,r";t) +8mape® (r,t)?s(r—r’)

+{—20(t) = 16mapol (1) — 2¢a(t) + Va1, 1) + Ve(r',1)
+16mapol | P (r,t)|2+|D(r', )]} Ko(r,r';t)

+87Tapof dr” @* (r",)?Ko(r,r"; ) Ko(r',r";t)
_87TaPoQl[q)(r,t)q)(r’,t)[|<I)(r,t)|2+ |D(r' 1)|2=£(1)]

+<I>(r,t)f dr” Ko(r',r";0)[@(r", 1) 2 (r",t)

+<I>(r’,t)fdr” Ko(r,r";t)|@(r", 1)[2d* (r",t) ¢, (3.1

where
E(t)=iQ‘1f dr&(b(;tr't)d)*(r,t), (3.2
f(t)=(r1J dr|Vd(r,1)|?, ge(t)=srlj dr Ve(r,t)|d(r,1)|?, (3.3

andV=V,, V'=V,, . Without loss of generalitykq(r,r’;t) has been chosen to satisfy

Ko(r,r';t)=Ko(r',r;t), (3.9

f dr ®*(r,t)Ky(r,r’;t)=0. (3.5

In order to investigate the possibility for solitary-wave solutions to Bdl), the following
preliminary steps are taken:

(i) By virtue of Eq.(2.5), ®(r,t) is replaced by (&ap,) %4720 (OE(r t).
(i)  To balance out the exponential factor introduced ab&gr,r’;t) is written as

Ko(r,r';t)=e'8moeMfc (r r':t). (3.6)
The resulting equation for thi€y(r,r’;t) is

CIRCo(r,r';t)
I—

P =—=V2Co(r,r";t) = V' 2ICo(r,r";t) + F(r,t)28(r —r") +{Vg(r,t) + Vg(r',t)

+2[|F(r,t)|2+IF(r’,t)Iz]}lCo(r,r’;t)Jrf dr” F*(r",)o(r,r"; ) Ko(r',r";1)

- (8maN) | FrOF(OLF(0 (7 0= Ho)
+ F(r't)f dr” Ko(r',r";)[F (1", 6| 2F* (" 1)

+ F(r’,t)f dr” ICO(r,r”;t)|F(r”,t)|2F*(r”,t)], (3.7
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where

Z(t)=8mapol (1), (3.8
andE(t) was replaced by

E(t)=£(t) + (1) + 4mapol (1), (3.9

by employing Eq.(2.1).
Given EQgs.(2.42 and(3.4), solitary-wave solutions are sought in the form

Ko(r,r";t)=ko(r = mt),r — p(t))e X0y, (3.10
wherekg(r,r’), x(r,r’;t), and(t) are sufficiently smooth real functions satisfying

Ko(r,r")=xo(r’,r), x(r,r';t)=x(r',r;t), (3.11)

J dr f(r—a(t)) ko(r — Ht),r' — ¢1{t))elfru=xrrvl=g, (3.12
The substitution of Eq(3.10 into Eq. (3.7) by virtue of Egs.(2.42 and(2.55 yields

dx(r,r';t)

— 1Y (1) (Vo V' ko) + so(r = A1), 1" =) ——

=—V2ko— V' %k +2i(Vig- Vx+ V' ko- V' x)+iko(r—Ht),r' — H{t))(VZx+V'2y)
+ Kko(F = H(0),1" = PO (| x|+ |V x|+ F(r —a(t))?8(r —r’)elx(rr:0 =120
H{Vi(r—a(t)) +V(r' —a(t)) +(r+r")- V(1) +2V5(t)
+2[f(r—a(t))*+f(r' —a(t))*]}xo(r = 1{t),r' = A1)

+f dr” f(r" = a(t))?o(r — 1(1),1" = A1) ko(r' — 1(t), 1" = A1)

Xexp{2i6(r" t) =i x(r,r";t)+ x(r',;r";t) = x(r,r"; )1}

—(87TaN)1{f(r—a(t))f(r’—a(t))[f(r—a(t))2+f(r’—a(t))Z—ZJ

Xexplix(r,r';t)—i[6(r,t)+6(r",t)]}

+f(r—a(t))f dr” ko(r' —(t),r"— ) f(r"— a(t))3

xexplilo(r",t) = o(r, ) J+i[ x(r,r";t) = x(r',r";t)1}

HH(7 = a(t) | r" kol =)= HO) 7 af)?

xexpli[ 6(r",t)—6(r" )] +i[ x(r,r";t)—x(r,r"; )1}, (3.13
where it is understood thaty= xo(r —¢(t),r' —¢(t)) and y=x(r.r’;t), andz is now time

independent. Elimination of the above phase factors succegds ifaken equal to
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x(rrsy=0(r,t)+6(r' ,t)=—3a'(t)- (r+r’)+2A(t). (3.19
In view of Eq.(3.14), separation of the real and imaginary parts in E313 leads to

— 7' (1)-(Vio+ V' ko) =2(Vio- Vx+ V' ko V' x)+ ro(r = t),r" = {))(V2x+ V" ?),
(3.19

= 3K0(F =), 1" = U{)@'(1) - (r+1") +2x0(r — Ht),r' — ft))A’(t)
== V?ko— V' ?ko+ 3Ko(r = 1), = A1) | ()|*+f(r—a(t))?5(r—r")
+H{V1(r—a(t)) + Vy(r' —a(t)) +(r+1')- Vy(t) +2V5(t)
+2[f(r—a(t)*+f(r' — a(t))*T ko(r — 1t),r" — 1))

+ [ a7 at) 2ot 0)."— HO) ol = 00" D)
—<8waN>1{f(r—a(t))f(r'—a(t))[f(r—a<t>>2+f(r'—a<t>>2—?:]
FH(r—a(t) [ dr kolt = 0,07 HO) 7 a(t)?

#1007 — () | 0" kol = 30,17 = HO) ("= V), (316

of which the first one is satisfied if

)= a(t) + ay, (3.17

where ay is a vector constant. Without loss of generality, thisis set equal to zero.

In Eq. (3.16, V,(t) and V(1) are replaced by- e/ (t) and — 3| a’(t)|?+A’(t) from Egs.
(2.57 and(2.59, respectively. With a subsequent shift bothradndr’ by «(t), all time depen-
dencies are eliminated and an equation#gr,r') is obtained:

= V2io(r,r") =V 2ieo(r,r )+ F(N)28(r =1 ) +{Vi(r) +Vo(r') + 2L F(r) 2+ £ (r" )T eo(r,r")
+f df”f(F”)ZKo(r,f")Ko(r',f")—(SWaN)l[f(r)f(f')[f(r)2+f(f’)z—z]
+f(r)f dr” Ko(r’,r”)f(r”)3+f(r’)f dr” Ko(r,r”)f(r”)3]=0, (3.18
where
f dr f(r)xo(r,r')=0. (3.19

When the number of particle|, is sufficiently large, Eq(3.18 is approximated by
= V2ko(r,r") =V 2ko(r,r" )+ F(r)28(r—r")+{Vi(r)+ Vy(r' )+ 2[ f(r)2+f(r" )2} io(r,r")

+f dr” £(r")2uo(r,r" ko(r’,r")=0. (3.20
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IV. SLOWLY VARYING TRAPPING POTENTIAL

In order to elucidate the dependence on the physical parameters of the problem, let
D(r,H)=Vpo®(r,t), po=N/Q. (4.1)

ab(r,t) satisfies
i(91at)D(r,t)=[— V2+Vq(r,t)+ 87a| B(r,t)|2— 4mwal(t) | D(r 1), 4.2

and the normalization condition

N‘1J dr|d(r,t)|2=1. (4.3
In the above,
Z(t)=N-1f dr|d(r,t)]4. (4.4)
Equation(2.42 reads
D(r,t)=T(r—a(t))explila’ (t) - r—iA(D)}, (4.5
where
N’lf drf(r)2=1. (4.6)
The external potential is
Vo(r, 1) =Vy(r— a(t))+1- Vy(t) + Va(t), (4.7)
where
- vZf - - - -
Vy(r)= f(r()r)—Sﬂ-af(r)2+4ﬂ-a§, gzN—lf dr f(r)%, (4.8a

and {)z(t), 1~/3(t) are given by equations similar to Eq.57) and (2.58. Therefore,~f(r)
=fn(r)(m=0,1,...,) correspond to states of the condensate with enefgiemder the external
potential

Ve:i}lm"'gm (T)l:T}lm)- (4.8b

Given alVy(r), Eqg. (4.2 can be solved approximately for the lowest state of the condensate
whenVy(r) is sufficiently slowly varying. This is the case in the recent experiments on Bose—
Einstein condensation, where the trap is of macroscopic dimensions. By applying the procedure of
Refs. 8 and 13, neglect of the Laplacian furnishes

[Vo(r)+8maf(r)2—4ma;—EJf(r)=0, (4.9)
wheref=&,, or,

- (8ma) YA &+ 4mal—V(r)]¥2 1 inside R,

f(r , 4.1
") 0, r outside Ry (410
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since?(r) can be chosen to be non-negative. The red@nis determined by
Vo(r)<E+4mal, reR,. (4.10)
At the boundarydR, of R,
E+4mal=Vyr), redR,. (4.12

Under this approximation, an expression $is obtained via multiplication of Eq4.9) by?(r)
and integration over:

5~47Ta2+~§e, (4.13

where

Zezr\rlf dr Vo(r)[F(r)]2. (4.14

Formula(4.10 breaks down in the vicinity o#R,. A remedy to this problem is provided in Refs.
8 and 13.
It remains to discuss the pair-excitation functigg(r,r’;t). With
Ko(r,r';t) =To(r— a(t),r' — a(t))e X', (4.15
and use of Eq(3.14), kq(r,r") should satisfy
—VZo(r,1") =V Zio(r, 1) +87af(r)28(r—1') +{— 2L — 16mal — 2+ Va(r) + V(1)
+16wa[~f(r)2+"f'(r')2]}}O(r,r’)+8waf dr F(r")2ko(r, 1" io(r',r")=0, (4.16

where

2=N’1f dr|VT(r)|2. (4.17

Note that shifting), by a constant does not affect the equation of motion.
Following Ref. 8, let

Po(R,1) ="ko(r1,r2), (4.18

where
R=3(ri+rp), r=r;—r,. (4.19

Hence,
Po(R,—r)=po(R,r). (4.20

The integro-differential equation fguy(R,r) reads
—1VZpo(R,1) = 2V2po(R,1) +87af(R)28(r) +{— 2L — 16mal — 2Lo+ Ve(R+ 1)

+Vo(R— 1)+ 16ma[ f(R+ )2+ F(R— i1)2]}po(R,1)

+8waf dr' F(R+1")2po(R+2r+ 3" 3r—r")po(R—4r+ 4", —kr—r")=0. (4.20)
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In the spirit of Eq.(4.9), V3 is neglected, while

Ve(R+31)~Ve(R)~Ve(R—3r), (4.22
TR+ 1) ~F(R)~f(R—1r), (4.23
Po(R+3r+3r" 2r—r")~po(R,3r—r"), (4.243
Po(R—3+35r",—3r—r")~po(R,—3r—r"). (4.24b

Equation(4.21) then reduces to
—V2po(R,1) +4maf(R)28(r)+{— {—8mal — Lo+ Vo(R) + 16maf(R)2}po(R,r)

+47-ra~f(R)2f dr' po(R,r")po(R,r —1')=0. (4.25

Because the nonlinear term is a convolution integral, the equation of motion can be solved
exactlywith recourse to the Fourier transformiirof po(R,r):

E)(R,k)=f dre’® "py(R,r), (4.26
which transforms Eq(4.25 into
4mat(R)2po(R,K)2+[k2+Ko(R)2]po(R k) + 4maf(R)2=0, (4.27)
where
ko(R)2= — {—8mal — Lo+ Vu(R) + 16maf(R)2. (4.28

Equation(4.27) is solved explicitly to give

Po(R.K)=[8maf(R)2]" Y —k2—ko(R)2+ V[K2+ko(R)2]2— (8wa)%F(R)*.  (4.29
In view of formula(4.10),

—ko(R) 2{k2+ko(R)2— k[ k?+2ko(R)?1¥%, R inside R,

Po(R.K)~ 0, R outside Rg ’ (4.30
by neglectingz since|V?(r)|zO unlessr is sufficiently close toyRy, so that
ko(R)2=8maf(R)% (4.3))
Inversion ofpy(R,K) is carried out as follows. FAR outsideR,
Po(R,r)=0. (4.32

If R lies insideRRg,
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Po(R,r)= 5””3+ f dk e * e~ *py(R,k)

(2m)*

= ! L i o " i - —ik|r|cos6,— ok
- kg (2m)? aan(;* Jo dd)Jo d05|n6J0 dk ke €
X [K?+ kG~ k(K?+ 2k5) 2]
2 o
“ig @m? s ™ fo dk €rle” M(k2+2k3) Y2 (k=12k, sinht)

2

=-—2— |lim Im fmdtei"‘7"0|r“°‘i"hte*‘9“’7“0S"‘ht(sinh2t)2
27°r| s-o0* 0
_ - 2(4ma) Y (R) lm{So,4(iwv)v— Sodiw)} , (4.33
whereky,=Kkq(R) and
w=(16ma) Y% (R)|r|, (4.34

andS, 4 and Sy o are Lommel’s functiong?

V. f(r) IN A THREE-DIMENSIONAL SPHERICALLY SYMMETRIC HARMONIC
POTENTIAL

In the actual experiments on Bose-Einstein condensation, the trapping potential is of com-
plicated form. This is usually modeled as an anisotropic harmonic potential. In this sd¢tipn,
for the lowest state of the condensate is examined in some detail in the simplifying case of a
spherically symmetric harmonic potential. A similar task is undertaken in Ref. 12, where the
nonlinear Schidinger equation is given in terms of the chemical potential.

With an external potentidV(r,t)= %wng, Vi(r) is taken to be

Vi(n)=jwgr?=¢, (5.0

as is suggested by the eigenvalue problem associated wittRB5@). Terms linear inx, y, andz
are omitted. It follows that

Vy(t)=Loda(t), Vi(t)=E-iwal(t)|?, (5.2

yielding
Vo .
a(t)=rqCcoswpt + w—smwot, (5.3
0

1 |vol®~ wflrol® .
A(t)=€t+§ w—sm2w0t+2v0~r0cos2wot +const, (5.9
0

wherery andv, are determined by the initial conditions and the constant is real.
For the state of lowest enerdi=&,, f(r)="fq(r) is spherically symmetrié? Let

q(&)=(4mYAN?we/2) VrTo(r),  é=(wol2)V2r. (5.5)

From Eq.(4.83, this q(¢) satisfies
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d2 ) )3
- Eae A S e (o), 56
supplemented with the boundary conditions
q(0)=0, (5.7
lim q(£)=0, (5.9
and the normalization condition
|“aeaer-1 5.9
In the above,
A=(2a’N2wq)Y4, (5.10
28 1 ©d
>\2:w—0+§A2L§—fq(§)4, A>0. (5.11)

Note that, foré—oe, the nonlinear term in Eq5.6) can be neglected, and the asymptotic behavior
of q(¢) is found via the direct application of the Wentzel-Kramers—Brillouin method:

(&) ~C(&2=\?)~ Y exp{— (N[ (EIN) (&N~ 1—costr (&M T}, (5.12

whereC is independent of. Compare with Ref. 12. For a discussion on the determination of this
C see Ref. 33.

Some insight into the solution to Eg&.6)—(5.9) can be obtained by considering the follow-
ing cases.

(i) A>1. To leading order in\, neglect of the second derivative gf¢) results in

(EININ2— €2, 0=é<

~q0 =
ad)~aq"'(é) 0, £, (5.13

which trivially satisfies Eqs(5.7) and (5.8). q(©)(¢) satisfies Eq(5.9) provided that\ is
)\N)\(O):(%Az)lﬁ_ (5]_4)

A similar calculation for an anisotropic potential can be found in Ref. 14, where the chemical
potential is employed. From E¢5.11),

£9= 2 ()7X28°N?wo) Pwo= 5 (5) *°A*Pep?, (5.15

Wheree'(}o: 3w, is the ground-state energy of the three-dimensional harmonic oscillator. Approxi-
mation(5.13 starts to break down at a distance of the ordek of/*>from inside the “boundary”
&=\, and then needs to be modified according to the procedure in Refs. 8 and 13. This procedure
provides a smooth connection to asymptotic form@fal2) when 0<¢—A<1 while &—A\
>O(A_2/15).33

(i) A<1. To zeroth order in\, the known solution for the ground-state wave function of the
three-dimensional harmonic oscillator is obtained:

qO(§) =27 Vige €2, (5.16

with energy &9=(wy/2)A@*=€°. The first-order energy correctioft® can be obtained
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FIG. 1. Solution to Egs(5.6)—(5.9 for A2=12.1 ¢’Rb atoms,a=110a,, N=10% and wy= (27X 120)//8 rad/s).
Numerically computed eigenvalue i$=6.8.

through the standard perturbation methods, by treatifl &) = A2¢2q(%)(£)? as the perturbing
potential. Therefore),\(l)2 equals the matrix element

NS f déq@(eVO(£)q (8. (5.17
0
By virtue of Eq.(5.11),
w0A2 fm dé \/§w0A2
1)_— > ~(0) 4_ — <
eV=— , 297 —— . A<l (5.18
or
3 \/§w0A2
o0 L o1 > z
E~E0+ & 5@t \| - (5.19
1.0 -' T T T T T T Tt 71 T T T T T T T T T T T T T
te . ]
I 08 ]
& | 1
s 06 —
N F 4
é L 4
o i ]
& 041 B
N ]
i r ]
Q02 __
(=3 N ]
00l ol ey ]
0 1 2 3 4 5 6

E= (m0/2)1/2r

FIG. 2. Solution to Eqs(5.6)—(5.9) for A2=121 @Rb atomsN=10%, and w,= (27 x 120)//8 rad/s). Eigenvalue is
\2=15.6.
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Numerical resultsin order to make some contact with recent experimental situations, plots of
q(¢) are presented in Figs. 1 and 2 for two different values\pfn close relation to the JILA
experiments, wher®Rb atoms were usedi& 1108y, a,: the Bohr radius! Specifically, in Fig.

1, A?=12.1, corresponding, for instance, b= 10° and wy= (27 x 120)/,/8 rad/s. The numeri-
cally computed eigenvalue thereN$=6.8, givingE= 1.8680. Compare withe® = 1.45530 pro-
vided by Eq.(5.15. In Fig. 2, A>=121. The corresponding eigenvalue is found toBe- 15.6,
giving £=3.8¢1°. Compare with&(®)=3.63¢1° from Eq. (5.15.

VI. CONCLUSIONS AND DISCUSSION

In the theoretical treatment of Bose—Einstein condensation in dilute atomic gases with repul-
sive interactions, the trap is replaced by a sufficiently smooth external potéptiat) that acts
simultaneously on each atom and increases sufficiently rapidly at large distances. As a conse-
quence, the boson system is no longer translationally invariant. Work carried out 38 yers ago
turns out to be a suitable starting point. An important element introduced there was the systematic
consideration of scattering processes, such as pair creation, with a study of some of their physical
consequences. In the presence of a trapping potential, pair creation plays a significant role, being
described mathematically by the pair-excitation functiog(r,r’;t). On the basis of the ansatz
(1.1), a nonlinear integro-differential equation is satisfiedy(r,r’;t).

Solitary-wave solutions to the nonlinear evolution equations for the condensate wave function
®(r,t) and the pair-excitation function are uncovered in any number of space dimensions, if
V(r,t) can properly be decomposed infi9 a trapping potential, translated by the position
vectorr(t)=a(t) of the pulse “center of mass,” an@i) a potential linear in the space coordi-
nates, according t®.55—(2.59. It is somewhat tempting to put these statements in the language
of classical mechanics, recognizing, for instance, the second term mentioned above as the potential
associated with a uniform force. The conclusions here are the natural generalization of results
obtained for the one-dimensional case, without any restriction to motion along fixed axes in
spacet? Given an external potential that meets the aforementioned conditions, the initial ampli-
tudes are obtained by solving a nonlinear “eigenvalue problem’df¢r,t=0) under),, and a
nonlinear integro-differential equation fd¢qy(r,r’;t=0). The motion of the solitary wave in
space, i.e., the vectat(t), is determined by the uniform force. In this sense, the solitary wave is
expected to behave like a classical particle. Conversely, given an admidgible=0), i.e.,
sufficiently smooth and rapidly decreasing to zera as», it is possible to construct an external
potential that permits solitary-wave behavior for bdtfr,t>0) andKy(r,r’;t>0). Of course, in
real experimental situations, the form of the external potential may deviate from the one given by
Eqg. (2.55. The question of the stability of the solitary-wave solutions under variatioNg(@ft)
is not addressed in this paper.

As is also pointed out in Ref. 8, the approximate Hamiltonian that furnishes the equation of
motion for K, does not include, for instance, the scattering of phonons and the decay of a single
phonon into two or three phonons. In other words, under the present approximation, the phonons
have infinite lifetimes and remain stable. This in turn implies that the af$dfzand the existing
equations of motion are of rather special forms, being valid only over some moderate time scale.
The problem of shorter or longer time scales is not touched upon in this paper; this time limitation
may depend on the higher-order terms in the Hamiltonian or the initial condition for the conden-
sate wave function. It is believed that the ansatz for the many-body wave function can be gener-
alized. A challenging open problem is to obtain such generalizations, which must satisfy many
consistency conditions.
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APPENDIX

Consider the one-dimensional linear Satinger equation in a harmonic-oscillator potential
(h=2m=1, wy=2):

dp(x,t) 52
=| — —+x? .
It is well knowr?* that an initial displacement of the ground-state wave functiggx)
2
= Y X2 att=0 by x=x, produces the wave packet

o(X,1)=po(Xx—xge 2He "V >0, (A2)

where, for definiteness;(t=0)=0. Substitution into Eq(A1) furnishes

iX iX
w(t)=t+ 40 e 14t TO. (A3)
¢o(x,t) is subsequently recast in a form where magnitude and phase are separated:
1 X3 X2
_ . —1/4 e —2it\2_ 0 e i4t_ 0
o(X,t)y=m exp{ 2(x Xo€ 2H2—it+ — 4 4]
1 . X
= Yex —E(x—xocoth)2 exp —i| t+xoxsin2— =sin4t ||, (A4)

which is a one-dimensional solitary wave. Note that with the units of (Bd) the eigenvalue
corresponding tapy(Xx) is equal to 1.
The preceding analysis can be extended toddutémensional Schidinger equation

d
ia‘p;’t):( V2+Z x) (1), (A5)

where r=(Xq,...,Xq), d=2. With an initial displacement of the ground-state wave function
eo(N)=m e "2 phyr=r,, at later timese(r,t) becomes

o(r,t)=go(r—roe 2He "® >0, (AB)
After some straightforward algebra,

i|rol? o4t ||ro|2

p(t)=d-t+ —— 2 (A7)
d 2
ey |rol
o(rt)y=m" H —Xjo€0S 2)?| |exg —i| d-t+rq- rsm2t—Tsm4t
_ . . Irol?
=@qg(r—rocos x)exg —i d't+ro~rsm2t—Tsm4t . (A8)

This is a solitary wave i space dimensions.
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