AMSC 466: Final Exam

Prof. Doron Levy

December 19, 2011

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may <u>not</u> use any books, notes, or calculators.
- Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- The maximum grade is 100.
- Exam time: 2 hours
- Good luck!

Problems:

1. (a) (10 points). Using Taylor expansions for f(x + h) and f(x + k), derive the following approximation to f'(x):

$$f'(x) \approx \frac{k^2 f(x+h) - h^2 f(x+k) + (h^2 - k^2) f(x)}{(k-h)kh}.$$

- (b) (5 points). Find the leading term in the approximation error.
- 2. (a) (10 points). Find a polynomial p(x) of a minimal degree that satisfied

$$p(x_0) = f(x_0), \quad p(x_1) = 0, \quad p(x_2) = f(x_2), \quad p(x_3) = 0.$$

(Assume that the points $\{x_i\}$ are distinct). Express the polynomial using Newton's form of the interpolating polynomial with divided differences. Evaluate the divided differences.

- (b) (5 points). Find an expression for the interpolation error. You may assume that the function f(x) is continuously differentiable as many times as needed.
- (c) (5 points). Find a polynomial p(x) of a minimal degree that satisfied

$$p(x_0) = f(x_0), \quad p'(x_0) = 0, \quad p(x_2) = f(x_2), \quad p'(x_2) = 0.$$

(Assume that $x_0 \neq x_2$).

3. (a) (5 points). What is the purpose of the following iteration formula?

$$x_{n+1} = 2x_n - x_n^2 y.$$

(b) (10 points). Write Newton's method for finding a root of the polynomial

$$p(x) = 4x^3 - 2x^2 + 3.$$

Compute the first iteration x_1 if the starting point is $x_0 = -1$.

4. (a) (10 points). Find A, B, C such that the following approximation is exact for polynomials of degree ≤ 2 . Explain why this formula is exact for any polynomial of degree ≤ 2 .

$$\int_{-3h}^{h} f(x)dx \approx h[Af(0) + Bf(-h) + Cf(-2h)].$$

(b) (10 points). Let $A_1(f,h)$ and $A_2(f,h)$ be two numerical integration methods that satisfy:

$$\int_{a}^{b} f(x)dx = A_{1}(f,h) + c_{1}h + c_{2}h^{2} + \dots$$
$$\int_{a}^{b} f(x)dx = A_{2}(f,h) + 2c_{1}h + c_{3}h^{3} + \dots$$

Using this information, find a more accurate approximation of the intergal. What is the order of the approximation you found?

5. (a) (10 points). Let $w(x) = x^4$. Find the first three orthogonal polynomials with respect to the inner product

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x)w(x)dx.$$

(Do not normalize the polynomials).

(b) (10 points). Determine the nodes and weights for the Gaussian formula of the form

$$\int_{-1}^{1} x^4 f(x) dx \approx A_0 f(x_0) + A_1 f(x_1).$$

6. (10 points). Let A be the matrix:

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 9 \end{pmatrix}$$

Explain why A should have a Cholesky decomposition and find it.