
AMSC/CMSC 460: Final Exam - SOLUTIONS

Prof. Doron Levy

May 17, 2018

Read carefully the following instructions:

• Write your name & student ID on the exam book and sign it.

• You may not use any books, notes, or calculators.

• Solve all problems. Answer all problems after carefully reading them. Start every
problem on a new page.

• Show all your work and explain everything you write.

• Exam time: 2 hours.

• Good luck!

Additional instructions:

• The exam has 2 parts: part A and part B. Each part has 4 problems.

• You should solve only 3 out of the 4 problems in each part.

• No extra credit will be given for solving more than 3 problems in each part.

• If you solve more than 3 problems, you should clearly indicate which problems
you would like to be graded - otherwise, the first 3 problems in each part will be
graded.
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Part A: Choose 3 problems out of problems 1-4 (Each problem = 10 points)

1. Find the most accurate approximation to f ′(x) using f(x − h
2
), f(x), f(x + h).

What is the order of accuracy of this approximation?

Solution: We would like to approximate

f ′(x) ≈ Af

(
x− h

2

)
+Bf(x) + Cf(x+ h).

We write the Taylor expansions for each of the terms:

f

(
x− h

2

)
= f(x)− h

2
f ′(x) +

1

2

(
h

2

)2

f ′′(x)− 1

6

(
h

2

)3

f ′′′(x) + . . .

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + . . .

Hence, by setting the coefficients of f(x) and f ′′(x) in the expansion to zero, and
the coefficient of f ′(x) to 1, we get the following linear system:



A+B + C = 0,

−h
2
A+ hC = 1,

h2

2

(
A

4
+ C

)
= 0.

The solution of this system is:

A = − 4

3h
, B =

1

h
, C =

1

3h
.

Hence, the approximation is

f ′(x) ≈
−4f

(
x− h

2

)
+ 3f(x) + f(x+ h)

3h
.

The order of the approximation is O(h2) since the next term in the Taylor expan-
sion does not vanish, and the h3 in front of the f ′′′(x) term is to be divided by h
since this term is multiplied by A and by C, both which are O(1/h).

2. Find a quadrature of the form∫ 1

−1

f(x)√
1− x2

dx = A0f(x0) + A1f(x1),

that is exact for all polynomials of degree ≤ 3.
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Solution: This is a Gaussian quadrature. The given interval [−1, 1] and weight,
1/
√

1− x2, correspond to Chebyshev polynomials. Since the quadrature is based
on two points, x0 and x1 are the roots of the quadratic Chebyshev polynomial,
T2(x) = 2xT1(x)− T0(x) = 2x2 − 1. This means that the quadrature points are

x0,1 = ± 1√
2
.

Once the quadrature points are known, all that remains is to find the coefficients,
A0 and A1. We do this through the method of undetermined coefficients. FIrst,
we require that the quadrature is exact for f(x) = 1, i.e.,

π =

∫ 1

−1

dx√
1− x2

= A0 + A1.

We also require that the quadrature is exact for f(x) = x, i.e.,

0 =

∫ 1

−1

x√
1− x2

dx = −A0√
2

+
A1√

2
.

Hence A0 = A1 = π/2, and the desired quadrature is∫ 1

−1

f(x)√
1− x2

dx ≈ π

2

(
f

(
− 1√

2

)
+ f

(
1√
2

))
.

3. (a) Write the Lagrange form of the linear interpolation polynomial that interpo-
lates f(x) at x = −1, 1.

Solution:

P1(x) = f(−1)
x− 1

−1− 1
+ f(1)

x+ 1

1 + 1
=

= f(−1)
x− 1

−2
+ f(1)

x+ 1

2
=

= x
f(1)− f(−1)

2
+
f(1) + f(−1)

2
.

(b) Use the interpolant you obtained in part (a) to find a weighted quadrature
of the form∫ 2

−2
xf(x)dx = A0f(−1) + A1f(1).
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Solution:

We approximate∫ 2

−2
xf(x)dx ≈

∫ 2

−2
xP1(x)dx =

=

∫ 2

−2

(
x2
f(1)− f(−1)

2
+ x

f(1) + f(−1)

2

)
dx = . . .

=
8

3
(f(1)− f(−1)).

Hence, the quadrature coefficients are A0 = 8
3

and A1 = −8
3
.

4. Find a linear polynomial, P ∗1 (x), that minimizes∫ ∞
−∞

e−x
2

(x3 −Q1(x))2dx,

among all polynomials Q1(x) of degree ≤ 1.

Solution:

This is a least squares problem with Hermite polynmials (the weight is w(x) = e−x
2

and the interval is (−∞,∞). With H0(x) = 1 and H1(x) = 2x, the solution is
given by

P ∗1 (x) = c0H0(x) + c1H1(x),

with

c0 =
〈x3, H0〉w
‖H0‖2w

=

∫∞
−∞ e

−x2x3dx

· · ·
= 0,

and

c1 =
〈x3, H1〉w
‖H1‖2w

=

∫∞
−∞ e

−x2x4dx∫∞
−∞(H1(x))2e−x2dx

=
2Γ(5/2)

2
√
π

=
3

4
.

Hence the solution is

P ∗1 (x) = c1H1(x) =
3

2
x.
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Part B: Choose 3 problems out of problems 5-8 (Each problem = 10 points)

5. Find values for a, b, c, d such that the following function, s(x), is a cubic spline on
[0, 2] that satisfies s′(2) = 0,

s(x) =

{
x3 − ax2 + b, 0 ≤ x ≤ 1,
cx3 + dx2, 1 ≤ x ≤ 2.

Solution: We start by computing the first and second derivatives of s(x):

s′(x) =

{
3x2 − 2ax, 0 ≤ x ≤ 1,
3cx2 + 2dx, 1 ≤ x ≤ 2.

s′′(x) =

{
6x− 2a, 0 ≤ x ≤ 1,
6cx+ 2d, 1 ≤ x ≤ 2.

The continuity of s(x) at x = 1 implies

1− a+ b = c+ d.

The continuity of s′(x) at x = 1 implies

3− 2a = 3c+ 2d.

The continuity of s′′(x) at x = 1 implies

6− 2a = 6c+ 2d.

Requiring that s′(2) = 0 implies that

12c+ 4d = 0.

The solution of the linear system is: a = 3, b = 0, c = 1, and d = −3, which
means that the spline is simply a cubic polynomial

s(x) = x3 − 3x2, 0 ≤ x ≤ 2.

6. Use the Gram-Schmidt process to find orthonormal polynomials of degrees 0 and
1 with respect to the inner product

〈f, g〉w =

∫ ∞
0

f(x)g(x)e−2xdx.
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Solution: We will first compute the polynomials without normalizing them. At
the end we will compute the normalization constants. We start with the constant
polynomial, P0(x) = 1. We then set

P1(x) = x− cP0 = x− c,

and compute c such that P1 is orthogonal to P0:

0 = 〈P0, P1〉w =

∫ ∞
0

1(x− c)e−2xdx =

∫ ∞
0

xe−2xdx− c
∫ ∞
0

e−2xdx =

=
e−2x

−2

(
x− 1

−2

) ∣∣∣∣∞
0

− ce
−2x

−2

∣∣∣∣∞
0

=
1

2
(
1

2
− c).

Hence c = 1/2, and therefore P1(x) = x− 1
2
. We now normalize P0(x) and P1(x).

We set P̃0 = cP0. Then

1 =
〈
P̃0, P̃0

〉
w

= c2 〈1, 1〉w = c2
∫ ∞
0

e−2xdx = c2
e−2x

−2

∣∣∣∣∞
0

=
c2

2
.

Hence c =
√

2 and P̃0 =
√

2. Setting P̃1(x) = cP1(x) we have

1 =
〈
P̃1, P̃1

〉
w

= c2
〈
x− 1

2
, x− 1

2

〉
w

= c2
∫ ∞
0

(
x− 1

2

)2

e−2xdx = . . . =
c2

8
.

Hence c =
√

8 and P̃1(x) =
√

8(x− 1/2).

7. Explain what the floating point representation of 1
10

looks like on a 32-bit machine.

Solution:

Write 1/10 in base 2:(
1

10

)
2

= 0.0001100110011 . . . = 1.100110011 . . .× 2−4.

We divide the 32 bits into 3 parts: 1 bit for the sign. In this case since the number
is positive we will use 0. The next 8 bits are for the exponent. In this case the
exponent is -4, which we will write using 2’s complement as 11111100 (this should
be explained). Finally, we use the remaining 23 bits to represent the mantissa. We
skip the leading “1” and write 10011001100110011001100. Overall, the number -4
is stored as:

0

∣∣∣∣11111100

∣∣∣∣10011001100110011001100.
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8. Find a Cholesky decomposition of

A =

16 12 4
12 13 3
4 3 17

 .

Solution: Using standard techniques we find a lower triangular matrix

L =

4 0 0
3 2 0
1 0 4

 ,

such that LLT = A.
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• Chebyshev polynomials

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) = 0, ∀n ≥ 1.∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0, m 6= n.∫ 1

−1

(Tn(x))2√
1− x2

dx =

{
π, n = 0,
π
2
, n = 1, 2, . . .∫ 1

−1

dx√
1− x2

= π.

• Hermite polynomials

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xHn(x)− 2nHn−1(x), ∀n ≥ 1∫ ∞
−∞

e−x
2

Hn(x)Hm(x) = δnm2nn!
√
π∫ ∞

−∞
xme−x

2

dx = Γ

(
m+ 1

2

)
, for even m

Γ(1/2) =
√
π, Γ(3/2) = 1

2

√
π, Γ(5/2) = 3

4

√
π.

• Other formulas∫
xeaxdx =

eax

a

(
x− 1

a

)
.∫

x2eaxdx =
eax

a

(
x2 − 2x

a
+

2

a2

)
.
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