
D. Levy

3 Interpolation

3.1 What is Interpolation?

Imagine that there is an unknown function f(x) for which someone supplies you with
its (exact) values at (n+1) distinct points x0 < x1 < · · · < xn, i.e., f(x0), . . . , f(xn) are
given. The interpolation problem is to construct a function Q(x) that passes through
these points, i.e., to find a function Q(x) such that the interpolation requirements

Q(xj) = f(xj), 0 6 j 6 n, (3.1)

are satisfied (see Figure 3.1). One easy way of obtaining such a function, is to connect the
given points with straight lines. While this is a legitimate solution of the interpolation
problem, usually (though not always) we are interested in a different kind of a solution,
e.g., a smoother function. We therefore always specify a certain class of functions from
which we would like to find one that solves the interpolation problem. For example,
we may look for a function Q(x) that is a polynomial, Q(x). Alternatively, the function
Q(x) can be a trigonometric function or a piecewise-smooth polynomial, and so on.

x0 x1 x2

f(x0)

f(x1)

f(x2)

f(x)

Q(x)

Figure 3.1: The function f(x), the interpolation points x0, x1, x2, and the interpolating
polynomial Q(x)

As a simple example let’s consider values of a function that are prescribed at two
points: (x0, f(x0)) and (x1, f(x1)). There are infinitely many functions that pass through
these two points. However, if we limit ourselves to polynomials of degree less than or
equal to one, there is only one such function that passes through these two points: the
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line that connects them. A line, in general, is a polynomial of degree one, but if the
two given values are equal, f(x0) = f(x1), the line that connects them is the constant
Q0(x) ≡ f(x0), which is a polynomial of degree zero. This is why we say that there is a
unique polynomial of degree 6 1 that connects these two points (and not “a polynomial
of degree 1”).

The points x0, . . . , xn are called the interpolation points. The property of “passing
through these points” is referred to as interpolating the data. The function that
interpolates the data is an interpolant or an interpolating polynomial (or whatever
function is being used).

There are cases were the interpolation problem has no solution, e.g., if we look for a
linear polynomial that interpolates three points that do not lie on a straight line. When
a solution exists, it can be unique (a linear polynomial and two points), or the problem
can have more than one solution (a quadratic polynomial and two points). What we are
going to study in this section is precisely how to distinguish between these cases. We
are also going to present different approaches to constructing the interpolant.

Other than agreeing at the interpolation points, the interpolant Q(x) and the under-
lying function f(x) are generally different. The interpolation error is a measure on
how different these two functions are. We will study ways of estimating the interpolation
error. We will also discuss strategies on how to minimize this error.

It is important to note that it is possible to formulate the interpolation problem
without referring to (or even assuming the existence of) any underlying function f(x).
For example, you may have a list of interpolation points x0, . . . , xn, and data that is
experimentally collected at these points, y0, y1, . . . , yn, which you would like to interpo-
late. The solution to this interpolation problem is identical to the one where the values
are taken from an underlying function.

3.2 The Interpolation Problem

We begin our study with the problem of polynomial interpolation: Given n + 1
distinct points x0, . . . , xn, we seek a polynomial Qn(x) of the lowest degree such that
the following interpolation conditions are satisfied:

Qn(xj) = f(xj), j = 0, . . . , n. (3.2)

Note that we do not assume any ordering between the points x0, . . . , xn, as such an order
will make no difference. If we do not limit the degree of the interpolation polynomial
it is easy to see that there any infinitely many polynomials that interpolate the data.
However, limiting the degree of Qn(x) to be deg(Qn(x)) 6 n, singles out precisely one
interpolant that will do the job. For example, if n = 1, there are infinitely many
polynomials that interpolate (x0, f(x0)) and (x1, f(x1)). However, there is only one
polynomial Qn(x) with deg(Qn(x)) 6 1 that does the job. This result is formally stated
in the following theorem:
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Theorem 3.1 If x0, . . . , xn ∈ R are distinct, then for any f(x0), . . . f(xn) there exists a
unique polynomial Qn(x) of degree 6 n such that the interpolation conditions (3.2) are
satisfied.

Proof. We start with the existence part and prove the result by induction. For n = 0,
Q0 = f(x0). Suppose that Qn−1 is a polynomial of degree 6 n− 1, and suppose also
that

Qn−1(xj) = f(xj), 0 6 j 6 n− 1.

Let us now construct from Qn−1(x) a new polynomial, Qn(x), in the following way:

Qn(x) = Qn−1(x) + c(x− x0) · . . . · (x− xn−1). (3.3)

The constant c in (3.3) is yet to be determined. Clearly, the construction of Qn(x)
implies that deg(Qn(x)) 6 n. (Since we might end up with c = 0, Qn(x) could actually
be of degree that is less than n.) In addition, the polynomial Qn(x) satisfies the
interpolation requirements Qn(xj) = f(xj) for 0 6 j 6 n− 1. All that remains is to
determine the constant c in such a way that the last interpolation condition,
Qn(xn) = f(xn), is satisfied, i.e.,

Qn(xn) = Qn−1(xn) + c(xn − x0) · . . . · · · (xn − xn−1). (3.4)

The condition (3.4) implies that c should be defined as

c =
f(xn)−Qn−1(xn)

n−1∏
j=0

(xn − xj)

, (3.5)

and we are done with the proof of existence.
As for uniqueness, suppose that there are two polynomials Qn(x), Pn(x) of degree 6 n
that satisfy the interpolation conditions (3.2). Define a polynomial Hn(x) as the
difference

Hn(x) = Qn(x)− Pn(x).

The degree of Hn(x) is at most n which means that it can have at most n zeros (unless
it is identically zero). However, since both Qn(x) and Pn(x) satisfy all the
interpolation requirements (3.2), we have

Hn(xj) = (Qn − Pn)(xj) = 0, 0 6 j 6 n,

which means that Hn(x) has n + 1 distinct zeros. This contradiction can be resolved
only if Hn(x) is the zero polynomial, i.e.,

Pn(x) ≡ Qn(x),

and uniqueness is established. �
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3.3 Newton’s Form of the Interpolation Polynomial

One good thing about the proof of Theorem 3.1 is that it is constructive. In other
words, we can use the proof to write down a formula for the interpolation polynomial.
We follow the procedure given by (3.4) for reconstructing the interpolation polynomial.
We do it in the following way:

• Let

Q0(x) = a0,

where a0 = f(x0).

• Let

Q1(x) = a0 + a1(x− x0).

Following (3.5) we have

a1 =
f(x1)−Q0(x1)

x1 − x0

=
f(x1)− f(x0)

x1 − x0

.

We note that Q1(x) is nothing but the straight line connecting the two points
(x0, f(x0)) and (x1, f(x1)).

In general, let

Qn(x) = a0 + a1(x− x0) + . . . + an(x− x0) · . . . · (x− xn−1) (3.6)

= a0 +
n∑

j=1

aj

j−1∏
k=0

(x− xk).

The coefficients aj in (3.6) are given by

a0 = f(x0),

aj =
f(xj)−Qj−1(xj)∏j−1

k=0(xj − xk)
, 1 6 j 6 n.

(3.7)

We refer to the interpolation polynomial when written in the form (3.6)–(3.7) as the
Newton form of the interpolation polynomial. As we shall see below, there are
various ways of writing the interpolation polynomial. The uniqueness of the interpola-
tion polynomial as guaranteed by Theorem 3.1 implies that we will only be rewriting
the same polynomial in different ways.

Example 3.2
The Newton form of the polynomial that interpolates (x0, f(x0)) and (x1, f(x1)) is

Q1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0

(x− x0).
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Example 3.3
The Newton form of the polynomial that interpolates the three points (x0, f(x0)),
(x1, f(x1)), and (x2, f(x2)) is

Q2(x) = f(x0)+
f(x1)− f(x0)

x1 − x0

(x−x0)+
f(x2)−

[
f(x0) + f(x1)−f(x0)

x1−x0
(x2 − x0)

]
(x2 − x0)(x2 − x1)

(x−x0)(x−x1).

3.4 The Interpolation Problem and the Vandermonde Deter-
minant

An alternative approach to the interpolation problem is to consider directly a polynomial
of the form

Qn(x) =
n∑

k=0

bkx
k, (3.8)

and require that the following interpolation conditions are satisfied

Qn(xj) = f(xj), 0 6 j 6 n. (3.9)

In view of Theorem 3.1 we already know that this problem has a unique solution, so we
should be able to compute the coefficients of the polynomial directly from (3.8). Indeed,
the interpolation conditions, (3.9), imply that the following equations should hold:

b0 + b1xj + . . . + bnx
n
j = f(xj), j = 0, . . . , n. (3.10)

In matrix form, (3.10) can be rewritten as
1 x0 . . . xn

0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n




b0

b1
...
bn

 =


f(x0)
f(x1)

...
f(xn)

 . (3.11)

In order for the system (3.11) to have a unique solution, it has to be nonsingular.
This means, e.g., that the determinant of its coefficients matrix must not vanish, i.e.∣∣∣∣∣∣∣∣∣

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

∣∣∣∣∣∣∣∣∣ 6= 0. (3.12)

The determinant (3.12), is known as the Vandermonde determinant. In Lemma 3.4
we will show that the Vandermonde determinant equals to the product of terms of the
form xi − xj for i > j. Since we assume that the points x0, . . . , xn are distinct, the
determinant in (3.12) is indeed non zero. Hence, the system (3.11) has a solution that
is also unique, which confirms what we already know according to Theorem 3.1.
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Lemma 3.4∣∣∣∣∣∣∣∣∣
1 x0 . . . xn

0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

∣∣∣∣∣∣∣∣∣ =
∏
i>j

(xi − xj). (3.13)

Proof. We will prove (3.13) by induction. First we verify that the result holds in the
2× 2 case. Indeed,∣∣∣∣1 x0

1 x1

∣∣∣∣ = x1 − x0.

We now assume that the result holds for n− 1 and consider n. We note that the index
n corresponds to a matrix of dimensions (n + 1)× (n + 1), hence our induction
assumption is that (3.13) holds for any Vandermonde determinant of dimension n× n.
We subtract the first row from all other rows, and expand the determinant along the
first column:∣∣∣∣∣∣∣∣∣

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 x0 . . . xn

0

0 x1 − x0 . . . xn
1 − xn

0
...

...
...

0 xn − x0 . . . xn
n − xn

0

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
x1 − x0 . . . xn

1 − xn
0

...
...

xn − x0 . . . xn
n − xn

0

∣∣∣∣∣∣∣
For every row k we factor out a term xk − x0:

∣∣∣∣∣∣∣
x1 − x0 . . . xn

1 − xn
0

...
...

xn − x0 . . . xn
n − xn

0

∣∣∣∣∣∣∣ =
n∏

k=1

(xk − x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 + x0 . . .
n−1∑
i=0

xn−1−i
1 xi

0

1 x2 + x0 . . .
n−1∑
i=0

xn−1−i
2 xi

0

...
...

...

1 xn + x0 . . .

n−1∑
i=0

xn−1−i
n xi

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Here, we used the expansion

xn
1 − xn

0 = (x1 − x0)(x
n−1
1 + xn−2

1 x0 + xn−3
1 x2

0 + . . . + xn−1
0 ),

for the first row, and similar expansions for all other rows. For every column l, starting
from the second one, subtracting the sum of xi

0 times column i (summing only over
“previous” columns, i.e., columns i with i < l), we end up with

n∏
k=1

(xk − x0)

∣∣∣∣∣∣∣∣∣
1 x1 . . . xn−1

1

1 x2 . . . xn−1
2

...
...

...
1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ . (3.14)

6



D. Levy 3.5 The Lagrange Form of the Interpolation Polynomial

Since now we have on the RHS of (3.14) a Vandermonde determinant of dimension n×n,
we can use the induction to conclude with the desired result. �

3.5 The Lagrange Form of the Interpolation Polynomial

The form of the interpolation polynomial that we used in (3.8) assumed a linear com-
bination of polynomials of degrees 0, . . . , n, in which the coefficients were unknown. In
this section we take a different approach and assume that the interpolation polyno-
mial is given as a linear combination of n + 1 polynomials of degree n. This time, we
set the coefficients as the interpolated values, {f(xj)}n

j=0, while the unknowns are the
polynomials. We thus let

Qn(x) =
n∑

j=0

f(xj)l
n
j (x), (3.15)

where lnj (x) are n+1 polynomials of degree 6 n. We use two indices in these polynomials:
the subscript j enumerates lnj (x) from 0 to n and the superscript n is used to remind
us that the degree of lnj (x) is n. Note that in this particular case, the polynomials lnj (x)
are precisely of degree n (and not 6 n). However, Qn(x), given by (3.15) may have a
lower degree. In either case, the degree of Qn(x) is n at the most. We now require that
Qn(x) satisfies the interpolation conditions

Qn(xi) = f(xi), 0 6 i 6 n. (3.16)

By substituting xi for x in (3.15) we have

Qn(xi) =
n∑

j=0

f(xj)l
n
j (xi), 0 6 i 6 n.

In view of (3.16) we may conclude that lnj (x) must satisfy

lnj (xi) = δij, i, j = 0, . . . , n, (3.17)

where δij is the Krönecker delta, defined as

δij =

{
1, i = j,
0, i 6= j.

Each polynomial lnj (x) has n + 1 unknown coefficients. The conditions (3.17) provide
exactly n+1 equations that the polynomials lnj (x) must satisfy and these equations can
be solved in order to determine all lnj (x)’s. Fortunately there is a shortcut. An obvious
way of constructing polynomials lnj (x) of degree 6 n that satisfy (3.17) is the following:

lnj (x) =
(x− x0) · . . . · (x− xj−1)(x− xj+1) · . . . · (x− xn)

(xj − x0) · . . . · (xj − xj−1)(xj − xj+1) · . . . · (xj − xn)
, 0 6 j 6 n. (3.18)
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The uniqueness of the interpolating polynomial of degree 6 n given n + 1 distinct
interpolation points implies that the polynomials lnj (x) given by (3.17) are the only
polynomials of degree 6 n that satisfy (3.17).

Note that the denominator in (3.18) does not vanish since we assume that all inter-
polation points are distinct. The Lagrange form of the interpolation polynomial
is the polynomial Qn(x) given by (3.15), where the polynomials lnj (x) of degree 6 n are
given by (3.18). A compact form of rewriting (3.18) using the product notation is

lnj (x) =

n∏
i=0
i6=j

(x− xi)

n∏
i=0
i6=j

(xj − xi)

, j = 0, . . . , n. (3.19)

Example 3.5
We are interested in finding the Lagrange form of the interpolation polynomial that
interpolates two points: (x0, f(x0)) and (x1, f(x1)). We know that the unique interpola-
tion polynomial through these two points is the line that connects the two points. Such
a line can be written in many different forms. In order to obtain the Lagrange form we
let

l10(x) =
x− x1

x0 − x1

, l11(x) =
x− x0

x1 − x0

.

The desired polynomial is therefore given by the familiar formula

Q1(x) = f(x0)l
1
0(x) + f(x1)l

1
1(x) = f(x0)

x− x1

x0 − x1

+ f(x1)
x− x0

x1 − x0

.

Example 3.6
This time we are looking for the Lagrange form of the interpolation polynomial, Q2(x),
that interpolates three points: (x0, f(x0)), (x1, f(x1)), (x2, f(x2)). Unfortunately, the
Lagrange form of the interpolation polynomial does not let us use the interpolation
polynomial through the first two points, Q1(x), as a building block for Q2(x). This
means that we have to compute all the polynomials lnj (x) from scratch. We start with

l20(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

l21(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

l22(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.
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The interpolation polynomial is therefore given by

Q2(x) = f(x0)l
2
0(x) + f(x1)l

2
1(x) + f(x2)l

2
2(x)

= f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

It is easy to verify that indeed Q2(xj) = f(xj) for j = 0, 1, 2, as desired.

Remarks.

1. One instance where the Lagrange form of the interpolation polynomial may seem
to be advantageous when compared with the Newton form is when there is a
need to solve several interpolation problems, all given at the same interpolation
points x0, . . . xn but with different values f(x0), . . . , f(xn). In this case, the
polynomials lnj (x) are identical for all problems since they depend only on the
points but not on the values of the function at these points. Therefore, they have
to be constructed only once.

2. An alternative form for lnj (x) can be obtained in the following way. Define the
polynomials wn(x) of degree n + 1 by

wn(x) =
n∏

i=0

(x− xi).

Then it its derivative is

w′
n(x) =

n∑
j=0

n∏
i=0
i6=j

(x− xi). (3.20)

When w′
x(x) is evaluated at an interpolation point, xj, there is only one term in

the sum in (3.20) that does not vanish:

w′
n(xj) =

n∏
i=0
i6=j

(xj − xi).

Hence, in view of (3.19), lnj (x) can be rewritten as

lnj (x) =
wn(x)

(x− xj)w′
n(xj)

, 0 6 j 6 n. (3.21)

3. For future reference we note that the coefficient of xn in the interpolation
polynomial Qn(x) is

n∑
j=0

f(xj)
n∏

k=0
k 6=j

(xj − xk)

. (3.22)
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For example, the coefficient of x in Q1(x) in Example 3.5 is

f(x0)

x0 − x1

+
f(x1)

x1 − x0

.

3.6 Divided Differences

We recall that Newton’s form of the interpolation polynomial is given by (see (3.6)–(3.7))

Qn(x) = a0 + a1(x− x0) + . . . + an(x− x0) · . . . · (x− xn−1),

with a0 = f(x0) and

aj =
f(xj)−Qj−1(xj)

j−1∏
k=0

(xj − xk)

, 1 6 j 6 n.

From now on, we will refer to the coefficient, aj, as the jth-order divided difference.
The jth-order divided difference, aj, is based on the points x0, . . . , xj and on the values
of the function at these points f(x0), . . . , f(xj). To emphasize this dependence, we use
the following notation:

aj = f [x0, . . . , xj], 1 6 j 6 n. (3.23)

We also denote the zeroth-order divided difference as

a0 = f [x0],

where

f [x0] = f(x0).

Using the divided differences notation (3.23), the Newton form of the interpolation
polynomial becomes

Qn(x) = f [x0] + f [x0, x1](x− x0) + . . . + f [x0, . . . xn]
n−1∏
k=0

(x− xk). (3.24)

There is a simple recursive way of computing the jth-order divided difference from
divided differences of lower order, as shown by the following lemma:

Lemma 3.7 The divided differences satisfy:

f [x0, . . . xn] =
f [x1, . . . xn]− f [x0, . . . xn−1]

xn − x0

. (3.25)
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Proof. For any k, we denote by Qk(x), a polynomial of degree 6 k, that interpolates
f(x) at x0, . . . , xk, i.e.,

Qk(xj) = f(xj), 0 6 j 6 k.

We now consider the unique polynomial P (x) of degree 6 n− 1 that interpolates f(x)
at x1, . . . , xn, and claim that

Qn(x) = P (x) +
x− xn

xn − x0

[P (x)−Qn−1(x)]. (3.26)

In order to verify this equality, we note that for i = 1, . . . , n− 1, P (xi) = Qn−1(xi) so
that

RHS(xi) = P (xi) = f(xi).

At xn, RHS(xn) = P (xn) = f(xn). Finally, at x0,

RHS(x0) = P (x0) +
x0 − xn

xn − x0

[P (x0)−Qn−1(x0)] = Qn−1(x0) = f(x0).

Hence, the RHS of (3.26) interpolates f(x) at the n + 1 points x0, . . . , xn, which is also
true for Qn(x) due to its definition. Since the RHS and the LHS in equation (3.26) are
both polynomials of degree 6 n, the uniqueness of the interpolating polynomial (in
this case through n + 1 points) implies the equality in (3.26).
Once we established the equality in (3.26) we can compare the coefficients of the
monomials on both sides of the equation. The coefficient of xn on the left-hand-side of
(3.26) is f [x0, . . . , xn]. The coefficient of xn−1 in P (x) is f [x1, . . . , xn] and the
coefficient of xn−1 in Qn−1(x) is f [x0, . . . , xn−1]. Hence, the coefficient of xn on the
right-hand-side of (3.26) is

1

xn − x0

(f [x1, . . . , xn]− f [x0, . . . , xn−1]),

which means that

f [x0, . . . xn] =
f [x1, . . . xn]− f [x0, . . . xn−1]

xn − x0

. �

Remark. In some books, instead of defining the divided difference in such a way that
they satisfy (3.25), the divided differences are defined by the formula

f [x0, . . . xn] = f [x1, . . . xn]− f [x0, . . . xn−1].

If this is the case, all our results on divided differences should be adjusted accordingly
as to account for the missing factor in the denominator.
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Example 3.8
The second-order divided difference is

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0

.

Hence, the unique polynomial that interpolates (x0, f(x0)), (x1, f(x1)), and (x2, f(x2))
is

Q2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= f(x0) +
f(x1)− f(x0)

x1 − x0

(x− x0) +

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0

(x− x0)(x− x1).

For example, if we want to find the polynomial of degree 6 2 that interpolates (−1, 9),
(0, 5), and (1, 3), we have

f(−1) = 9,

f [−1, 0] =
5− 9

0− (−1)
= −4, f [0, 1] =

3− 5

1− 0
= −2,

f [−1, 0, 1] =
f [0, 1]− f [−1, 0]

1− (−1)
=
−2 + 4

2
= 1.

so that

Q2(x) = 9− 4(x + 1) + (x + 1)x = 5− 3x + x2.

The relations between the divided differences are schematically portrayed in Table 3.1
(up to third-order). We note that the divided differences that are being used as the
coefficients in the interpolation polynomial are those that are located in the top of every
column. The recursive structure of the divided differences implies that it is required to
compute all the low order coefficients in the table in order to get the high-order ones.

One important property of any divided difference is that it is a symmetric function
of its arguments. This means that if we assume that y0, . . . , yn is any permutation of
x0, . . . , xn, then

f [y0, . . . , yn] = f [x0, . . . , xn].

This property can be clearly explained by recalling that f [x0, . . . , xn] plays the role of
the coefficient of xn in the polynomial that interpolates f(x) at x0, . . . , xn. At the same
time, f [y0, . . . , yn] is the coefficient of xn at the polynomial that interpolates f(x) at the
same points. Since the interpolation polynomial is unique for any given data set, the
order of the points does not matter, and hence these two coefficients must be identical.

12
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x0 f(x0)
↘

f [x0, x1]
↗ ↘

x1 f(x1) f [x0, x1, x2]
↘ ↗ ↘

f [x1, x2] f [x0, x1, x2, x3]
↗ ↘ ↗

x2 f(x2) f [x1, x2, x3]
↘ ↗

f [x2, x3]
↗

x3 f(x3)

Table 3.1: Divided Differences

3.7 The Error in Polynomial Interpolation

Our goal in this section is to provide estimates on the “error” we make when interpolating
data that is taken from sampling an underlying function f(x). While the interpolant and
the function agree with each other at the interpolation points, there is, in general, no
reason to expect them to be close to each other elsewhere. Nevertheless, we can estimate
the difference between them, a difference which we refer to as the interpolation error.
We let Πn denote the space of polynomials of degree 6 n, and let Cn+1[a, b] denote the
space of functions that have n + 1 continuous derivatives on the interval [a, b].

Theorem 3.9 Let f(x) ∈ Cn+1[a, b]. Let Qn(x) ∈ Πn such that it interpolates f(x) at
the n + 1 distinct points x0, . . . , xn ∈ [a, b]. Then ∀x ∈ [a, b], ∃ξn ∈ (a, b) such that

f(x)−Qn(x) =
1

(n + 1)!
f (n+1)(ξn)

n∏
j=0

(x− xj). (3.27)

Proof. Fix a point x ∈ [a, b]. If x is one of the interpolation points x0, . . . , xn, then the
left-hand-side and the right-hand-side of (3.27) are both zero, and the result holds
trivially. We therefore assume that x 6= xj 0 6 j 6 n, and let

w(x) =
n∏

j=0

(x− xj).

We now let

F (y) = f(y)−Qn(y)− λw(y),

13
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where λ is chosen as to guarantee that F (x) = 0, i.e.,

λ =
f(x)−Qn(x)

w(x)
.

Since the interpolation points x0, . . . , xn and x are distinct, w(x) does not vanish and
λ is well defined. We now note that since f ∈ Cn+1[a, b] and since Qn and w are
polynomials, then also F ∈ Cn+1[a, b]. In addition, F vanishes at n + 2 points:
x0, . . . , xn and x. According to Rolle’s theorem, F ′ has at least n + 1 distinct zeros in
(a, b), F ′′ has at least n distinct zeros in (a, b), and similarly, F (n+1) has at least one
zero in (a, b), which we denote by ξn. We have

0 = F (n+1)(ξn) = f (n+1)(ξn)−Q(n+1)
n (ξn)− λ(x)w(n+1)(ξn) (3.28)

= f (n+1)(ξn)− f(x)−Qn(x)

w(x)
(n + 1)!

Here, we used the fact that the leading term of w(x) is xn+1, which guarantees that its
(n + 1)th derivative is

w(n+1)(x) = (n + 1)! (3.29)

Reordering the terms in (3.28) we conclude with

f(x)−Qn(x) =
1

(n + 1)!
f (n+1)(ξn)w(x). �

In addition to the interpretation of the divided difference of order n as the coefficient
of xn in some interpolation polynomial, it can also be characterized in another important
way. Consider, e.g., the first-order divided difference

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

.

Since the order of the points does not change the value of the divided difference, we can
assume, without any loss of generality, that x0 < x1. If we assume, in addition, that
f(x) is continuously differentiable in the interval [x0, x1], then this divided difference
equals to the derivative of f(x) at an intermediate point, i.e.,

f [x0, x1] = f ′(ξ), ξ ∈ (x0, x1).

In other words, the first-order divided difference can be viewed as an approximation
of the first derivative of f(x) in the interval. It is important to note that while this
interpretation is based on additional smoothness requirements from f(x) (i.e. its be-
ing differentiable), the divided differences are well defined also for non-differentiable
functions.

This notion can be extended to divided differences of higher order as stated by the
following lemma.

14
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Lemma 3.10 Let x, x0, . . . , xn−1 be n + 1 distinct points. Let a = min(x, x0, . . . , xn−1)
and b = max(x, x0, . . . , xn−1). Assume that f(y) has a continuous derivative of order n
in the interval (a, b). Then

f [x0, . . . , xn−1, x] =
f (n)(ξ)

n!
, (3.30)

where ξ ∈ (a, b).

Proof. Let Qn(y) interpolate f(y) at x0, . . . , xn−1, x. Then according to the
construction of the Newton form of the interpolation polynomial (3.24), we know that

Qn(y) = Qn−1(y) + f [x0, . . . , xn−1, x]
n−1∏
j=0

(y − xj).

Since Qn(y) interpolated f(y) at x, we have

f(x) = Qn−1(x) + f [x0, . . . , xn−1, x]
n−1∏
j=0

(x− xj).

By Theorem 3.9 we know that the interpolation error is given by

f(x)−Qn−1(x) =
1

n!
f (n)(ξn−1)

n−1∏
j=0

(x− xj),

which implies the result (3.30). �

Remark. In equation (3.30), we could as well think of the interpolation point x as
any other interpolation point, and name it, e.g., xn. In this case, the equation (3.30)
takes the somewhat more natural form of

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

In other words, the nth-order divided difference is an nth-derivative of the function f(x)
at an intermediate point, assuming that the function has n continuous derivatives. Sim-
ilarly to the first-order divided difference, we would like to emphasize that the nth-order
divided difference is also well defined in cases where the function is not as smooth as
required in the theorem, though if this is the case, we can no longer consider this divided
difference to represent a nth-order derivative of the function.

15



3.8 Interpolation at the Chebyshev Points D. Levy

3.8 Interpolation at the Chebyshev Points

In the entire discussion up to now, we assumed that the interpolation points are given.
There may be cases where one may have the flexibility of choosing the interpolation
points. If this is the case, it would be reasonable to use this degree of freedom to
minimize the interpolation error.

We recall that if we are interpolating values of a function f(x) that has n continuous
derivatives, the interpolation error is of the form

f(x)−Qn(x) =
1

(n + 1)!
f (n+1)(ξn)

n∏
j=0

(x− xj). (3.31)

Here, Qn(x) is the interpolating polynomial and ξn is an intermediate point in the
interval of interest (see (3.27)).

It is important to note that the interpolation points influence two terms on the
right-hand-side of (3.31). The obvious one is the product

n∏
j=0

(x− xj). (3.32)

The second term that depends on the interpolation points is f (n+1)(ξn) since the value
of the intermediate point ξn depends on {xj}. Due to the implicit dependence of ξn

on the interpolation points, minimizing the interpolation error is not an easy task. We
will return to this “full” problem later on in the context of the minimax approximation
problem. For the time being, we are going to focus on a simpler problem, namely, how
to choose the interpolation points x0, . . . , xn such that the product (3.32) is minimized.
The solution of this problem is the topic of this section. Once again, we would like to
emphasize that a solution of this problem does not (in general) provide an optimal choice
of interpolation points that minimizes the interpolation error. All that it guarantees is
that the product part of the interpolation error is minimal.

The tool that we are going to use is the Chebyshev polynomials. The solution of
the problem will be to choose the interpolation points as the Chebyshev points. We will
first introduce the Chebyshev polynomials and the Chebyshev points and then explain
why interpolating at these points minimizes (3.32).

The Chebyshev polynomials can be defined using the following recursion relation:
T0(x) = 1,
T1(x) = x,
Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1.

(3.33)

For example, T2(x) = 2xT1(x)−T0(x) = 2x2−1, and T3(x) = 4x3−3x. The polynomials
T1(x), T2(x) and T3(x) are plotted in Figure 3.2.

Instead of writing the recursion formula, (3.33), it is possible to write an explicit
formula for the Chebyshev polynomials:
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Figure 3.2: The Chebyshev polynomials T1(x), T2(x) and T3(x)

Lemma 3.11 For x ∈ [−1, 1],

Tn(x) = cos(n cos−1 x), n > 0. (3.34)

Proof. Standard trigonometric identities imply that

cos(n + 1)θ = cos θ cos nθ − sin θ sin nθ,

cos(n− 1)θ = cos θ cos nθ + sin θ sin nθ.

Hence

cos(n + 1)θ = 2 cos θ cos nθ − cos(n− 1)θ. (3.35)

We now let θ = cos−1 x, i.e., x = cos θ, and define

tn(x) = cos(n cos−1 x) = cos(nθ).

Then by (3.35)
t0(x) = 1,
t1(x) = x,
tn+1(x) = 2xtn(x)− tn−1(x), n > 1.

Hence tn(x) = Tn(x). �
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3.8 Interpolation at the Chebyshev Points D. Levy

What is so special about the Chebyshev polynomials, and what is the connection
between these polynomials and minimizing the interpolation error? We are about to
answer these questions, but before doing so, there is one more issue that we must
clarify.

We define a monic polynomial as a polynomial for which the coefficient of the
leading term is one, i.e., a polynomial of degree n is monic, if it is of the form

xn + an−1x
n−1 + . . . + a1x + a0.

Note that Chebyshev polynomials are not monic: the definition (3.33) implies that the
Chebyshev polynomial of degree n is of the form

Tn(x) = 2n−1xn + . . .

This means that Tn(x) divided by 2n−1 is monic, i.e.,

21−nTn(x) = xn + . . .

A general result about monic polynomials is given by the following theorem

Theorem 3.12 If pn(x) is a monic polynomial of degree n, then

max
−16x61

|pn(x)| > 21−n. (3.36)

Proof. We prove (3.36) by contradiction. Suppose that

|pn(x)| < 21−n, |x| 6 1.

Let

qn(x) = 21−nTn(x),

and let xj be the following n + 1 points

xj = cos

(
jπ

n

)
, 0 6 j 6 n.

Since

Tn

(
cos

jπ

n

)
= (−1)j,

we have

(−1)jqn(xj) = 21−n.

18
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Hence

(−1)jpn(xj) 6 |pn(xj)| < 21−n = (−1)jqn(xj).

This means that

(−1)j(qn(xj)− pn(xj)) > 0, 0 6 j 6 n.

Hence, the polynomial (qn− pn)(x) oscillates (n + 1) times in the interval [−1, 1], which
means that (qn−pn)(x) has at least n distinct roots in the interval. However, pn(x) and
qn(x) are both monic polynomials which means that their difference is a polynomial of
degree n − 1 at most. Such a polynomial cannot have more than n − 1 distinct roots,
which leads to a contradiction. Note that pn−qn cannot be the zero polynomial because
that will imply that pn(x) and qn(x) are identical which again is not possible due to the
assumptions on their maximum values. �

We are now ready to use Theorem 3.12 to figure out how to reduce the interpolation
error. We know by Theorem 3.9 that if the interpolation points x0, . . . , xn ∈ [−1, 1],
then there exists ξn ∈ (−1, 1) such that the distance between the function whose values
we interpolate, f(x), and the interpolation polynomial, Qn(x), is

max
|x|61

|f(x)−Qn(x)| 6 1

(n + 1)!
max
|x|61

|f (n+1)(ξn)|max
|x|61

∣∣∣∣∣
n∏

j=0

(x− xj)

∣∣∣∣∣ .
We are interested in minimizing

max
|x|61

∣∣∣∣∣
n∏

j=0

(x− xj)

∣∣∣∣∣ .
We note that

∏n
j=0(x− xj) is a monic polynomial of degree n + 1 and hence by Theo-

rem 3.12

max
|x|61

∣∣∣∣∣
n∏

j=0

(x− xj)

∣∣∣∣∣ > 2−n.

The minimal value of 2−n can be actually obtained if we set

2−nTn+1(x) =
n∏

j=0

(x− xj),

which is equivalent to choosing xj as the roots of the Chebyshev polynomial Tn+1(x).
Here, we have used the obvious fact that |Tn(x)| 6 1.
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What are the roots of the Chebyshev polynomial Tn+1(x)? By Lemma 3.11

Tn+1(x) = cos((n + 1) cos−1 x).

The roots of Tn+1(x), x0, . . . , xn, are therefore obtained if

(n + 1) cos−1(xj) =

(
j +

1

2

)
π, 0 6 j 6 n,

i.e., the (n + 1) roots of Tn+1(x) are

xj = cos

(
2j + 1

2n + 2
π

)
, 0 6 j 6 n. (3.37)

The roots of the Chebyshev polynomials are sometimes referred to as the Chebyshev
points. The formula (3.37) for the roots of the Chebyshev polynomial has the following
geometrical interpretation. In order to find the roots of Tn(x), define α = π/n. Divide
the upper half of the unit circle into n + 1 parts such that the two side angles are α/2
and the other angles are α. The Chebyshev points are then obtained by projecting these
points on the x-axis. This procedure is demonstrated in Figure 3.3 for T4(x).

-1 x0 x1 0 x2 x3 1

The unit circle

7π
8

5π
8

3π
8

π
8

x

Figure 3.3: The roots of the Chebyshev polynomial T4(x), x0, . . . , x3. Note that they
become dense next to the boundary of the interval

The following theorem summarizes the discussion on interpolation at the Chebyshev
points. It also provides an estimate of the error for this case.
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Theorem 3.13 Assume that Qn(x) interpolates f(x) at x0, . . . , xn. Assume also that
these (n + 1) interpolation points are the (n + 1) roots of the Chebyshev polynomial of
degree n + 1, Tn+1(x), i.e.,

xj = cos

(
2j + 1

2n + 2
π

)
, 0 6 j 6 n.

Then ∀|x| 6 1,

|f(x)−Qn(x)| 6 1

2n(n + 1)!
max
|ξ|61

∣∣f (n+1)(ξ)
∣∣ . (3.38)

Example 3.14
Problem: Let f(x) = sin(πx) in the interval [−1, 1]. Find Q2(x) which interpolates f(x)
in the Chebyshev points. Estimate the error.

Solution: Since we are asked to find an interpolation polynomial of degree 6 2, we need
3 interpolation points. We are also asked to interpolate at the Chebyshev points, and
hence we first need to compute the 3 roots of the Chebyshev polynomial of degree 3,

T3(x) = 4x3 − 3x.

The roots of T3(x) can be easily found from x(4x2 − 3) = 0, i.e.,

x0 = −
√

3

2
, , x1 = 0, x2 =

√
3

2
.

The corresponding values of f(x) at these interpolation points are

f(x0) = sin

(
−
√

3

2
π

)
≈ −0.4086,

f(x1) = 0,

f(x2) = sin

(√
3

2
π

)
≈ 0.4086.

The first-order divided differences are

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

≈ 0.4718,

f [x1, x2] =
f(x2)− f(x1)

x2 − x1

≈ 0.4718,

and the second-order divided difference is

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

= 0.
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The interpolation polynomial is

Q2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) ≈ 0.4718x.

The original function f(x) and the interpolant at the Chebyshev points, Q2(x), are
plotted in Figure 3.4.
As of the error estimate, ∀|x| 6 1,

| sin πx−Q2(x)| 6 1

223!
max
|ξ|61

|(sin πt)(3)| 6 π3

223!
6 1.292

A brief examination of Figure 3.4 reveals that while this error estimate is correct, it is
far from being sharp.
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0.6

0.8

1

Q2(x)

f(x)

x

Figure 3.4: The function f(x) = sin(π(x)) and the interpolation polynomial Q2(x) that
interpolates f(x) at the Chebyshev points. See Example 3.14.

Remark. In the more general case where the interpolation interval for the function
f(x) is x ∈ [a, b], it is still possible to use the previous results by following the
following steps: Start by converting the interpolation interval to y ∈ [−1, 1]:

x =
(b− a)y + (a + b)

2
.

This converts the interpolation problem for f(x) on [a, b] into an interpolation problem
for f(x) = g(x(y)) in y ∈ [−1, 1]. The Chebyshev points in the interval y ∈ [−1, 1] are
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the roots of the Chebyshev polynomial Tn+1(x), i.e.,

yj = cos

(
2j + 1

2n + 2
π

)
, 0 6 j 6 n.

The corresponding n + 1 interpolation points in the interval [a, b] are

xj =
(b− a)yj + (a + b)

2
, 0 6 j 6 n.

In this case, the product term in the interpolation error is

max
x∈[a,b]

∣∣∣∣∣
n∏

j=0

(x− xj)

∣∣∣∣∣ =

∣∣∣∣b− a

2

∣∣∣∣n+1

max
|y|61

∣∣∣∣∣
n∏

j=0

(x− yj)

∣∣∣∣∣ ,
and the interpolation error is given by

|f(x)−Qn(x)| 6 1

2n(n + 1)!

∣∣∣∣b− a

2

∣∣∣∣n+1

max
ξ∈[a,b]

∣∣f (n+1)(ξ)
∣∣ . (3.39)

3.9 Hermite Interpolation

We now turn to a slightly different interpolation problem in which we assume that
in addition to interpolating the values of the function at certain points, we are also
interested in interpolating its derivatives. Interpolation that involves the derivatives is
called Hermite interpolation. Such an interpolation problem is demonstrated in the
following example:

Example 3.15
Problem: Find a polynomials p(x) such that p(1) = −1, p′(1) = −1, and p(0) = 1.

Solution: Since three conditions have to be satisfied, we can use these conditions to
determine three degrees of freedom, which means that it is reasonable to expect that
these conditions uniquely determine a polynomial of degree 6 2. We therefore let

p(x) = a0 + a1x + a2x
2.

The conditions of the problem then imply that
a0 + a1 + a2 = −1,
a1 + 2a2 = −1,
a0 = 1.

Hence, there is indeed a unique polynomial that satisfies the interpolation conditions
and it is

p(x) = x2 − 3x + 1.
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In general, we may have to interpolate high-order derivatives and not only first-
order derivatives. Also, we assume that for any point xj in which we have to satisfy an
interpolation condition of the form

p(l)(xj) = f(xj),

(with p(l) being the lth-order derivative of p(x)), we are also given all the values of the
lower-order derivatives up to l as part of the interpolation requirements, i.e.,

p(i)(xj) = f (i)(xj), 0 6 i 6 l.

If this is not the case, it may not be possible to find a unique interpolant as demonstrated
in the following example.

Example 3.16
Problem: Find p(x) such that p′(0) = 1 and p′(1) = −1.

Solution: Since we are asked to interpolate two conditions, we may expect them to
uniquely determine a linear function, say

p(x) = a0 + a1x.

However, both conditions specify the derivative of p(x) at two distinct points to be
of different values, which amounts to a contradicting information on the value of a1.
Hence, a linear polynomial cannot interpolate the data and we must consider higher-
order polynomials. Unfortunately, a polynomial of order > 2 will no longer be unique
because not enough information is given. Note that even if the prescribed values of the
derivatives were identical, we will not have problems with the coefficient of the linear
term a1, but we will still not have enough information to determine the constant a0.

A simple case that you are probably already familiar with is the Taylor series.
When viewed from the point of view that we advocate in this section, one can consider
the Taylor series as an interpolation problem in which one has to interpolate the value
of the function and its first n derivatives at a given point, say x0, i.e., the interpolation
conditions are:

p(j)(x0) = f (j)(x0), 0 6 j 6 n.

The unique solution of this problem in terms of a polynomial of degree 6 n is

p(x) = f(x0) + f ′(x0)(x− x0) + . . . +
f (n)(x0)

n!
(x− x0)

n =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j,

which is the Taylor series of f(x) expanded about x = x0.
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3.9.1 Divided differences with repetitions

We are now ready to consider the Hermite interpolation problem. The first form we
study is the Newton form of the Hermite interpolation polynomial. We start by extend-
ing the definition of divided differences in such a way that they can handle derivatives.
We already know that the first derivative is connected with the first-order divided dif-
ference by

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

f [x, x0].

Hence, it is natural to extend the notion of divided differences by the following definition.

Definition 3.17 The first-order divided difference with repetitions is defined as

f [x0, x0] = f ′(x0). (3.40)

In a similar way, we can extend the notion of divided differences to high-order derivatives
as stated in the following lemma (which we leave without a proof).

Lemma 3.18 Let x0 6 x1 6 . . . 6 xn. Then the divided differences satisfy

f [x0, . . . xn] =


f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

, xn 6= x0,

f (n)(x0)

n!
, xn = x0.

(3.41)

We now consider the following Hermite interpolation problem: The interpolation
points are x0, . . . , xl (which we assume are ordered from small to large). At each inter-
polation point xj, we have to satisfy the interpolation conditions:

p(i)(xj) = f (i)(xj), 0 6 i 6 mj.

Here, mj denotes the number of derivatives that we have to interpolate for each point
xj (with the standard notation that zero derivatives refers to the value of the function
only). In general, the number of derivatives that we have to interpolate may change
from point to point. The extended notion of divided differences allows us to write the
solution to this problem in the following way:

We let n denote the total number of points including their multiplicities (that cor-
respond to the number of derivatives we have to interpolate at each point), i.e.,

n = m1 + m2 + . . . + ml.

We then list all the points including their multiplicities (that correspond to the number
of derivatives we have to interpolate). To simplify the notations we identify these points
with a new ordered list of points yi:

{y0, . . . , yn−1} = {x0, . . . , x0︸ ︷︷ ︸
m1

, x1, . . . , x1︸ ︷︷ ︸
m2

, . . . , xl, . . . , xl︸ ︷︷ ︸
ml

}.
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3.9 Hermite Interpolation D. Levy

The interpolation polynomial pn−1(x) is given by

pn−1(x) = f [y0] +
n−1∑
j=1

f [y0, . . . , yj]

j−1∏
k=0

(x− yk). (3.42)

Whenever a point repeats in f [y0, . . . , yj], we interpret this divided difference in terms
of the extended definition (3.41). In practice, there is no need to shift the notations to
y’s and we work directly with the original points. We demonstrate this interpolation
procedure in the following example.

Example 3.19
Problem: Find an interpolation polynomial p(x) that satisfies

p(x0) = f(x0),
p(x1) = f(x1),
p′(x1) = f ′(x1).

Solution: The interpolation polynomial p(x) is

p(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x1](x− x0)(x− x1).

The divided differences:

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

.

f [x0, x1, x1] =
f [x1, x1]− f [x1, x0]

x1 − x0

=
f ′(x1)− f(x1)−f(x0)

x1−x0

x1 − x0

.

Hence

p(x) = f(x0)+
f(x1)− f(x0)

x1 − x0

(x−x0)+
(x1 − x0)f

′(x1)− [f(x1)− f(x0)]

(x1 − x0)2
(x−x0)(x−x1).

3.9.2 The Lagrange form of the Hermite interpolant

In this section we are interested in writing the Lagrange form of the Hermite interpolant
in the special case in which the nodes are x0, . . . , xn and the interpolation conditions
are

p(xi) = f(xi), p′(xi) = f ′(xi), 0 6 i 6 n. (3.43)

We look for an interpolant of the form

p(x) =
n∑

i=0

f(xi)Ai(x) +
n∑

i=0

f ′(xi)Bi(x). (3.44)
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D. Levy 3.9 Hermite Interpolation

In order to satisfy the interpolation conditions (3.43), the polynomials p(x) in (3.44)
must satisfy the 2n + 2 conditions:

Ai(xj) = δij, Bi(xj) = 0,
i, j = 0, . . . , n.

A′
i(xj) = 0, B′

i(xj) = δij,
(3.45)

We thus expect to have a unique polynomial p(x) that satisfies the constraints (3.45)
assuming that we limit its degree to be 6 2n + 1.

It is convenient to start the construction with the functions we have used in the
Lagrange form of the standard interpolation problem (Section 3.5). We already know
that

li(x) =
n∏

j=0
j 6=i

x− xj

xi − xj

,

satisfy li(xj) = δij. In addition, for i 6= j,

l2i (xj) = 0, (l2i (xj))
′ = 0.

The degree of li(x) is n, which means that the degree of l2i (x) is 2n. We will thus
assume that the unknown polynomials Ai(x) and Bi(x) in (3.45) can be written as{

Ai(x) = ri(x)l2i (x),
Bi(x) = si(x)l2i (x).

The functions ri(x) and si(x) are both assumed to be linear, which implies that deg(Ai) =
deg(Bi) = 2n + 1, as desired. Now, according to (3.45)

δij = Ai(xj) = ri(xj)l
2
i (xj) = ri(xj)δij.

Hence

ri(xi) = 1. (3.46)

Also,

0 = A′
i(xj) = r′i(xj)[li(xj)]

2 + 2ri(xj)li(xJ)l′i(xj) = r′i(xj)δij + 2ri(xj)δijl
′
i(xj),

and thus

r′i(xi) + 2l′i(xi) = 0. (3.47)

Assuming that ri(x) is linear, ri(x) = ax + b, equations (3.46),(3.47), imply that

a = −2l′i(xi), b = 1 + 2l′i(xi)xi.
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3.9 Hermite Interpolation D. Levy

Therefore

Ai(x) = [1 + 2l′i(xi)(xi − x)]l2i (x).

As of Bi(x) in (3.44), the conditions (3.45) imply that

0 = Bi(xj) = si(xj)l
2
i (xj) =⇒ si(xi) = 0, (3.48)

and

δij = B′
i(xj) = s′i(xj)l

2
i (xj) + 2si(xj)(l

2
i (xj))

′ =⇒ s′i(xi) = 1. (3.49)

Combining (3.48) and (3.49), we obtain

si(x) = x− xi,

so that

Bi(x) = (x− xi)l
2
i (x).

To summarize, the Lagrange form of the Hermite interpolation polynomial is given by

p(x) =
n∑

i=0

f(xi)[1 + 2l′i(xi)(xi − x)]l2i (x) +
n∑

i=0

f ′(xi)(x− xi)l
2
i (x). (3.50)

The error in the Hermite interpolation (3.50) is given by the following theorem.

Theorem 3.20 Let x0, . . . , xn be distinct nodes in [a, b] and f ∈ C2n+2[a, b]. If p ∈
Π2n+1, such that ∀0 6 i 6 n,

p(xi) = f(xi), p′(xi) = f ′(xi),

then ∀x ∈ [a, b], there exists ξ ∈ (a, b) such that

f(x)− p(x) =
f (2n+2)(ξ)

(2n + 2)!

n∏
i=0

(x− xi)
2. (3.51)

Proof. The proof follows the same techniques we used in proving Theorem 3.9. If x is
one of the interpolation points, the result trivially holds. We thus fix x as a
non-interpolation point and define

w(y) =
n∏

i=0

(y − xi)
2.

We also have

φ(y) = f(y)− p(y)− λw(y),
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D. Levy 3.10 Spline Interpolation

and select λ such that φ(x) = 0, i.e.,

λ =
f(x)− p(x)

w(x)
.

φ has (at least) n + 2 zeros in [a, b]: (x, x0, . . . , xn). By Rolle’s theorem, we know that
φ′ has (at least) n + 1 zeros that are different than (x, x0, . . . , xn). Also, φ′ vanishes at
x0, . . . , xn, which means that φ′ has at least 2n + 2 zeros in [a, b].
Similarly, Rolle’s theorem implies that φ′′ has at least 2n + 1 zeros in (a, b), and by
induction, φ(2n+2) has at least one zero in (a, b), say ξ.
Hence

0 = φ(2n+2)(ξ) = f (2n+2)(ξ)− p(2n+2)(ξ)− λw(2n+2)(ξ).

Since the leading term in w(y) is x2n+2, w(2n+2)(ξ) = (2n + 2)!. Also, since
p(x) ∈ Π2n+1, p(2n+2)(ξ) = 0. We recall that x was an arbitrary (non-interpolation)
point and hence we have

f(x)− p(x) =
f (2n+2)(ξ)

(2n + 2)!

n∏
i=0

(x− xi)
2. �

Example 3.21
Assume that we would like to find the Hermite interpolation polynomial that satisfies:

p(x0) = y0, p′(x0) = d0, p(x1) = y1, p′(x1) = d1.

In this case n = 1, and

l0(x) =
x− x1

x0 − x1

, l′0(x) =
1

x0 − x1

, l1(x) =
x− x0

x1 − x0

, l′1(x) =
1

x1 − x0

.

According to (3.50), the desired polynomial is given by (check!)

p(x) = y0

[
1 +

2

x0 − x1

(x0 − x)

](
x− x1

x0 − x1

)2

+ y1

[
1 +

2

x1 − x0

(x1 − x)

](
x− x0

x1 − x0

)2

+d0(x− x0)

(
x− x1

x0 − x1

)2

+ d1(x− x1)

(
x− x0

x1 − x0

)2

.

3.10 Spline Interpolation

So far, the only type of interpolation we were dealing with was polynomial interpolation.
In this section we discuss a different type of interpolation: piecewise-polynomial interpo-
lation. A simple example of such interpolants will be the function we get by connecting
data with straight lines (see Figure 3.5). Of course, we would like to generate functions
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(x0, f(x0))

(x1, f(x1))

(x2, f(x2))

(x3, f(x3))

(x4, f(x4))

x

Figure 3.5: A piecewise-linear spline. In every subinterval the function is linear. Overall
it is continuous where the regularity is lost at the knots

that are somewhat smoother than piecewise-linear functions, and still interpolate the
data. The functions we will discuss in this section are splines.

You may still wonder why are we interested in such functions at all? It is easy to
motivate this discussion by looking at Figure 3.6. In this figure we demonstrate what a
high-order interpolant looks like. Even though the data that we interpolate has only one
extrema in the domain, we have no control over the oscillatory nature of the high-order
interpolating polynomial. In general, high-order polynomials are oscillatory, which rules
them as non-practical for many applications. That is why we focus our attention in this
section on splines.

Splines, should be thought of as polynomials on subintervals that are connected in
a “smooth way”. We will be more rigorous when we define precisely what we mean by
smooth. First, we pick n+1 points which we refer to as the knots: t0 < t1 < · · · < tn. A
spline of degree k having knots t0, . . . , tn is a function s(x) that satisfies the following
two properties:

1. On [ti−1, ti) s(x) is a polynomial of degree 6 k, i.e., s(x) is a polynomial on every
subinterval that is defined by the knots.

2. Smoothness: s(x) has a continuous (k − 1)th derivative on the interval [t0, tn].

A spline of degree 0 is a piecewise-constant function (see Figure 3.7). A spline of
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5 4 3 2 1 0 1 2 3 4 5
0.5

0

0.5

1

1.5

2

1
1+x2

Q10(x)

x

Figure 3.6: An interpolant “goes bad”. In this example we interpolate 11 equally spaced
samples of f(x) = 1

1+x2 with a polynomial of degree 10, Q10(x)

(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.7: A zeroth-order (piecewise-constant) spline. The knots are at the interpola-
tion points. Since the spline is of degree zero, the function is not even continuous
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3.10 Spline Interpolation D. Levy

degree 1 is a piecewise-linear function that can be explicitly written as

s(x) =


s0(x) = a0x + b0, x ∈ [t0, t1),
s1(x) = a1x + b1, x ∈ [t1, t2),

...
...

sn−1(x) = an−1x + bn−1, x ∈ [tn−1, tn],

(see Figure 3.5 where the knots {ti} and the interpolation points {xi} are assumed to
be identical). It is now obvious why the points t0, . . . , tn are called knots: these are
the points that connect the different polynomials with each other. To qualify as an
interpolating function, s(x) will have to satisfy interpolation conditions that we will
discuss below. We would like to comment already at this point that knots should not be
confused with the interpolation points. Sometimes it is convenient to choose the knots
to coincide with the interpolation points but this is only optional, and other choices can
be made.

3.10.1 Cubic splines

A special case (which is the most common spline function that is used in practice) is
the cubic spline. A cubic spline is a spline for which the function is a polynomial of
degree 6 3 on every subinterval, and a function with two continuous derivatives overall
(see Figure 3.8).

Let’s denote such a function by s(x), i.e.,

s(x) =


s0(x), x ∈ [t0, t1),
s1(x), x ∈ [t1, t2),

...
...

sn−1(x), x ∈ [tn−1, tn],

where ∀i, the degree of si(x) is 6 3.
We now assume that some data (that s(x) should interpolate) is given at the knots,

i.e.,

s(ti) = yi, 0 6 i 6 n. (3.52)

The interpolation conditions (3.52) in addition to requiring that s(x) is continuous,
imply that

si−1(ti) = yi = si(ti), 1 6 i 6 n− 1. (3.53)

We also require the continuity of the first and the second derivatives, i.e.,

s′i(ti+1) = s′i+1(ti+1), 0 6 i 6 n− 2, (3.54)

s′′i (ti+1) = s′′i+1(ti+1), 0 6 i 6 n− 2.
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(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.8: A cubic spline. In every subinterval [ti−1, ti, the function is a polynomial of
degree 6 2. The polynomials on the different subintervals are connected to each other
in such a way that the spline has a second-order continuous derivative. In this example
we use the not-a-knot condition.
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Before actually computing the spline, let’s check if we have enough equations to
determine a unique solution for the problem. There are n subintervals, and in each
subinterval we have to determine a polynomial of degree 6 3. Each such polynomial
has 4 coefficients, which leaves us with 4n coefficients to determine. The interpolation
and continuity conditions (3.53) for si(ti) and si(ti+1) amount to 2n equations. The
continuity of the first and the second derivatives (3.54) add 2(n−1) = 2n−2 equations.
Altogether we have 4n − 2 equations but 4n unknowns which leaves us with 2 degrees
of freedom. These indeed are two degrees of freedom that can be determined in various
ways as we shall see below.

We are now ready to compute the spline. We will use the following notation:

hi = ti+1 − ti.

We also set

zi = s′′(ti).

Since the second derivative of a cubic function is linear, we observe that s′′i (x) is the line
connecting (ti, zi) and (ti+1, zi+1), i.e.,

s′′i (x) =
x− ti

hi

zi+1 −
x− ti+1

hi

zi. (3.55)

Integrating (3.55) once, we have

s′i(x) =
1

2
(x− ti)

2 zi+1

hi

− 1

2
(x− ti+1)

2 zi

hi

+ c̃.

Integrating again

si(x) =
zi+1

6hi

(x− ti)
3 +

zi

6hi

(ti+1 − x)3 + C(x− ti) + D(ti+1 − x).

The interpolation condition, s(ti) = yi, implies that

yi =
zi

6hi

h3
i + Dhi,

i.e.,

D =
yi

hi

− zihi

6
.

Similarly, si(ti+1) = yi+1, implies that

yi+1 =
zi+1

6hi

h3
i + Chi,
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i.e.,

C =
yi+1

hi

− zi+1

6
hi.

This means that we can rewrite si(x) as

si(x) =
zi+1

6hi

(x−ti)
3+

zi

6hi

(ti+1−x)3+

(
yi+1

hi

− zi+1

6
hi

)
(x−ti)+

(
yi

hi

− zi

6
hi

)
(ti+1−x).

All that remains to determine is the second derivatives of s(x), z0, . . . , zn. We can set
z1, . . . , zn−1 using the continuity conditions on s′(x), i.e., s′i(ti) = s′i−1(ti). We first
compute s′i(x) and s′i−1(x):

s′i(x) =
zi+1

2hi

(x− ti)
2 − zi

2hi

(ti+1 − x)2 +
yi+1

hi

− zi+1

6
hi −

yi

hi

+
zihi

6
.

s′i−1(x) =
zi

2hi−1

(x− ti−1)
2 − zi−1

2hi−1

(ti − x)2 +
yi

hi−1

− zi

6
hi−1 −

yi−1

hi−1

+
zi−1hi−1

6
.

So that

s′i(ti) = − zi

2hi

h2
i +

yi+1

hi

− zi+1

6
hi −

yi

hi

+
zihi

6

= −hi

3
zi −

hi

6
zi+1 −

yi

hi

+
yi+1

hi

,

s′i−1(ti) =
zi

2hi−1

h2
i−1 +

yi

hi−1

− zi

6
hi−1 −

yi−1

hi−1

+
zi−1hi−1

6

=
hi−1

6
zi−1 +

hi−1

3
zi −

yi−1

hi−1

+
yi

h i−1
.

Hence, for 1 6 i 6 n− 1, we obtain the system of equations

hi−1

6
zi−1 +

hi + hi−1

3
zi +

hi

6
zi+1 =

1

hi

(yi+1 − yi)−
1

hi−1

(yi − yi−1). (3.56)

These are n− 1 equations for the n+1 unknowns, z0, . . . , zn, which means that we have
2 degrees of freedom. Without any additional information about the problem, the only
way to proceed is by making an arbitrary choice. There are several standard ways to
proceed. One option is to set the end values to zero, i.e.,

z0 = zn = 0. (3.57)

This choice of the second derivative at the end points leads to the so-called, natural
cubic spline. We will explain later in what sense this spline is “natural”. In this case,
we end up with the following linear system of equations

h0+h1

3
h1

6
h1

6
h1+h2

3
h2

6
. . . . . . . . .

hn−3

6
hn−3+hn−2

3
hn−2

6
hn−2

6
hn−2+hn−1

3




z1

z2
...

zn−2

zn−1

 =


y2−y1

h1
− y1−y0

h0
y3−y2

h2
− y2−y1

h1
...

yn−1−yn−2

hn−2
− yn−2−yn−3

hn−3
yn−yn−1

hn−1
− yn−1−yn−2

hn−2


35



3.10 Spline Interpolation D. Levy

The coefficients matrix is symmetric, tridiagonal, and diagonally dominant (i.e., |aii| >∑n
j=1,j 6=i |aij|, ∀i), which means that it can always be (efficiently) inverted.
In the special case where the points are equally spaced, i.e., hi = h, ∀i, the system

becomes
4 1
1 4 1

. . . . . . . . .

1 4 1
1 4




z1

z2
...

zn−2

zn−1

 =
6

h2


y2 − 2y1 + y0

y3 − 2y2 + y1
...

yn−1 − 2yn−2 + yn−3

yn − 2yn−1 + yn−2

 (3.58)

In addition to the natural spline (3.57), there are other standard options:

1. If the values of the derivatives at the endpoints are known, one can specify them

s′(t0) = y′0, s′(tn) = y′n.

2. The not-a-knot condition. Here, we require the third-derivative s(3)(x) to be
continuous at the points t1, tn−1. In this case we end up with a cubic spline with
knots t0, t2, t3, . . . , tn−2, tn. The points t1 and tn−1 no longer function as knots.
The interpolation requirements are still satisfied at t0, t1, . . . , tn−1, tn. Figure 3.9
shows two different cubic splines that interpolate the same initial data. The spline
that is plotted with a solid line is the not-a-knot spline. The spline that is plotted
with a dashed line is obtained by setting the derivatives at both end-points to
zero.

3.10.2 What is natural about the natural spline?

The following theorem states that the natural spline cannot have a larger L2-norm of
the second-derivative than the function it interpolates (assuming that that function has
a continuous second-derivative). In fact, we are minimizing the L2-norm of the second-
derivative not only with respect to the “original” function which we are interpolating,
but with respect to any function that interpolates the data (and has a continuous second-
derivative). In that sense, we refer to the natural spline as “natural”.

Theorem 3.22 Assume that f ′′(x) is continuous in [a, b], and let a = t0 < t1 < · · · <
tn = b. If s(x) is the natural cubic spline interpolating f(x) at the knots {ti} then∫ b

a

(s′′(x))2dx 6
∫ b

a

(f ′′(x))2dx.

Proof. Define g(x) = f(x)− s(x). Then since s(x) interpolates f(x) at the knots {ti}
their difference vanishes at these points, i.e.,

g(ti) = 0, 0 6 i 6 n.
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(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.9: Two cubic splines that interpolate the same data. Solid line: a not-a-knot
spline; Dashed line: the derivative is set to zero at both end-points

Now ∫ b

a

(f ′′)2dx =

∫ b

a

(s′′)2dx +

∫ b

a

(g′′)2dx + 2

∫ b

a

s′′g′′dx. (3.59)

We will show that the last term on the right-hand-side of (3.59) is zero, which will
conclude the proof as the other two terms on the right-hand-side of (3.59) are
non-negative. Splitting that term into a sum of integrals on the subintervals and
integrating by parts on every subinterval, we have∫ b

a

s′′g′′dx =
n∑

i=1

∫ ti

ti−1

s′′g′′dx =
n∑

i=1

[
(s′′g′)

∣∣∣∣ti
ti−1

−
∫ ti

ti−1

s′′′g′dx

]
.

Since we are dealing with the “natural” choice s′′(t0) = s′′(tn) = 0, and since s′′′(x) is
constant on [ti−1, ti] (say ci), we end up with∫ b

a

s′′g′′dx = −
n∑

i=1

∫ ti

ti−1

s′′′g′dx = −
n∑

i=1

ci

∫ ti

ti−1

g′dx = −
n∑

i=1

ci(g(ti)−g(ti−1)) = 0. �

We note that f ′′(x) can be viewed as a linear approximation of the curvature

|f ′′(x)|
(1 + (f ′(x))2)

3
2

.
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From that point of view, minimizing
∫ b

a
(f ′′(x))2dx, can be viewed as finding the curve

with a minimal |f ′′(x)| over an interval.
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