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2 Methods for Solving Nonlinear Problems

2.1 Preliminary Discussion

In this chapter we will learn methods for approximating solutions of nonlinear algebraic
equations. We will limit our attention to the case of finding roots of a single equation
of one variable. Thus, given a function, f(x), we will be be interested in finding points
x∗, for which f(x∗) = 0. A classical example that we are all familiar with is the case in
which f(x) is a quadratic equation. If, f(x) = ax2 + bx + c, it is well known that the
roots of f(x) are given by

x∗1,2 =
−b±

√
b2 − 4ac

2a
.

These roots may be complex or repeat (if the discriminant vanishes). This is a simple
case in which the can be computed using a closed analytic formula. There exist formulas
for finding roots of polynomials of degree 3 and 4, but these are rather complex. In more
general cases, when f(x) is a polynomial of degree that is > 5, formulas for the roots
no longer exist. Of course, there is no reason to limit ourselves to study polynomials,
and in most cases, when f(x) is an arbitrary function, there are no analytic tools for
calculating the desired roots. Instead, we must use approximation methods. In fact,
even in cases in which exact formulas are available (such as with polynomials of degree 3
or 4) an exact formula might be too complex to be used in practice, and approximation
methods may quickly provide an accurate solution.

An equation f(x) = 0 may or may not have solutions. We are not going to focus on
finding methods to decide whether an equation has a solutions or not, but we will look
for approximation methods assuming that solutions actually exist. We will also assume
that we are looking only for real roots. There are extensions of some of the methods that
we will describe to the case of complex roots but we will not deal with this case. Even
with the simple example of the quadratic equation, it is clear that a nonlinear equation
f(x) = 0 may have more than one root. We will not develop any general methods for
calculating the number of the roots. This issue will have to be dealt with on a case by
case basis. We will also not deal with general methods for finding all the solutions of a
given equation. Rather, we will focus on approximating one of the solutions.

The methods that we will describe, all belong to the category of iterative methods.
Such methods will typically start with an initial guess of the root (or of the neighborhood
of the root) and will gradually attempt to approach the root. In some cases, the sequence
of iterations will converge to a limit, in which case we will then ask if the limit point
is actually a solution of the equation. If this is indeed the case, another question of
interest is how fast does the method converge to the solution? To be more precise, this
question can be formulated in the following way: how many iterations of the method
are required to guarantee a certain accuracy in the approximation of the solution of the
equation.
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2.1.1 Are there any roots anywhere?

There really are not that many general tools to knowing up front whether the root-
finding problem can be solved. For our purposes, there most important issue will be to
obtain some information about whether a root exists or not, and if a root does exist, then
it will be important to make an attempt to estimate an interval to which such a solution
belongs. One of our first attempts in solving such a problem may be to try to plot the
function. After all, if the goal is to solve f(x) = 0, and the function f(x) can be plotted
in a way that the intersection of f(x) with the x-axis is visible, then we should have a
rather good idea as of where to look for for the root. There is absolutely nothing wrong
with such a method, but it is not always easy to plot the function. There are many
cases, in which it is rather easy to miss the root, and the situation always gets worse
when moving to higher dimensions (i.e., more equations that should simultaneously be
solved). Instead, something that is sometimes easier, is to verify that the function f(x)
is continuous (which hopefully it is) in which case all that we need is to find a point a
in which f(a) > 0, and a point b, in which f(b) < 0. The continuity will then guarantee
(due to the intermediate value theorem) that there exists a point c between a and b for
which f(c) = 0, and the hunt for that point can then begin. How to find such points
a and b? Again, there really is no general recipe. A combination of intuition, common
sense, graphics, thinking, and trial-and-error is typically helpful. We would now like to
consider several examples:

Example 2.1
A standard way of attempting to determine if a continuous function has a root in an
interval is to try to find a point in which it is positive, and a second point in which it
is negative. The intermediate value theorem for continuous functions then guarantees
the existence of at least one point for which the function vanishes. To demonstrate this
method, consider f(x) = sin(x) − x + 0.5. At x = 0, f(0) = 0.5 > 0, while at x = 5,
clearly f(x) must be negative. Hence the intermediate value theorem guarantees the
existence of at least one point x∗ ∈ (0, 5) for which f(x∗) = 0.

Example 2.2
Consider the problem e−x = x, for which we are being asked to determine if a solution
exists. One possible way to approach this problem is to define a function f(x) = e−x−x,
rewrite the problem as f(x) = 0, and plot f(x). This is not so bad, but already requires
a graphic calculator or a calculus-like analysis of the function f(x) in order to plot
it. Instead, it is a reasonable idea to start with the original problem, and plot both
functions e−x and x. Clearly, these functions intersect each other, and the intersection
is the desirable root. Now, we can return to f(x) and use its continuity (as a difference
between continuous functions) to check its sign at a couple of points. For example, at
x = 0, we have that f(0) = 1 > 0, while at x = 1, f(1) = 1/e − 1 < 0. Hence, due
to the intermediate value theorem, there must exist a point x∗ in the interval (0, 1) for
which f(x∗) = 0. At that point x∗ we have e−x∗ = x∗. Note that while the graphical
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argument clearly indicates that there exists one and only one solution for the equation,
the argument that is based on the intermediate value theorem provides the existence of
at least one solution.

A tool that is related to the intermediate value theorem is Brouwer’s fixed point
theorem:

Theorem 2.3 (Brouwer’s Fixed Point Theorem) Assume that g(x) is continuous
on the closed interval [a, b]. Assume that the interval [a, b] is mapped to itself by g(x),
i.e., for any x ∈ [a, b], g(x) ∈ [a, b]. Then there exists a point c ∈ [a, b] such that
g(c) = c. The point c is a fixed point of g(x).

The theorem is demonstrated in Figure 2.1. Since the interval [a, b] is mapped to
itself, the continuity of g(x) implies that it must intersect the line x in the interval [a, b]
at least once. Such intersection points are the desirable fixed points of the function g(x),
as guaranteed by Theorem 2.3.

Figure 2.1: An illustration of the Brouwer fixed point theorem

Proof. Let f(x) = x − g(x). Since g(a) ∈ [a, b] and also g(b) ∈ [a, b], we know that
f(a) = a − g(a) 6 0 while f(b) = b − g(b) > 0. Since g(x) is continuous in [a, b], so is
f(x), and hence according to the intermediate value theorem, there must exist a point
c ∈ [a, b] at which f(c) = 0. At this point g(c) = c. �

How much does Theorem 2.3 add in terms of tools for proving that a root exists
in a certain interval? In practice, the actual contribution is rather marginal, but there
are cases where it adds something. Clearly if we are looking for roots of a function
f(x), we can always reformulate the problem as a fixed point problem for a function
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g(x) by defining g(x) = f(x) + x. Usually this is not the only way in which a root
finding problem can be converted into a fixed point problem. In order to be able to
use Theorem 2.3, the key point is always to look for a fixed point problem in which the
interval of interest is mapped to itself.

Example 2.4
To demonstrate how the fixed point theorem can be used, consider the function f(x) =
ex − x2 − 3 for x ∈ [1, 2]. Define g(x) = ln(x2 + 3). Fixed points of g(x) is a root of
f(x). Clearly, g(1) = ln 4 > ln e = 1 and g(2) = ln(7) < ln(e2) = 2, and since g(x) is
continuous and monotone in [1, 2], we have that g([1, 2]) ⊂ [1, 2]. Hence the conditions
of Theorem 2.3 are satisfied and f(x) must have a root in the interval [1, 2].

2.1.2 Examples of root-finding methods

So far our focus has been on attempting to figure out if a given function has any roots,
and if it does have roots, approximately where can they be. However, we have not went
into any details in developing methods for approximating the values of such roots. Before
we start with a detailed study of such methods, we would like to go over a couple of the
methods that will be studied later on, emphasizing that they are all iterative methods.
The methods that we will briefly describe are Newton’s method and the secant method.
A more detailed study of these methods will be conducted in the following sections.

1. Newton’s method. Newton’s method for finding a root of a differentiable func-
tion f(x) is given by:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.1)

We note that for the formula (2.1) to be well-defined, we must require that
f ′(xn) 6= 0 for any xn. To provide us with a list of successive approximation,
Newton’s method (2.1) should be supplemented with one initial guess, say x0.
The equation (2.1) will then provide the values of x1, x2, . . .

One way of obtaining Newton’s method is the following: Given a point xn we are
looking for the next point xn+1. A linear approximation of f(x) at xn+1 is

f(xn+1) ≈ f(xn) + (xn+1 − xn)f ′(xn).

Since xn+1 should be an approximation to the root of f(x), we set f(xn+1) = 0,
rearrange the terms and get (2.1).

2. The secant method. The secant method is obtained by replacing the derivative
in Newton’s method, f ′(xn), by the following finite difference approximation:

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

. (2.2)
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The secant method is thus:

xn+1 − xn − f(xn)

[
xn − xn−1

f(xn)− f(xn−1)

]
. (2.3)

The secant method (2.3) should be supplemented by two initial values, say x0, and
x1. Using these two values, (2.3) will provide the values of x2, x3, . . ..

2.2 Iterative Methods

At this point we would like to explore more tools for studying iterative methods. We
start by considering simple iterates, in which given an initial value x0, the iterates are
given by the following recursion:

xn+1 = g(xn), n = 0, 1, . . . (2.4)

If the sequence {xn} in (2.4) converges, and if the function g(x) is continuous, the limit
must be a fixed point of the function g(x). This is obvious, since if xn → x∗ as n →∞,
then the continuity of g(x) implies that in the limit we have

x∗ = g(x∗).

Since things seem to work well when the sequence {xn} converges, we are now interested
in studying exactly how can the convergence of this sequence be guaranteed? Intuitively,
we expect that a convergence of the sequence will occur if the function g(x) is “shrinking”
the distance between any two points in a given interval. Formally, such a concept is
known as “contraction” and is given by the following definition:

Definition 2.5 Assume that g(x) is a continuous function in [a, b]. Then g(x) is a
contraction on [a, b] if there exists a constant L such that 0 < L < 1 for which for any
x and y in [a, b]:

|g(x)− g(y)| 6 L|x− y|. (2.5)

The equation (2.5) is referred to as a Lipschitz condition and the constant L is the
Lipschitz constant.

Indeed, if the function g(x) is a contraction, i.e., if it satisfies the Lipschitz con-
dition (2.5), we can expect the iterates (2.4) to converge as given by the Contraction
Mapping Theorem.

Theorem 2.6 (Contraction Mapping) Assume that g(x) is a continuous function
on [a, b]. Assume that g(x) satisfies the Lipschitz condition (2.5), and that g([a, b]) ⊂
[a, b]. Then g(x) has a unique fixed point c ∈ [a, b]. Also, the sequence {xn} defined
in (2.4) converges to c as n →∞ for any x0 ∈ [a, b].
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Proof. We know that the function g(x) must have at least one fixed point due to
Theorem 2.3. To prove the uniqueness of the fixed point, we assume that there are two
fixed points c1 and c2. We will prove that these two points must be identical.

|c1 − c2| = |g(c1)− g(c2)| 6 L|c1 − c2|,

and since 0 < L < 1, c1 must be equal to c2.
Finally, we prove that the iterates in (2.4) converge to c for any x0 ∈ [a, b].

|xn+1 − c| = |g(xn)− g(c)| 6 L|xn − c| 6 . . . ≤ Ln+1|x0 − c|. (2.6)

Since 0 < L < 1, we have that as n → ∞, |xn+1 − c| → 0, and we have convergence of
the iterates to the fixed point of g(x) independently of the starting point x0. �

Remarks.

1. In order to use the Contraction Mapping Theorem, we must verify that the
function g(x) satisfies the Lipschitz condition, but what does it mean? The
Lipschitz condition provides information about the “slope” of the function. The
quotation marks are being used here, because we never required that the
function g(x) is differentiable. Our only requirement had to do with the
continuity of g(x). The Lipschitz condition can be rewritten as:

|g(x)− g(y)|
|x− y|

6 L, ∀x, y ∈ [a, b], x 6= y,

with 0 < L < 1. The term on the LHS is a discrete approximation to the slope of
g(x). In fact, if the function g(x) is differentiable, according to the Mean Value
Theorem, there exists a point ξ between x and y such that

g′(ξ) =
g(x)− g(y)

x− y
.

Hence, in practice, if the function g(x) is differentiable in the interval (a, b), and
if there exists L ∈ (0, 1), such that |g′(x)| < L for any x ∈ (a, b), then the
assumptions on g(x) satisfying the Lipshitz condition in Theorem 2.6 hold.
Having g(x) differentiable is more than the theorem requires but in many
practical cases, we anyhow deal with differentiable g’s so it is straightforward to
use the condition that involves the derivative.

2. Another typical thing that can happen is that the function g(x) will be
differentiable, and |g′(x)| will be less than 1, but only in a neighborhood of the
fixed point. In this case, we can still formulate a “local” version of the
contraction mapping theorem. This theorem will guarantee convergence to a
fixed point, c, of g(x) if we start the iterations sufficiently close to that point c.
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Starting “far” from c may or may not lead to a convergence to c. Also, since we
consider only a neighborhood of the fixed point c, we can no longer guarantee
the uniqueness of the fixed point, as away from there, we do not post any
restriction on the slope of g(x) and therefore anything can happen.

3. When the contraction mapping theorem holds, and convergence of the iterates to
the unique fixed point follows, it is of interest to know how many iterations are
required in order to approximate the fixed point with a given accuracy. If our
goal is to approximate c within a distance ε, then this means that we are looking
for n such that

|xn − c| 6 ε.

We know from (2.6) that

|xn − c| 6 Ln|x0 − c|, n > 1. (2.7)

In order to get rid of c from the RHS of (2.7), we compute

|x0 − c| = |xc − x1 + x1 − c| 6 |x0 − x1|+ |x1 − c| 6 L|x0 − c|+ |x1 − x0|.

Hence

|x0 − c| 6 |x1 − x0|
1− L

.

We thus have

|xn − c| 6 Ln

1− L
|x1 − x0|,

and for |xn − c| < ε we require that

Ln 6
ε(1− L)

|x1 − x0|
,

which implies that the number of iterations that will guarantee that the
approximation error will be under ε must exceed

n >
1

ln(L)
· ln

[
(1− L)ε

|x1 − x0|

]
. (2.8)

2.3 The Bisection Method

Before returning to Newton’s method, we would like to present and study a method for
finding roots which is one of the most intuitive methods one can easily come up with.
The method we will consider is known as the “bisection method” .
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We are looking for a root of a function f(x) which we assume is continuous on the
interval [a, b]. We also assume that it has opposite signs at both edges of the interval,
i.e., f(a)f(b) < 0. We then know that f(x) has at least one zero in [a, b]. Of course
f(x) may have more than one zero in the interval. The bisection method is only going
to converge to one of the zeros of f(x). There will also be no indication as of how many
zeros f(x) has in the interval, and no hints regarding where can we actually hope to
find more roots, if indeed there are additional roots.

The first step is to divide the interval into two equal subintervals,

c =
a + b

2
.

This generates two subintervals, [a, c] and [c, b], of equal lengths. We want to keep the
subinterval that is guaranteed to contain a root. Of course, in the rare event where
f(c) = 0 we are done. Otherwise, we check if f(a)f(c) < 0. If yes, we keep the left
subinterval [a, c]. If f(a)f(c) > 0, we keep the right subinterval [c, b]. This procedure
repeats until the stopping criterion is satisfied: we fix a small parameter ε > 0 and stop
when |f(c)| < ε. To simplify the notation, we denote the successive intervals by [a0, b0],
[a1, b1],... The first two iterations in the bisection method are shown in Figure 2.2. Note
that in the case that is shown in the figure, the function f(x) has multiple roots but the
method converges to only one of them.

0

a0 c b0
x

f(a0)

f(c)
f(b0)

0

a1 c b1
x

f(a1)
f(c)

f(b1)

Figure 2.2: The first two iterations in a bisection root-finding method

We would now like to understand if the bisection method always converges to a root.
We would also like to figure out how close we are to a root after iterating the algorithm
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several times. We first note that

a0 6 a1 6 a2 6 . . . 6 b0,

and

b0 > b1 > b2 > . . . > a0.

We also know that every iteration shrinks the length of the interval by a half, i.e.,

bn+1 − an+1 =
1

2
(bn − an), n > 0,

which means that

bn − an = 2−n(b0 − a0).

The sequences {an}n>0 and {bn}n>0 are monotone and bounded, and hence converge.
Also

lim
n→∞

bn − lim
n→∞

an = lim
n→∞

2−n(b0 − a0) = 0,

so that both sequences converge to the same value. We denote that value by r, i.e.,

r = lim
n→∞

an = lim
n→∞

bn.

Since f(an)f(bn) 6 0, we know that (f(r))2 6 0, which means that f(r) = 0, i.e., r is a
root of f(x).

We now assume that we stop in the interval [an, bn]. This means that r ∈ [an, bn].
Given such an interval, if we have to guess where is the root (which we know is in the
interval), it is easy to see that the best estimate for the location of the root is the center
of the interval, i.e.,

cn =
an + bn

2
.

In this case, we have

|r − cn| 6
1

2
(bn − an) = 2−(n+1)(b0 − a0).

We summarize this result with the following theorem.

Theorem 2.7 If [an, bn] is the interval that is obtained in the nth iteration of the bisec-
tion method, then the limits limn→∞ an and limn→∞ bn exist, and

lim
n→∞

an = lim
n→∞

bn = r,

where f(r) = 0. In addition, if

cn =
an + bn

2
,

then

|r − cn| 6 2−(n+1)(b0 − a0).
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2.4 Newton’s Method

Newton’s method is a relatively simple, practical, and widely-used root finding method.
It is easy to see that while in some cases the method rapidly converges to a root of the
function, in some other cases it may fail to converge at all. This is one reason as of why
it is so important not only to understand the construction of the method, but also to
understand its limitations.

As always, we assume that f(x) has at least one (real) root, and denote it by r. We
start with an initial guess for the location of the root, say x0. We then let l(x) be the
tangent line to f(x) at x0, i.e.,

l(x)− f(x0) = f ′(x0)(x− x0).

The intersection of l(x) with the x-axis serves as the next estimate of the root. We
denote this point by x1 and write

0− f(x0) = f ′(x0)(x1 − x0),

which means that

x1 = x0 −
f(x0)

f ′(x0)
. (2.9)

In general, the Newton method (also known as the Newton-Raphson method) for
finding a root is given by iterating (2.9) repeatedly, i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
. (2.10)

Two sample iterations of the method are shown in Figure 2.3. Starting from a point xn,
we find the next approximation of the root xn+1, from which we find xn+2 and so on. In
this case, we do converge to the root of f(x).

It is easy to see that Newton’s method does not always converge. We demonstrate
such a case in Figure 2.4. Here we consider the function f(x) = tan−1(x) and show what
happens if we start with a point which is a fixed point of Newton’s method, iterated
twice. In this case, x0 ≈ 1.3917 is such a point.

In order to analyze the error in Newton’s method we let the error in the nth iteration
be

en = xn − r.

We assume that f ′′(x) is continuous and that f ′(r) 6= 0, i.e., that r is a simple root of
f(x). We will show that the method has a quadratic convergence rate, i.e.,

en+1 ≈ ce2
n. (2.11)
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0
r xn+2 xn+1 xn

x

f(x) −→

Figure 2.3: Two iterations in Newton’s root-finding method. r is the root of f(x) we
approach by starting from xn, computing xn+1, then xn+2, etc.

0

x1, x3, x5, ... x0, x2, x4, ...

x

ta
n

1 (
x)

Figure 2.4: Newton’s method does not always converge. In this case, the starting point
is a fixed point of Newton’s method iterated twice
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A convergence rate estimate of the type (2.11) makes sense, of course, only if the method
converges. Indeed, we will prove the convergence of the method for certain functions
f(x), but before we get to the convergence issue, let’s derive the estimate (2.11). We
rewrite en+1 as

en+1 = xn+1 − r = xn −
f(xn)

f ′(xn)
− r = en −

f(xn)

f ′(xn)
=

enf
′(xn)− f(xn)

f ′(xn)
.

Writing a Taylor expansion of f(r) about x = xn we have

0 = f(r) = f(xn − en) = f(xn)− enf
′(xn) +

1

2
e2

nf
′′(ξn),

which means that

enf
′(xn)− f(xn) =

1

2
f ′′(ξn)e2

n.

Hence, the relation (2.11), en+1 ≈ ce2
n, holds with

c =
1

2

f ′′(ξn)

f ′(xn)
(2.12)

Since we assume that the method converges, in the limit as n → ∞ we can replace
(2.12) by

c =
1

2

f ′′(r)

f ′(r)
. (2.13)

We now return to the issue of convergence and prove that for certain functions
Newton’s method converges regardless of the starting point.

Theorem 2.8 Assume that f(x) has two continuous derivatives, is monotonically in-
creasing, convex, and has a zero. Then the zero is unique and Newton’s method will
converge to it from every starting point.

Proof. The assumptions on the function f(x) imply that ∀x, f ′′(x) > 0 and f ′(x) > 0.
By (2.12), the error at the (n + 1)th iteration, en+1, is given by

en+1 =
1

2

f ′′(ξn)

f ′(xn)
e2

n,

and hence it is positive, i.e., en+1 > 0. This implies that ∀n > 1, xn > r, Since
f ′(x) > 0, we have

f(xn) > f(r) = 0.
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Now, subtracting r from both sides of (2.10) we may write

en+1 = en −
f(xn)

f ′(xn)
, (2.14)

which means that en+1 < en (and hence xn+1 < xn). Hence, both {en}n>0 and {xn}n>0

are decreasing and bounded from below. This means that both series converge, i.e.,
there exists e∗ such that,

e∗ = lim
n→∞

en,

and there exists x∗ such that

x∗ = lim
n→∞

xn.

By (2.14) we have

e∗ = e∗ − f(x∗)

f ′(x∗)
,

so that f(x∗) = 0, and hence x∗ = r. �

Theorem 2.8 guarantees global convergence to the unique root of a monotonically
increasing, convex smooth function. If we relax some of the requirements on the function,
Newton’s method may still converge. The price that we will have to pay is that the
convergence theorem will no longer be global. Convergence to a root will happen only
if we start sufficiently close to it. Such a result is formulated in the following theorem.

Theorem 2.9 Assume f(x) is a continuous function with a continuous second deriva-
tive, that is defined on an interval I = [r − δ, r + δ], with δ > 0. Assume that f(r) = 0,
and that f ′′(r) 6= 0. Assume that there exists a constant A such that

|f ′′(x)|
|f ′(y)|

6 A, ∀x, y ∈ I.

If the initial guess x0 is sufficiently close to the root r, i.e., if |r − x0| ≤ min{δ, 1/A},
then the sequence {xn} defined in (2.10) converges quadratically to the root r.

Proof. We assume that xn ∈ I. Since f(r) = 0, a Taylor expansion of f(x) at x = xn,
evaluated at x = r is:

0 = f(r) = f(xn) + (r − xn)f ′(xn) +
(r − xn)2

2
f ′′(ξn), (2.15)

where ξn is between r and xn, and hence ξ ∈ I. Equation (2.15) implies that

r − xn =
−2f(xn)− (r − xn)2f ′′(ξn)

2f ′(xn)
.
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Since xn+1 are the Newton iterates and hence satisfy (2.10), we have

r − xn+1 = r − xn +
f(xn)

f ′(xn)
= −(r − x2

n)f ′′(ξn)

2f ′(xn)
. (2.16)

Hence

|r − xn+1| 6
(r − xn)2

2
A 6

|r − xn|
2

6 . . . 6 2−(n−1)|r − x0, |

which implies that xn → r as n →∞.
It remains to show that the convergence rate of {xn} to r is quadratic. Since ξn is
between the root r and xn, it also converges to r as n →∞. The derivatives f ′ and f ′′

are continuous and therefore we can take the limit of (2.16) as n →∞ and write

lim
n→∞

|xn+1 − r|
|xn − r|

=

∣∣∣∣ f ′′(r)

2f ′(r)

∣∣∣∣ ,

which implies the quadratic convergence of {xn} to r. �

2.5 The Secant Method

We recall that Newton’s root finding method is given by equation (2.10), i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
.

We now assume that we do not know that the function f(x) is differentiable at xn, and
thus can not use Newton’s method as is. Instead, we can replace the derivative f ′(xn)
that appears in Newton’s method by a difference approximation. A particular choice of
such an approximation,

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

,

leads to the secant method which is given by

xn+1 = xn − f(xn)

[
xn − xn−1

f(xn)− f(xn−1)

]
, n > 1. (2.17)

A geometric interpretation of the secant method is shown in Figure 2.5. Given two
points, (xn−1, f(xn−1)) and (xn, f(xn)), the line l(x) that connects them satisfies

l(x)− f(xn) =
f(xn−1)− f(xn)

xn−1 − xn

(x− xn).

14
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0
r xn+1 xn xn 1

x

f(x) −→

Figure 2.5: The Secant root-finding method. The points xn−1 and xn are used to obtain
xn+1, which is the next approximation of the root r

The next approximation of the root, xn+1, is defined as the intersection of l(x) and the
x-axis, i.e.,

0− f(xn) =
f(xn−1)− f(xn)

xn−1 − xn

(xn+1 − xn). (2.18)

Rearranging the terms in (2.18) we end up with the secant method (2.17).

We note that the secant method (2.17) requires two initial points. While this is
an extra requirement compared with, e.g., Newton’s method, we note that in the se-
cant method there is no need to evaluate any derivatives. In addition, if implemented
properly, every stage requires only one new function evaluation.

We now proceed with an error analysis for the secant method. As usual, we denote
the error at the nth iteration by en = xn − r. We claim that the rate of convergence of
the secant method is superlinear (meaning, better than linear but less than quadratic).
More precisely, we will show that it is given by

|en+1| ≈ |en|α, (2.19)

with

α =
1 +

√
5

2
. (2.20)
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We start by rewriting en+1 as

en+1 = xn+1 − r =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
− r =

f(xn)en−1 − f(xn−1)en

f(xn)− f(xn−1)
.

Hence

en+1 = enen−1

[
xn − xn−1

f(xn)− f(xn−1)

][
f(xn)

en
− f(xn−1)

en−1

xn − xn−1

]
. (2.21)

A Taylor expansion of f(xn) about x = r reads

f(xn) = f(r + en) = f(r) + enf
′(r) +

1

2
e2

nf
′′(r) + O(e3

n),

and hence

f(xn)

en

= f ′(r) +
1

2
enf

′′(r) + O(e2
n).

We thus have

f(xn)

en

− f(xn−1)

en−1

=
1

2
(en − en−1)f

′′(r) + O(e2
n−1) + O(e2

n)

=
1

2
(xn − xn−1)f

′′(r) + O(e2
n−1) + O(e2

n).

Therefore,

f(xn)
en

− f(xn−1)
en−1

xn − xn−1

≈ 1

2
f ′′(r),

and

xn − xn−1

f(xn)− f(xn−1)
≈ 1

f ′(r)
.

The error expression (2.21) can be now simplified to

en+1 ≈
1

2

f ′′(r)

f ′(r)
enen−1 = cenen−1. (2.22)

Equation (2.22) expresses the error at iteration n+1 in terms of the errors at iterations
n and n − 1. In order to turn this into a relation between the error at the (n + 1)th

iteration and the error at the nth iteration, we now assume that the order of convergence
is α, i.e.,

|en+1| ∼ A|en|α. (2.23)

16
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Since (2.23) also means that |en| ∼ A|en−1|α, we have

A|en|α ∼ C|en|A− 1
α |en|

1
α .

This implies that

A1+ 1
α C−1 ∼ |en|1−α+ 1

α . (2.24)

The left-hand-side of (2.24) is non-zero while the right-hand-side of (2.24) tends to zero
as n →∞ (assuming, of course, that the method converges). This is possible only if

1− α +
1

α
= 0,

which, in turn, means that

α =
1 +

√
5

2
.

The constant A in (2.23) is thus given by

A = C
1

1+ 1
α = C

1
α = Cα−1 =

[
f ′′(r)

2f ′(r)

]α−1

.

We summarize this result with the theorem:

Theorem 2.10 Assume that f ′′(x) is continuous ∀x in an interval I. Assume that
f(r) = 0 and that f ′(r) 6= 0. If x0, x1 are sufficiently close to the root r, then xn → r.

In this case, the convergence is of order 1+
√

5
2

.
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